Evolutionary Synthesis of Pattern Recognition Systems

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects
Benosman and Kang [editors], Panoramic Vision: Sensors, Theory and Applications
Broy and Stølen, Specification and Development of Interactive Systems: FOCUS on Streams, Interfaces, and Refinement
Brzozowski and Seger, Asynchronous Circuits
Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets
Castillo, Gutiérrez, and Hadi, Expert Systems and Probabilistic Network Models
Downey and Fellows, Parameterized Complexity
Feijen and van Gasteren, On a Method of Multiprogramming
Herbert and Spärck Jones [editors], Computer Systems: Theory, Technology, and Applications
Leiss, Language Equations
Mclver and Morgan [editors], Programming Methodology
Mclver and Morgan, Abstraction, Refinement and Proof for Probabilistic Systems
Misra, A Discipline of Multiprogramming: Program Theory for Distributed Applications
Nielson [editor], ML with Concurrency
Paton [editor], Active Rules in Database Systems
Selig, Geometric Fundamentals of Robotics, Second Edition
Tonella and Potrich, Reverse Engineering of Object Oriented Code

Bir Bhanu
 Yingqiang Lin
 Krzysztof Krawiec

Evolutionary Synthesis of Pattern Recognition Systems

Springer

Bir Bhanu	Yingqiang Lin	Krzysztof Krawiec
Center for Research in	Center for Research in	Center for Research in
Intelligent Systems	Intelligent Systems	Intelligent Systems
University of California	University of California	University of California
at Riverside	at Riverside	at Riverside
Bourns Hall RM B232	Bourns Hall RM B232	Bourns Hall RM B232
Riverside, CA 92521	Riverside CA 92521	Riverside CA 92521

Series Editors
David Gries
Dept. of Computer Science
Cornell University
Upson Hall
Ithaca NY 14853-7501

Fred B. Schneider
Dept. Computer Science
Cornell University
Upson Hall
Ithaca NY 14853-7501

Library of Congress Cataloging-in-Publication Data
Bhanu, Bir.
Evolutionary Synthesis of Pattern Recognition Systems /Bir Bhanu, Yingqiang Lin, and Krzysztof
Krawiec.
p. cm. -(Monographs in Computer Science)
Includes bibliographic references and index.

ISBN 0-387-21295-7 e-ISBN 0-387-24452-2 Printed on acid-free paper.
© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (BS/DH)
$987654321 \quad$ SPIN (HC) 10984741 / SPIN (eBK) 11381136
springeronline.com

Contents

LIST OF FIGURES xi
LIST OF TABLES xvii
PREFACE xxi
CHAPTER 1 INTRODUCTION 1
1.1 Object Detection and Recognition Problem 1
1.2 Motivations for Evolutionary Computation 3
1.3 Evolutionary Approaches for Synthesis and Analysis 5
1.4 Outline of the Book 7
CHAPTER 2 FEATURE SYNTHESIS FOR OBJECT DETECTION 11
2.1 Introduction 11
2.2 Motivation and Related Research 12
2.2.1 Motivation 12
2.2.2 Related research 13
2.3 Genetic Programming for Feature Synthesis 15
2.3.1 Design considerations 16
2.3.2 Selection, crossover and mutation 20
2.3.3 Steady-state and generational genetic programming 23
2.4 Experiments 27
2.4.1 SAR Images 28
2.4.2 Infrared and color images 45
2.4.3 Comparison with GP with hard limit on composite operator size 53
2.4.4 Comparison with image-based GP 62
2.4.5 Comparison with a traditional ROI extraction algorithm 68
2.4.6 A multi-class example 73
2.5 Conclusions 78
CHAPTER 3 MDL-BASED EFFICIENT GENETIC PROGRAMMING FOR OBJECT DETECTION 79
3.1 Introduction 79
3.2 Motivation and Related Research 80
3.3 Improving the Efficiency of GP 84
3.3.1 MDL principle-based fitness function 84
3.3.2 Genetic programming with smart crossover and smart mutation 86
3.3.3 Steady-state and generational genetic programming 90
3.4 Experiments 93
3.4.1 Road extraction 95
3.4.2 Lake extraction 103
3.4.3 River extraction 105
3.4.4 Field extraction 108
3.4.5 Tank extraction 110
3.4.6 Comparison of smart GP with normal GP 113
3.5 Conclusions 119
CHAPTER 4 FEATURE SELECTION FOR OBJECT DETECTION 121
4.1 Introduction 121
4.2 Motivation and Related Research 123
4.3 Feature Evaluations and Selection 125
4.3.1 Feature selection 126
4.3.2 Various criteria for fitness function 127
4.4 System Description 131
4.4.1 CFAR detector 131
4.4.2 Feature extractor 134
4.4.3 GA for feature selection 142
4.5 Experiments 143
4.5.1 MDL principle-based fitness function 144
4.5.2 Other fitness functions 153
4.5.3 Comparison and analysis 154
4.6 Conclusions 164
CHAPTER 5 EVOLUTIONARY FEATURE SYNTHESIS FOR OBJECT RECOGNITION 165
5.1 Introduction 165
5.2 Motivation and Related Research 167
5.2.1 Motivation 167
5.2.2 Related research 168
5.3 Coevolutionary GP for Feature Synthesis 170
5.3.1 Design considerations 170
5.3.2 Selection, crossover and mutation 174
5.3.3 Generational coevolutionary genetic programming 175
5.3.4 Bayesian classifier 177
5.4 Experiments 177
5.4.1 Distinguish objects from clutter 178
5.4.2 Recognize objects 182
5.4.3 Comparison with other classification algorithms 193
5.4.4 Discussion 197
5.5 Conclusions 199
CHAPTER 6 LINEAR GENETIC PROGRAMMING FOR OBJECT RECOGNITION 201
6.1 Introduction 201
6.2 Explicit Feature Construction 202
6.3 Linear Genetic Programming 205
6.4 Evolutionary Feature Programming 206
6.4.1 Representation and its properties 208
6.4.2 Execution of feature extraction procedure 216
6.4.3 Locality of representation 218
6.4.4 Evaluation of solutions 221
6.5 Coevolutionary Feature Programming 223
6.6 Decomposition of Explicit Feature Construction 226
6.7 Conclusions 232
CHAPTER 7 APPLICATIONS OF LINEAR GENETIC PROGRAMMING FOR OBJECT RECOGNITION 233
7.1 Introduction 233
7.2 Technical Implementation 234
7.3 Common Experimental Framework 235
7.3.1 Background knowledge 235
7.3.2 Parameter settings and performance measures 237
7.4 Recognition of Common Household Objects 238
7.4.1 Problem and data 238
7.4.2 Parameter settings 240
7.4.3 Results 241
7.5 Object Recognition in Radar Modality 245
7.5.1 Problem decomposition at instruction level 247
7.5.2 Binary classification tasks 252
7.5.3 On-line adaptation of population number 256
7.5.4 Scalability 259
7.5.5 Recognizing object variants 260
7.5.6 Problem decomposition at decision level 264
7.6 Analysis of Evolved Solutions 268
7.7 Conclusions 275
CHAPTER 8 SUMMARY AND FUTURE WORK 277
8.1 Summary 277
8.2 Future Work 280
REFERENCES 282
INDEX 291

List of Figures

Chapter 2

Figure 2.1. Steady-state genetic programming algorithm. 25
Figure 2.2. Generational genetic programming algorithm. 26
Figure 2.3. Training SAR image containing road. 30
Figure 2.4. Sixteen primitive feature images of training SAR image containing road 31
Figure 2.5. Learned composite operator tree. 32
Figure 2.6. Fitness versus generation (road vs. field). 32
Figure 2.7. Utility of primitive operators and primitive feature images. 34
Figure 2.8. Feature images output by the nodes of the best composite operator. The ouput of the root node is shown Figure 2.3(c). 35
Figure 2.9. ROIs extracted from the output images of the nodes of the best composite operator. The fitness value is shown for the entire image. The ouput of the root node is shown Figure 2.3(d). 36
Figure 2.10. Testing SAR images containing road. 37
Figure 2.11. Training SAR image containing lake 38
Figure 2.12. Testing SAR image containing lake. 38
Figure 2.13. Training SAR image containing river. 39
Figure 2.14. Learned composite operator tree. 40
Figure 2.15. Fitness versus generation (river vs. field). 40
Figure 2.16. Testing SAR image containing river. 40
Figure 2.17. Training SAR image containing field. 41
Figure 2.18. Testing SAR image containing field. 42
Figure 2.19. Training SAR image containing tank. 42
Figure 2.20. Learned composite operator tree in LISP notation 43
Figure 2.21. Fitness versus generation (T72 tank) 43
Figure 2.22. Testing SAR image containing tank 44
Figure 2.23. Training IR image containing a person 46
Figure 2.24. Learned composite operator tree in LISP notation. 47
Figure 2.25. Fitness versus generation (person). 47
Figure 2.26. Testing IR images containing a person. 49
Figure 2.27. Training RGB color image containing car. 50
Figure 2.28. Learned composite operator tree in LISP notation 50
Figure 2.29. Fitness versus generation (car). 51
Figure 2.30. Testing RGB color image containing car. 51
Figure 2.31. Training and testing RGB color image containing SUV 52
Figure 2.32. Results on SAR images containing road. 55
Figure 2.33. Learned composite operator tree in LISP notation. 56
Figure 2.34. Fitness versus generation (road vs. field) 56
Figure 2.35. Results on SAR images containing lake. 57
Figure 2.36. Results on SAR images containing river 58
Figure 2.37. Learned composite operator tree in LISP notation. 59
Figure 2.38. Fitness versus generation (river vs. field) 59
Figure 2.39. Results on SAR images containing field. 60
Figure 2.40. Results on SAR images containing tank. 61
Figure 2.41. Learned composite operator tree in LISP notation. 61
Figure 2.42. Fitness versus generation (T72 tank) 61
Figure 2.43. Results on SAR images containing road. 64
Figure 2.44. Results on SAR images containing lake 64
Figure 2.45. Results on SAR images containing river 66
Figure 2.46. Results on SAR images containing field 66
Figure 2.47. ROIs extracted by the traditional ROI extraction algorithm. 71
Figure 2.48. ROIs extracted by the GP-evolved composite operators. 72
Figure 2.49. SAR image containing lake, road, field, tree and shadow, 74
Figure 2.50. Lake, road and field ROIs extracted by the composite operators learned in Examples 1, 2 and 4 74
Figure 2.51. Histogram of pixel values (range 0 to 200) within lake and road regions 75
Figure 2.52. SAR image containing lake and road. 75
Figure 2.53. lake and road ROIs extracted from training images. 76
Figure 2.54. Lake, road and field ROIs extracted from the testing image. 77
Figure 2.55. Lake, road and field ROIs extracted by the traditional algorithm. 77

Chapter 3

Figure 3.1. Modified Steady-state genetic programming 91
Figure 3.2. Modified Generational genetic programming 92
Figure 3.3. Training SAR image containing road. 95
Figure 3.4. Learned composite operator tree in LISP notation. 96
Figure 3.5. Fitness versus generation (road vs. field). 97
Figure 3.6. Frequency of primitive operators and primitive feature images 98
Figure 3.7. Feature images output at the nodes of the best composite operator learned by smart GP. 100
Figure 3.8. ROIs extracted from the output images at the nodes of the best composite operator from smart GP. The goodness value is shown for the entire image 101
Figure 3.9. Testing SAR images containing road. 102
Figure 3.10. Training SAR image containing lake 103
Figure 3.11. Testing SAR image containing lake. 104
Figure 3.12. Learned composite operator tree in LISP notation. 105
Figure 3.13. Training SAR image containing river. 105
Figure 3.14. Learned composite operator tree in LISP notation. 106
Figure 3.15. Fitness versus generation (river vs. field) 107
Figure 3.16. Testing SAR image containing river. 107
Figure 3.17. Training SAR image containing field. 108
Figure 3.18. Testing SAR image containing field. 109
Figure 3.19. Learned composite operator tree in LISP notation. 110
Figure 3.20. Training SAR image containing a tank 111
Figure 3.21. Learned composite operator tree in LISP notation. 112
Figure 3.22. Fitness versus generation (T72 tank) 112
Figure 3.23. Testing SAR image containing tank. 113
Figure 3.24. The average goodness of the best composite operators versus generation. 115
Chapter 4
Figure 4.1. System diagram for feature selection. 125
Figure 4.2. SAR image and CFAR detection result. 133
Figure 4.3. Example of the standard deviation feature 135
Figure 4.4. Example of the fractal dimension feature. 136
Figure 4.5. Examples of images used to compute size features (4-6) for (a) object and (b) clutter. 138
Figure 4.6. Fitness values vs. generation number. 150
Figure 4.7. Training error rates vs. generation number. 151
Figure 4.8. The number of features selected vs. generation number. 152
Figure 4.9. Average performance of various fitness functions 162
Chapter 5
Figure 5.1. System diagram for object recognition using coevolutionary genetic programming. 171
Figure 5.2. Computation of fitness of jth composite operator of ith sub- population 173
Figure 5.3. Generational coevolutionary genetic programming. 176
Figure 5.4. Example object and clutter SAR images 179
Figure 5.5. Composite operator vector learned by CGP. 182
Figure 5.6. Five objects used in recognition 185
Figure 5.7. Composite operator vector learned by CGP with 5 sub- populations. 189
Figure 5.8. Composite operator vector learned by CGP. 192
Chapter 6
Figure 6.1. The outline of evolutionary feature programming (EFP) 207
Figure 6.2. Graph representation of an exemplary feature extraction procedure 211
Figure 6.3. Details on genotype-phenotype mapping. 212
Figure 6.4. Execution of feature extraction procedures for a single training example (image) x 216
Figure 6.5. Comparison of particular decomposition levels for evolutionary feature programming 231

Chapter 7

Figure 7.1. Software implementation of CVGP. Dashed-line components implement background knowledge 235
Figure 7.2. Exemplary images from COIL20 database (one representative per class) 238
Figure 7.3. Apparent size changes resulting from MBR cropping for different aspects of two selected objects from the COIL20 database. 239
Figure 7.4. Fitness of the best individual, test set recognition ratio, and test set TP ratio for binary COIL20 experiments (means over 10 runs and 0.95 confidence intervals) 242
Figure 7.5. Test set FP ratio and tree size for binary COIL20 experiments (means over 10 runs and 0.95 confidence intervals). 243
Figure 7.6. Decision tree h used by the final recognition system evolved in one of the COIL20 binary experiments 245
Figure 7.7. Selected vehicles represented in MSTAR database 249
Figure 7.8. Exemplary images from the MSTAR database. 249
Figure 7.9. Three vehicles and their correspondings SAR images. 250
Figure 7.10. Fitness graph for binary experiment (fitness of the best individual for each generation) 254
Figure 7.11. True positive (TP) and false positive (FP) ratios for binary recognition tasks (testing set, single recognition systems). Chart presents averages over 10 independent synthesis processes and their .95 confidence intervals 256
Figure 7.12. True positive (TP) and false positive (FP) ratios for binary recognition tasks (testing set, single recognition systems, adaptive (C). Chart presents averages over 10 independent synthesis processes and their 0.95 confidence intervals 259
Figure 7.13. Test set recognition ratios of compound recognition systems for different number of decision classes 261
Figure 7.14. Curves for different number of decision classes (base classifier: SVM) 262
Figure 7.15. True positive and false positive ratios for binary recognition tasks (testing set, compound recognition systems) 267
Figure 7.16. Representative images of objects used in experiments concerning object variants (all pictures taken at 191°
aspect/azimuth, cropped to central 64×64 pixels, and magnified to show details) 267
Figure 7.17. Image of the ZSU class taken at 6° azimuth angle (cropped to input size, i.e. 48×48 pixels) 269
Figure 7.18. Processing carried out by one of the evolved solutions (individual 1 of 4 ; see text for details) 271
Figure 7.19. Processing carried out by one of the evolved solutions (individual 2 of 4 ; see text for details) 272
Figure 7.20. Processing carried out by one of the evolved solutions (individual 3 of 4 ; see text for details). 273
Figure 7.21. Processing carried out by one of the evolved solutions (individual 4 of 4 ; see text for details) 274

List of Tables

Chapter 2

Table 2.1. Sixteen primitive feature images used as the set of terminals 17
Table 2.2. Seventeen primitive operators. 19
Table 2.3. The performance on various examples of SAR images 29
Table 2.4. The performance results on IR and RGB color images. 45
Table 2.5. The performance results on various examples of SAR images. The hard limit on composite operator size is used. 54
Table 2.6. The performance results of image-based GP on various SAR images. 65
Table 2.7. Average training time of region GP and image GP (in seconds). 67
Table 2.8. Comparison of the performance of traditional ROI extraction algorithm and composite operators generated by GP 70
Table 2.9. Average running time (in seconds) of the composite operators and the traditional ROI extraction algorithm. 73
Chapter 3
Table 3.1. The performance of the best composite operators from normal and smart GPs. 94
Table 3.2. The average goodness of the best composite operators from normal and smart GPs. 116
Table 3.3. The average size and performance of the best composite operators from normal and smart GPs 117
Table 3.4. Average training time of Normal GP and Smart GP. 117
Table 3.5. The average performance of the best composite operators from smart GPs with and without the public library 118
Table 3.6. Average running time (in seconds) of the composite operators from normal and smart GPs. 118

Chapter 4

Table 4.1. Experimental results with 300 training target and clutter chips (MDL, equation (4.2); $\varepsilon=0.002$) 146
Table 4.2. Experimental results with 500 training target and clutter chips (MDL, equation (4.2); $\varepsilon=0.0015$) 147
Table 4.3. Experimental results with 700 training target and clutter chips (MDL, equation (4.2); $\varepsilon=0.0015$) 148
Table 4.4. Experimental results with 700 training target and clutter chips (MDL, equation (4.2); $\varepsilon=0.0011$) 149
Table 4.5. Experimental results with 500 training target and clutter chips (penalty function, equation (4.4); $\varepsilon=0.0015$). 155
Table 4.6. Experimental results with 500 training target and clutter chips (penalty and \# of features, equation (4.5); $\gamma=0.1 ; \varepsilon=$ 0.0015). 156
Table 4.7. Experimental results with 500 training target and clutter chips (penalty and \# of features, equation (4.5); $\gamma=0.3 ; \varepsilon=$ 0.0015). 157
Table 4.8. Experimental results with 500 training target and clutter chips (penalty and \# of features, equation (4.5); $\gamma=0.5 ; \varepsilon=$ 0.0015). 158
Table 4.9. Experimental results with 500 training target and clutter chips (error rate and $\#$ of features, equation (4.6); $\gamma=0.1 ; \varepsilon=$ 0.0015) 159
Table 4.10. Experimental results with 500 training target and clutter chips (penalty and \# of features, equation (4.6); $\gamma=0.3 ; \varepsilon=$ 0.0015) 160
Table 4.11. Experimental results with 500 training target and clutter chips (penalty and \# of features, equation (4.6); $\gamma=0.5 ; \varepsilon=$ 0.0015) 161
Table 4.12. Experimental results using only one feature for discrimination (target chips $=500$, clutter chips $=500$) 162
Table 4.13. The number of times each feature is selected in MDL Experiments 1, 2 and 4 163
Chapter 5
Table 5.1. Twelve primitive operators 172
Table 5.2. Parameters of CGP used throughout the experiments. 178
Table 5.3. Recognition rates of 20 primitive features. 180
Table 5.4. Performance of composite and primitive features on object/clutter discrimination 181
Table 5.5. Recognition rates of 20 primitive features (3 objects). 187
Table 5.6. Performance of composite and primitive features on 3-object discrimination 188
Table 5.7. Recognition rates of 20 primitive features (5 objects). 190
Table 5.8. Performance of composite and primitive features on 5 -object discrimination 191
Table 5.9. Average recognition performance of multi-layer neural networks trained by backpropagation algorithms (3 objects) 195
Table 5.10. Average recognition performance of multi-layer neural networks trained by backpropagation algorithms (5 objects). 196
Table 5.11. Recognition performance of C 4.5 classification algorithm 197
Chapter 7
Table 7.1. Elementary operations used in the visual learning experiments (k and 1 denote the number of the input and output arguments, respectively). 236
Table 7.2. Parameter settings for COIL20 experiments 241
Table 7.3. Description of data for the experiment concerning cooperation on genome level. 250
Table 7.4. Performance of recognition systems evolved by means of cooperation at genome level. 251
Table 7.5. Test set confusion matrix for selected EFP recognition system. 251
Table 7.6. Test set confusion matrix for selected CFP recognition system. 251
Table 7.7. True positive (TP) and false positive (FP) ratios for SAR binary recognition tasks (testing set). Table presents averages over 10 independent synthesis processes and their 0.95 confidence intervals. 255
Table 7.8. True positive (TP) and false positive (FP) ratios for SARbinary recognition tasks (testing set, CFP-A; means over 10
independent synthesis processes and 0.95 confidence intervals) 257
Table 7.9. Mean and maximum number of populations for SAR binary recognition tasks (CFP-A) 258
Table 7.10. Confusion matrices for recognition of object variants for 2- class recognition system 262
Table 7.11. Confusion matrices for recognition of object variants for 4- class recognition system 263
Table 7.12. True positive and false positive ratios for binary recognition tasks (testing set, off-line decision level decomposition). 266

Preface

Designing object detection and recognition systems that work in the real world is a challenging task due to various factors including the high complexity of the systems, the dynamically changing environment of the real world and factors such as occlusion, clutter, articulation, and various noise contributions that make the extraction of reliable features quite difficult. Furthermore, features useful to the detection and recognition of one kind of object or in the processing of one kind of imagery may not be effective in the detection and recognition of another kind of object or in the processing of another kind of imagery. Thus, the detection and recognition system often needs thorough overhaul when applied to other types of images different from the one for which the system was designed. This is very uneconomical and requires highly trained experts. The purpose of incorporating learning into the system design is to avoid the time consuming process of feature generation and selection and to lower the cost of building object detection and recognition systems.

Evolutionary computation is becoming increasingly important for computer vision and pattern recognition fields. It provides a systematic way of synthesis and analysis of object detection and recognition systems. With learning incorporated, the resulting recognition systems will be able to automatically generate new features on the fly and cleverly select a good subset of features according to the type of objects and images to which they are applied. The system will be flexible and can be applied to a variety of objects and images.

This book investigates evolutionary computational techniques such as genetic programming (GP), linear genetic programming (LGP), coevolutionary genetic programming (CGP) and genetic algorithms (GA) to automate the synthesis and analysis of object detection and recognition systems. The ultimate goal of the learning approaches presented in this book is to lower the cost of designing object detection and recognition systems and build more robust and flexible systems with human-competitive performance.

The book presents four important ideas.
First, this book shows the efficacy of GP and CGP in synthesizing effective composite operators and composite features from domain-independent primitive image processing operations and primitive features (both elementary and complex) for object detection and recognition. It explores the role of domain knowledge in evolutionary computational techniques for object recognition. Based on GP and CGP's ability to synthesize effective features from simple features not specifically designed for a particular kind of imagery, the cost of building object detection and recognition systems is lowered and the flexibility of the systems is increased. More importantly, a large amount of unconventional features are explored by GP and CGP and these unconventional features yield exceptionally good detection and recognition performance in some cases, overcoming the human experts' limitation of considering only a small number of conventional features.

Second, smart crossover, smart mutation and a new fitness function based on the minimum description length (MDL) principle are designed to improve the efficiency of genetic programming. Smart crossover and smart mutation are designed to identify and keep the effective components of composite operators from being disrupted and a MDL-based fitness function is proposed to address the well-known code bloat problem of GP without imposing severe restriction on the GP search. Compared to normal GP, smart GP algorithm with smart crossover, smart mutation and a MDL-based fitness function finds effective composite operators more quickly and the composite operators learned by smart GP algorithm have smaller size, greatly reducing both the computational expense during testing and the possibility of overfitting during training.

Third, a new MDL-based fitness function is proposed to improve the genetic algorithm's performance on feature selection for object detection and recognition. The MDL-based fitness function incorporates the number of features selected into the fitness evaluation process and prevents GA from selecting a large number of features to overfit the training data. The goal is to select a small set of features with good discrimination performance on both training and unseen testing data to reduce the possibility of overfitting the training data during training and the computational burden during testing.

Fourth, adaptive coevolutionary linear genetic programming (LGP) in conjunction with general image processing, computer vision and pattern recognition operators is proposed to synthesize recognition systems. The basic two-class approach is extended for scalability to multiple classes and various architectures and strategies are considered.

The book consists of eight chapters dealing with various evolutionary approaches for automatic synthesis and analysis of object detection and recognition systems. Many real world imagery examples are given in all the chapters and a comparison of the results with standard techniques is provided.

The book will be of interest to scientists, engineers and students working in computer vision, pattern recognition, object recognition, machine learning, evolutionary learning, image processing, knowledge discovery, data mining, cybernetics, robotics, automation and psychology.

Authors would like to thank Ken Grier, Dale Nelson, Lou Tamburino, and Bob Herklotz for their guidance and support. Many discussions held with Ed Zelnio, Tim Ross, Vince Velten, Gregory Power, Devert Wicker, Grinnell Jones, and Sohail Nadimi were very helpful.

The work covered in this book was performed at the University of California at Riverside. It was partly supported by funding from Air Force Research Laboratory during the last four years. Krzysztof Krawiec was at the University of California at Riverside on a temporary leave from Poznan University of Technology, Poznan, Poland. He would like to acknowledge the support from the Scientific Research Committee, Poland (KBN). Authors would like to thank Julie Vu and Lynne Cochran for their secretarial support.

Riverside, California
November 2004

Bir Bhanu
Yingqiang Lin Krzysztof Krawiec

