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Preface 

Designing object detection and recognition systems that work in the real world 
is a challenging task due to various factors including the high complexity of 
the systems, the dynamically changing environment of the real world and 
factors such as occlusion, clutter, articulation, and various noise contributions 
that make the extraction of reliable features quite difficult. Furthermore, 
features useful to the detection and recognition of one kind of object or in the 
processing of one kind of imagery may not be effective in the detection and 
recognition of another kind of object or in the processing of another kind of 
imagery. Thus, the detection and recognition system often needs thorough 
overhaul when applied to other types of images different from the one for 
which the system was designed. This is very uneconomical and requires highly 
trained experts. The purpose of incorporating learning into the system design 
is to avoid the time consuming process of feature generation and selection and 
to lower the cost of building object detection and recognition systems. 

Evolutionary computation is becoming increasingly important for computer 
vision and pattern recognition fields. It provides a systematic way of synthesis 
and analysis of object detection and recognition systems. With learning 
incorporated, the resulting recognition systems will be able to automatically 
generate new features on the fly and cleverly select a good subset of features 
according to the type of objects and images to which they are applied. The 
system will be flexible and can be applied to a variety of objects and images. 

This book investigates evolutionary computational techniques such as 
genetic programming (GP), linear genetic programming (LGP), 
coevolutionary genetic programming (CGP) and genetic algorithms (GA) to 
automate the synthesis and analysis of object detection and recognition 
systems. The ultimate goal of the learning approaches presented in this book 
is to lower the cost of designing object detection and recognition systems and 
build more robust and flexible systems with human-competitive performance. 



xxil Preface

The book presents four important ideas.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent
primitive image processing operations and primitive features (both elementary
and complex) for object detection and recognition. It explores the role of
domain knowledge in evolutionary computational techniques for object
recognition. Based on GP and CGP's ability to synthesize effective features
from simple features not specifically designed for a particular kind of imagery,
the cost of building object detection and recognition systems is lowered and
the flexibility of the systems is increased. More importantly, a large amount of
unconventional features are explored by GP and CGP and these
unconventional features yield exceptionally good detection and recognition
performance in some cases, overcoming the human experts' limitation of
considering only a small number of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on the minimum description length (MDL) principle are designed to improve
the efficiency of genetic programming. Smart crossover and smart mutation
are designed to identify and keep the effective components of composite
operators from being disrupted and a MDL-based fitness function is proposed
to address the well-known code bloat problem of GP without imposing severe
restriction on the GP search. Compared to normal GP, smart GP algorithm
with smart crossover, smart mutation and a MDL-based fitness function finds
effective composite operators more quickly and the composite operators
learned by smart GP algorithm have smaller size, greatly reducing both the
computational expense during testing and the possibility of overfitting during
training.

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm's performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce the possibility of overfitting the
training data during training and the computational burden during testing.



Preface xxiii

Fourth, adaptive revolutionary linear genetic programming (LGP) in
conjunction with general image processing, computer vision and pattern
recognition operators is proposed to synthesize recognition systems. The basic
two-class approach is extended for scalability to multiple classes and various
architectures and strategies are considered.

The book consists of eight chapters dealing with various evolutionary
approaches for automatic synthesis and analysis of object detection and
recognition systems. Many real world imagery examples are given in all the
chapters and a comparison of the results with standard techniques is provided.

The book will be of interest to scientists, engineers and students working in
computer vision, pattern recognition, object recognition, machine learning,
evolutionary learning, image processing, knowledge discovery, data mining,
cybernetics, robotics, automation and psychology.
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