
Local Geodesic Parametrization: An Ant’s Perspective
Lior Shapira

Tel Aviv University
Ariel Shamir

The Interdisciplinary Center

A Manifold Mesh Geodesic Neighborhood 3D Patch Seam Tree 2D Parametrization

Figure 1: Overview of local geodesic parametrization.

Abstract

Two dimensional parameterizations of meshes is a dynamic field of
research. Most works focus on parameterizing complete surfaces,
attempting to satisfy various constraints on distances and angles and
produce a 2D map with minimal errors. Except for developable sur-
faces no single map can be devoid of errors, and a parametrization
produced for one purpose usually doesn’t suit others.

This work presents a different viewpoint. We try and acquire
the perspective of an ant living on the surface. The point on which
it stands is the center of its world, and importance diminishes from
there onward. Distances and angles measured relative to its position
have higher importance than those measured elsewhere. Hence, the
local parametrization of the geodesic neighborhood should convey
this perspective by mostly preserving geodesic distances from the
center. We present a method for producing such overlapping local-
parametrization for each vertex on the mesh. Our method provides
an accurate rendition of the local area of each vertex and can be
used for several purposes, including clustering algorithms which
focus on local areas of the surface within a certain window such as
Mean Shift.

1 Introduction

Contrasted with the modern evidence that the Earth is round, the an-
cient belief that the Earth is flat is reasonable from the point of view
of a person standing on it. Similarly, an Ant standing on a manifold
surface in 3D has a particular perspective concerning the shape of
the surface it lives on. The distances and angles to points which
lie on the surface relative to the Ant’s position create a perspective
map of the neighborhood surface. We call this map local-geodesic
parametrization and in this work we present a method to create such
maps for any position on a manifold mesh.

A manifold is a topological space that is locally Euclidean. This
means that around every point, there is a neighborhood that is topo-
logically the same as the open unit ball in R

n (taken from [Weis-
stein 2004]). In R

3 a manifold surface-mesh is locally homeomor-
phic to an open unit circle. The basic problem of parametrization
is finding a map from 2D Euclidean space to the surface-mesh or
to sub-parts of the mesh with minimum distortion of lengths and/or
angles between points on the mesh.

Numerous solution have been proposed focusing on different as-
pects of the field, achieving results which suit different objectives,

and using different methods. In several important papers Floater
presented barycentric coordinates as a way to allow vertices in tri-
angulations to be expressed as convex combinations of their neigh-
bors [Floater 1995]. This was later enhanced by the mean value
coordinates in [Floater 2003]. Such constraints can be solved as
a sparse linear system of equations. Levy and Mallet presented a
method to solve the same convex combination problem as a min-
imization problem [Levy and Mallet 1998]. Several papers such
as Sheffer and Sturler [Sheffer and de Sturler 2000], and Zigelman
et al. [Zigelman et al. 2002], concentrate on parametrization with
free boundaries. Lee et al. [Lee et al. 2002] present parametrization
with virtual boundaries. In this method a surface homeomorphic
to a disc which is to be parameterized is surrounded with one to
several layers of virtual vertices and edges. These virtual vertices
lie on a convex boundary, allowing more flexibility in relaxation
of the parameterization, achieving better results. Other works have
focused on processing the mesh to make it suitable for parameter-
izations and improve the parametrization results. For example, by
introducing seams to an arbitrary mesh, the mesh is modified to be
homeomorphic to a disc and the parametrization distortion is re-
duced [Sheffer 2002] and [Erickson and Har-Peled 2002]. For a
thorough review of the field the reader is referred to a recent survey
by Floater and Hormann [Floater and Hormann n. d.].

In fact, most previous papers concentrate on minimizing the an-
gle, length or area distortions on a global scale. In contrast, in this
work we are interested in minimizing the distortion with a bias to-
wards a specific position (the Ant’s viewpoint) and locally in its
neighborhood. This gives raise to a different type of parametriza-
tion which can be seen as a perspective geodesic map.

Figure 1 gives an overview of our method. The algorithm starts
from a vertex which is the central position of the map. Using a front
marching method a surface patch with a given geodesic distance
is built around the vertex. If the patch is not homeomorphic to
a disk, seams are introduced in order to have only one boundary
loop. Next, the vertices of the boundary loop are placed on a 2D
circle according to their angle and then moved to their true geodesic
distance from the center. Filler vertices and triangles are added to
create a new convex boundary. Lastly, mean-value coordinates are
used to calculate the parametrization inside the patch.

The algorithm is described in details in Section 2. Next, in Sec-
tion 3 we discuss several implementation issues. We give an exam-
ple for the use of such maps for geodesic mean shift in Section 4,
and conclude in Section 5.



2 The Algorithm

2.1 Building the Neighborhood Patch

The first step in the algorithm is to define the geodesic neighbor-
hood of the vertex. This is done using a front marching algorithm
similar to the one used in [Kimmel and Sethian 1998]. The al-
gorithm starts from the vertex and expands along a breadth first
front. At all times the algorithm keeps a set of vertices for which
geodesic distance has been found (fixed), a set of vertices which
are on the advancing front (close) and a set of vertices whose dis-
tance is yet unknown (far). The front advances until it reaches the
geodesic distance defined as maximum radius (Figure 2(a)–(g)). At
this stage, all fixed vertices are added to the local geodesic neigh-
borhood. Note that if the front meets itself, it merges to produce a
new unified front. This will mean that there is a need to cut seams
in the patch in later stages (Figure 2(d)–(f)).

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2: Building the geodesic neighborhood using the front
marching method.

The output of this step is a collection of vertices and edges which
comprise a vertex’s local geodesic neighborhood within a given ra-
dius. Even though the mesh is manifold, the computed geodesic
neighborhood will not, in general, be homeomorphic to a disk. This
is the case when the neighborhood radius is large or the mesh is
complex (e.g. fingers of a hand). To create a patch which is home-
omorphic to a disk, we wish to ensure that it includes only one
boundary loop. This boundary loop will become the boundary of
the patch’s local geodesic map, and define the patch’s shape.

Based on [Sheffer 2002] we attempt to connect the different
boundary loops using two steps. First, we build a set of essen-
tial vertices which must be in the seams. This set includes all the

vertices sitting on the different boundary loops, but also specific
vertices which were marked during the front marching algorithm.
These are called maxima vertices and are vertices where the front
merged with itself (see Figure 2(d)). Next, we assign weights to
all edges in the patch. Boundary edges are assigned a small weight
of ε > 0 and other edges are given weight relative to the distance
from the center vertex. We use all-pairs-shortest path to find the
shortest paths between the subset of vertices. In the second step,
a minimum cost spanning tree of these paths is created. This tree
connects all the vertices we marked as essential in the previous step
creating the seams needed to cut the patch (Figure 3). It will include
all the boundary loops, and by including maxima vertices, this pro-
cess guarantees that the seams occur at ’natural’ boundaries of the
patch, i.e. along maxima ridges of the geodesic distance from the
center.

To create a disk-like shape, the patch is cut along the branches
of the seam tree. Vertices from which several branches in the seam
tree grow are duplicated and maintain a reference to their original
vertex. The resulting patch has only one boundary loop, hence it is
homeomorphic to a disc and can be parameterized.

(a) (b)

(c)

Figure 3: Examples of seam-trees cuts: (a) for the geodesic neigh-
borhood of Figure 2, and (b) and for larger geodesic neighborhood
defined in (c). The color represents the geodesic distance from the
center (from blue to red).

2.2 Parametrization

Once the patch has a single boundary, we can order the vertices
on this boundary to form a single loop. We place the vertices in
order on a 2D circle, whose initial radius is the geodesic neighbor-
hood radius. We calculate the loop length and assign an importance
measure to each vertex based on the ratio of the lengths of its ad-
jacent boundary edges to the total length. The angle between the



(a) (b) (c)

Figure 4: Different parametrization alternatives: (a) Placing the patch boundary loop on a circle. (b) Pulling the boundary vertices to their
true geodesic distance and back to the convex hull. (c) Pulling the boundary vertices to their true geodesic distance and adding filler vertices
and triangles. The top row shows a color mapping of the true geodesic distance from the center and the bottom row shows the difference
between the true geodesic distance and the Euclidean distance inside the patch, where darker means larger error.

vertices is chosen relative to the importance of each vertex.
After this stage we have several options for defining the bound-

ary of the patch to be parameterized. We can keep the boundary
vertices on the initial circle (which is convex) and fill the rest of the
patch using a barycentric method. This method is quick and simple
but fairly inaccurate in terms of preserving the geodesic distance
(Figure 4(a)).

If we want to preserve the shape of the patch as defined by its
boundary, we pull towards the center all the vertices whose distance
to the center is smaller than the neighborhood-radius, and position
them in their true distance. This forms a non-convex shape, which
is harder to parameterize. This can be solved in two possible ways.
The first alternative is to calculate the convex hull of the shape, and
pull the vertices which do not lie on the convex hull back to the
hull. This achieves better results than if we parameterize the circle,
by conforming more naturally to the patch shape (Figure 4(b)). This
solution is useful if we require a convex map (e.g. for mean shift,
see Section 4). However, using this method still introduces some
errors in the preservation of geodesic distances.

The most accurate method in term of geodesic distance preser-
vation involves computing the convex hull as above, but instead of
pulling the vertices back to the hull, add ’filler’ triangles and ver-
tices to complete the shape to a convex shape much like in [Lee et al.
2002]. This will create a convex patch where the original bound-
ary vertices are positioned in the true geodesic distance. Hence, by
keeping the natural shape of the patch and adding ’filler’ vertices
we add more flexibility to the patch, and the resulting parametriza-
tion preserves geodesic distances much better than the other two
solutions (Figure 4(c)).

Now that we have a convex boundary of the patch we calculate
the parameterizations of the triangles inside the patch by using sim-
ple mean value coordinates [Floater 2003]. In this method each ver-
tex is expressed as a convex combination of its neighbors. This im-
proves over Floater’s earlier work [Floater 1995] utilizing the mean
value theorem for Harmonic functions. In practice, the method
takes into account both the angles around the vertices and the edge
lengths. This method produced good results, although other param-
eterizations techniques may be applied at this stage. Post process-

ing techniques might also be used to relax the parameterizations and
spread the geodesic distance error more evenly across the patch.

Figure 4 shows the different alternatives for parameterizing the
patch. We measure the error using the difference between geodesic
distance from the center vertex (as calculated by the front marching
algorithm) and the Euclidean distance from the center vertex (dis-
tance calculated between the vertices on the 2D parametrization).

3 Implementation

3.1 Timing

The computation time for parametrization is dependent on the size
of the patch (radius of geodesic neighborhood), the complexity of
the mesh (number of seams etc.) and more. However, as can be
seen in the following table, in most cases the whole process takes
a few second to compute. Most of the computation time is taken
up by the iterative solution which finds the coordinates of vertices
inside the patch. This code was not optimized and furthermore, this
part is similar in any parametrization method. This means that the
added computation for creating the correct geodesic boundary is
very small.

Mesh # Vertices Param. Type # Seams Seconds
dino-pet 500 circle 4 3.2
dino-pet 500 filled 4 4.4
dino-pet 650 circle 4 4.1
dino-pet 650 filled 4 5.4
dino-pet 800 circle 4 7.0
dino-pet 800 filled 4 9.6
horse 100 circle 0 1.4
horse 100 filled 0 2.0
horse 1000 circle 0 6.7
horse 1000 filled 0 7.5
eight 800 circle 1 4.6
eight 800 filled 1 5.7
eight 1300 circle 1 9.0
eight 1300 filled 1 9.9



3.2 Artificial Seams

In some cases there is a need to add seams even if the patch is
homeomorphic to a disk. Such an example can be seen in Figure 5.
The center vertex is chosen close to the hoof, where the triangles
are very large. In contrast, the triangles along the leg are smaller,
and the leg itself is long and thin. When the patch is mapped to a
circle, the boundary triangles are stretched and the triangles near the
center are condensed. This creates a large error in terms of geodesic
distance (Figure 5(d)). The solution is to find a special vertex while
building the geodesic neighborhood, and add a seam to the patch
(Figure 5(e)).

(a) (b) (c)

(d) (e)

Figure 5: Adding a seam for better parametrization: compare the
mapping of geodesic distance without a seam (d), and with a seam
(e).

3.3 Map Storage

Performing geodesic parametrization process on all (or a selected
number of) vertices in a 2-manifold mesh, creates a collection of
local geodesic maps which can be used for a variety of purposes.
Nevertheless, since the amount of overlap in these maps can be
quite large, there is a need to analyze the storage of these maps care-
fully, balancing efficiency and speed with storage size and memory
requirements.

The first option is to store each local map as a regular mesh, with
connectivity and geometry information, and a mapping from the
map vertices to the original mesh vertices. This method is efficient,
but costly in terms of memory requirement. These requirements
depend on the size of the original mesh and the size of the geodesic
radius for the maps. If the size of the original mesh is O(n) the
required memory for all local maps is roughly O(n2)

Other options alow us to reconstruct the patch using different
information. For example, we can save for each local map:

1. The indexes of the vertices in the original mesh which appear
in the patch.

Figure 6: An example of using the mean-shift algorithm for clus-
tering areas on a manifold mesh.

2. The distance from the center vertex to each vertex in the patch
(from the front marching algorithm)

3. The set of half edges which represent the seam tree

4. The location of each vertex in the patch (original vertices
which were split have more than one location)

This storage method saves the space of the connectivity infor-
mation for the patch, but forces some reconstruction every time we
need a map. During reconstruction we must create a mesh object for
the patch, use the connectivity information from the original mesh,
cut the patch along the seam tree, and then and assign the correct
coordinates to each vertex.

In fact, most of the storage space is composed of the geometry
information of the patch, i.e. the vertices coordinates. Hence, the
last storage method is similar to the previous one without geometry
(4). This creates very small memory footprint as it consists only of
indices and half edge lists, with no geometry or connectivity. Nev-
ertheless, it forces us to parameterize the actual patch anew every
time we need a map resulting in a relatively high processing times
to rebuild the patch.

4 Sample Application

There are several possible applications for local geodesic maps such
as re-meshing, local texture mapping and more. In this section
we concentrate on a specific application where preserving the lo-
cal geodesic distances from the center is a key constraint.

The mean-shift algorithm is a clustering or filtering algorithm
which is widely used on images and video. One step in the mean
shift moves a point to the average point of its neighborhood. This is
done until convergence to a single point. The main operation in this
clustering process is therefore a weighted averaging of the neigh-
borhood of a point in a high-dimensional space of ’features’. The
weights for averaging are relative to the distance from the center
point. More details can be found in [Comaniciu and Meer 2002].

Recent results [Shamir 2003; Shamir et al. 2004] have adapted
the mean-shift method to work on volumetric and manifold meshes
(Figure 6). Nevertheless, unlike images or volumes, where the av-
eraging neighborhood is convex, on manifold meshes weighting
points on the mesh can easily result in a point laying outside the
mesh. There is a need to constrain the movement of the mean-shift
on manifold meshes to remain on the mesh. Furthermore, since the
averaging is dependent on the distance from the center point, mea-
sured on the mesh, there is a need to use geodesic distances between
points on the mesh for averaging.

Using local geodesic maps for averaging the geodesic neighbor-
hood of a point solves both these problems for mean-shift on man-
ifolds. Using the convex map, the weighted average of the neigh-
borhood will always fall inside the map, and consequently can be
mapped back to the manifold mesh. Furthermore, the map itself
preserves distances from the center point as required by the algo-
rithm (see Figure 7).



Figure 7: The mean-shift algorithm on a manifold mesh. Each step the geodesic neighborhood is changed (top) and a new patch is
parametrized (bottom).



5 Conclusion and Future Work

We have presented a new type of parametrization of manifold
meshes which we call local-geodesic. This type of parametriza-
tion is targeted at preserving geodesic distances from one central
point to other points in its geodesic neighborhood. This results in a
type of local perspective map similar to the point of view of an Ant
living on the manifold.

As an example for successful usage of this type of parametriza-
tion we presented the mean-shift process of points on a manifold
mesh. In future we would like to pursue other applications and uses
for local geodesic parametrization. We are also working on meth-
ods to constrain the center point to stay exactly in the middle of the
patch and to distribute the error between geodesic and Euclidean
distance more evenly over the patch.

References
COMANICIU, D., AND MEER, P. 2002. Mean shift: A robust approach to-

wards feature space analysis. IEEE Trans. Pattern Analysis and Machine
Intelligence 24 (May), 603–619.

ERICKSON, J., AND HAR-PELED, S. 2002. Optimally cutting a surface
into a disk. In Proceedings of the 18th Annual ACM Symposium on Com-
putational Geometry, 244–253.

FLOATER, M., AND HORMANN, K. Surface parameterization: a tutorial
and survey. In Advances on Multiresolution in Geometric Modelling (to
appear).

FLOATER, M. 1995. Parametrization and smooth approximation of surface
triangulations. Computer Aided Geometric Design 14, 231–250.

FLOATER, M. 2003. Mean value coordinates. Computer Aided Geometric
Design 20, 19–27.

KIMMEL, R., AND SETHIAN, J. 1998. Computing geodesic paths on man-
ifolds. vol. 95, 8431–8435.

LEE, Y., KIM, H., AND LEE, S. 2002. Mesh parameterization with a
virtual boundary. In Computers & Graphics (Special Issue of the 3rd
Israel-Korea Binational Conf. on Geometric Modeling and Computer
Graphics), vol. 26, 677–686.

LEVY, B., AND MALLET, J.-L. 1998. Non-distorted texture mapping for
sheared triangulated meshes. In Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques, 343–352.

SHAMIR, A., SHAPIRA, L., COHEN-OR, D., AND GOLDENTHAL, R.
2004. Geodesic mean shift. In Proceedings of The 5th Korea-Israel
Bi-National Conference on Geometric Modeling and Computer Graph-
ics.

SHAMIR, A. 2003. Feature-space analysis of unstructured meshes. In
Proceedings IEEE Visualization 2003, 185–192.

SHEFFER, A., AND DE STURLER, E. 2000. Surface parameterization for
meshing by triangulation flattening. In Proceedings of the 9th Interna-
tional Meshing Roundtable, 161–172.

SHEFFER, A. 2002. Spanning tree seams for reducing parameterization
distortion of triangulated surfaces. In Proceedings of the International
Conference on Shape Modeling and Applications 2002 (SMI’02), 61–66.

WEISSTEIN, E. W., 2004. Manifold. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Manifold.html.

ZIGELMAN, G., KIMMEL, R., AND KIRYATI, N. 2002. Texture mapping
using surface flattening via multi-dimensional scaling. IEEE Transac-
tions on Visualization and Computer Graphics 8, 2 (April), 198–207.


