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Preface

The development of any Software (Industrial) Intensive System, e.g. critical
embedded software, requires both different notations, and a strong develop-
ment process. Different notations are mandatory because different aspects of
the Software System have to be tackled. A strong development process is
mandatory as well because without a strong organization we cannot warrantee
the system will meet its requirements. Unfortunately, much more is needed!

The different notations that can be used must all possess at least one
property: formality.

The development process must also have important properties: a exhaus-
tive coverage of the development phases, and a set of well integrated
support tools.

In Computer Science it is now widely accepted that only formal notations can
guarantee a perfect defined meaning. This becomes a more and more important
issue since software systems tend to be distributed in large systems (for instance
in safe public transportation systems), and in small ones (for instance numerous
processors in luxury cars). Distribution increases the complexity of embedded
software while safety criteria get harder to be met.

On the other hand, during the past decade Software Engineering techniques
have been improved a lot, and are now currently used to conduct systematic and
rigorous development of large software systems. UML has become the de facto
standard notation for documenting Software Engineering projects. UML is
supported by many CASE tools that offer graphical means for the UML notation.
Moreover CASE tools are able to generate code templates and support round
trip engineering between class diagrams and program code. However, all case
tools and more generally the Software Engineering techniques used in practice
do not well support the early phases of software development. They still lack
analysis and validation means for requirements and design specifications which
are easily connected to the implementation phase, even when UML is used in
conjunction with some process, such as the RUP or Fusion (see references
further).

ix



x FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

Formal techniques have undergone a steep development during the last years.
Based on formal foundations and deep theoretical results, methods and tools
have been developed to support specification and design of software systems.
Model-based and algebraic specifications, abstract state machines, CSP and
CCS, temporal logics, rewriting techniques, finite automata, model checking
and many other formal specification and verification techniques have been ap-
plied to non-trivial examples and are used in practice e.g. for the development of
safety critical systems. Nevertheless Software Engineering practitioners claim
that formal notations are not scalable enough.

This main drawback was the topic of a Dagstuhl seminar organized in May
2001 (seminar # 01221) by S. Jähnichen (Technical University of Berlin and
Fraunhöfer Institute, Berlin-Ge), J. Kramer (OPEN University, London-UK),
M. Lemoine (ONERA, Toulouse-F) and M. Wirsing (Technical University of
München, Munich-Ge). This workshop gathered a set of selected academic
people to discuss the following problem: "Can Formal Methods Cope with
Software-Intensive Systems?" For these discussions, the "BART case study"
(see Chapter 1) was suggested as a common basis to check how far the formal
methodologies promoted by the represented teams could be efficiently applied.

Based on works presented in this seminar, a few presentations have been
selected. They are the basis of the following chapters. The result is the book
you are handling right now.

We would like to thank all the authors for the work they accomplished for this
book. We also want to thank M. De Jong and C. Zitter, from Kluwer Academic
Publisher, for their continuous help and encouragements all over the process.

F. KORDON, M. LEMOINE
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Introduction

F. Kordon, M. Lemoine

1. The “Traditional” development approach

Let us consider the traditional development approach for computer-based sys-
tems. This approach can be represented by the well known “V” software life
cycle model, as shown in Figure I.1.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Figure I.1. The traditional V life cycle.

This software life cycle put emphasis on a tactical view of the development
activity: the one that aims at producing “something” on time.1 The first part
of this approach is top-down. After having defined the requirements, their are
analyzed. A solution is then elaborated: general design before the detailed one.

The coding activity corresponds to the end of the first part in a product
development. Programs are then tested (unit per unit), integrated, i.e. assem-
bled, tested again (component by component up to the complete application).
Deployment to the clients’ sites is possible and maintenance can start.

xvii
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2. What is covered in this book

There are thousands of possible interpretations of this software life cycle (this
is the same for other life cycles too). However, developing software becomes a
much more delicate task since it comes to distributed applications, or embed-
ded, or both. In that context, formal-based methods and techniques bring an
increased level of security. The drawback is their complexity to set up and use.

This book is dedicated to the presentation of some techniques to be used in
the context of distributed and/or embedded systems. Since formal techniques
rely on models, i.e. different descriptions of the system to be designed, the
presented techniques are located in the first part of software development, as
shown in Figure I.2.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Figure I.2. Objectives of this book in the V-cycle.

We do not deal with implementation aspects. Since code generators from
specifications (like with HOOD or, more recently, with UML) are now widely
accepted and used (event if the generated code requires to be enriched), it is
obvious that the use of such tools is required for coding. Otherwise, manual
implementation may lead to a derive due to misunderstanding of the initial
system (or the integration of implementation hypotheses). But this is again out
of the scope of this book.

3. Organization of chapters

The problem of complex systems is to provide a safe implementation, and, prior
to this, a safe design. For distributed and/or embedded systems, this mainly
asks the following questions:

Is the system complete or, in other words, does it fulfill all its require-
ments?
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Is the system behavior understood or, in other words, can the system
behave erroneously?

This is why the book is divided in two parts. A first one deals with “Con-
ceptual” aspects (i.e. understanding of the requirements, appropriateness of the
design, etc.) and“behavioral” aspects.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Chap2
Chap4

Chap3

Chap7

Chap6
Chap5

Figure I.3. Where chapters refer to in the V cycle.

Figure I.3 approximately locates which phases of the software life cycle are
considered by the methods presented in the following chapters.

How to read this book? We have decided to split the book into 4 main parts.
Part I is mainly concerned with the BART Case Study. It contains only one

chapter: the BART case study that is a common base to all chapters. Indeed
all the presented techniques have used it as their application. Proceeding this
way will allow the reader to identify where, in software life cycle, they can be
(re)used, and of course to compare them, from a notational point of view.

The reader is recommended to read the first chapter as carefully as she/he
can. Indeed you will find a Requirements Document as the Industry is used to
deliver. Rigorous needs corresponding to end users’ wishes, strong constraints
corresponding to well defined obligations the system must meet are expressed
in natural language. Moreover the authors of the Requirements Document have
presented it as numbered paragraphes. This numbering can be used to build a
traceability matrix between informal requirements and formal ones, as they are
introduced in the other chapters.

Part II is intituled “Building and Validating Conceptual Aspects”.

Chapter 2 is the description of a specification language that helps devel-
oping and analyzing reactive systems that must meet constraints such as
safety and optimality. Moreover, the specification can be transformed
into ML codes, and then run as prototypes. Transformations can be
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proved as safe, allowing then to refine it and to arrive to a more efficient
implementation.

Chapter 3 is much more concerned with Requirements Engineering. It is
shown how an Informal Requirements Document can be transformed into
semi formal and formal models. An incremental process is suggested to
both specify rigourously the system as set of static models, and then to
validate them formally. UML as semi formal notation and = Z as formal
one are homogeneously integrated in a specific Evolutionary process.

Chapter 4 is much more classic. It refers to one possible way of using
UML for specifying reactive systems, and to the use of some formal
notation to check with a theorem prover how statecharts are right.

Part III intituled “Building and Validating Operational Aspects” contains 2
chapters.

Chapter 5 shows how some UML design can be checked efficiently using
OCL as specification language, and USE as support tool. The result is a
set of scenarios that can be played, and replayed as long as necessary, to
convince end users of the quality of the formal specification of the system
under consideration.

Chapter 6, even rather similar to Chapter 5, puts the emphasis on a for-
mal graphical Architectural Description Language, which allows both
to integrate static and dynamic aspects of any reactive system. As main
result, the built formal models can be both formally analyzed, and as well
prototyped.

Part IV is intituled “Methodological Aspects”. It contains one and only one
chapter.

Chapter 7, as expected in a methodological part, presents the AutoFocus
approach, which is real methodology. In other words a dedicated process
is introduced, with some notations, and some supporting tool. It can be
considered as a summary of what could be done if we expect to develop
a safe and secure system.

The last chapter introduces the conclusion, which is nothing more than the
view of the authors, regarding the techniques and methodology used to specify
the BART system.

Notes

1. Other“life cycles” put emphasis on maintenance (spiral), on components, on knowledge reuse. . . .
Their description is out of the scope of this book.


