
FORMAL METHODS FOR EMBEDDED
DISTRIBUTED SYSTEMS

Formal Methods for
Embedded Distributed
Systems
How to master the complexity

Edited by

Fabrice Kordon
Université P. & M. Curie,
France

and

Michel Lemoine
ONERA Centre de Toulouse,
France

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7997-4
Print ISBN: 1-4020-7996-6

©2004 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Dordrecht

Contents

Preface ix

Contributing Authors xi

Introduction xvii
F. Kordon, M. Lemoine

1 The “Traditional” development approach xvii
2 What is covered in this book xviii
3 Organization of chapters xviii

Part I The BART Case Study

1
The BART Case Study 3
V. Winter, F. Kordon, M. Lemoine

1 Introduction 3
2 Objective 3
3 General Background on the BART Train System 4
4 Informal Specification for the AATC System 5
5 Inputs and Outputs to the Control Algorithm 8
6 Physical Performance of the Train in Response to Commands 10
7 Worst Case Stopping Profile 11
8 Considerations with Acceleration and Speed Commands 16
9 Quantitative Quality and Safety Metrics to be Demonstrated 17
10 Vital Station Computer (VSC) Issues 18
11 Miscellaneous Questions and Answers 19

Part II Building and Validating Conceptual Aspects

2
Formal Specification and Refinement of a Safe Train Control Function 25
V. Winter D. Kapur G. Fuehrer

1 Introduction 25
2 Technical approach and method 28
3 Inputs taken from the BART case study 38
4 Applying the approach to the case study 42
5 Results raised by this technique 56
6 Conclusion 57

v

vi FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

7 Appendixes 60

3
From UML to Z 65
M. Lemoine, G. Gaudière

1 Introduction 65
2 Technical approach and method 67
3 Our approach in details 72
4 Inputs taken from the BART case study 80
5 Applying the approach to the case study 81
6 Results raised by this technique 86
7 Conclusion 87

4
Environmental Modeling with UML 89
Adriaan De Groot, Jozef Hooman

1 Introduction 89
2 Technical approach and method 92
3 Applying our approach to the case study 102
4 Designing a Controller 116
5 Results raised by this technique 127
6 Conclusion 127

Part III Building and Validating Operational Aspects

5
CheckingBARTTest Scenarios with UML’s Object Constraint Language 133
M. Gogolla, P. Ziemann

1 Introduction 133
2 Technical approach and method 135
3 Inputs taken from the BART case study 147
4 Applying the approach to the case study 149
5 Results raised by this technique 166
6 Conclusion 169

6
Modeling and verifying behavioral aspects 171
F. Bréant, J.-M. Couvreur, F. Gilliers, F. Kordon, I. Mounier, E. Paviot-Adet, D. Poitre-
naud, D. Regep, G. Sutre

1 Introduction 171
2 Technical approach and method 172
3 Inputs taken from the BART case study 187
4 Applying the approach to the case study 191
5 State space computation using DDD 195
6 Conclusion 209

Part IV Methodological Aspects

7
AutoFocus - Mastering the Complexity 215
B. Schätz

Contents vii

1 Introduction 215
2 Technical Approach and Method 216
3 Inputs taken from the BART case study 226
4 Applying the approach to the case study 227
5 Results raised by this technique 254
6 Conclusion 256

8
Conclusions 259
F. Kordon, M. Lemoine

1 Are Formal Methods an appropriate answer to the Design of Dis-
tributed Systems? 259

2 A process for the Design of Safety Critical Distributed Systems 262

Preface

The development of any Software (Industrial) Intensive System, e.g. critical
embedded software, requires both different notations, and a strong develop-
ment process. Different notations are mandatory because different aspects of
the Software System have to be tackled. A strong development process is
mandatory as well because without a strong organization we cannot warrantee
the system will meet its requirements. Unfortunately, much more is needed!

The different notations that can be used must all possess at least one
property: formality.

The development process must also have important properties: a exhaus-
tive coverage of the development phases, and a set of well integrated
support tools.

In Computer Science it is now widely accepted that only formal notations can
guarantee a perfect defined meaning. This becomes a more and more important
issue since software systems tend to be distributed in large systems (for instance
in safe public transportation systems), and in small ones (for instance numerous
processors in luxury cars). Distribution increases the complexity of embedded
software while safety criteria get harder to be met.

On the other hand, during the past decade Software Engineering techniques
have been improved a lot, and are now currently used to conduct systematic and
rigorous development of large software systems. UML has become the de facto
standard notation for documenting Software Engineering projects. UML is
supported by many CASE tools that offer graphical means for the UML notation.
Moreover CASE tools are able to generate code templates and support round
trip engineering between class diagrams and program code. However, all case
tools and more generally the Software Engineering techniques used in practice
do not well support the early phases of software development. They still lack
analysis and validation means for requirements and design specifications which
are easily connected to the implementation phase, even when UML is used in
conjunction with some process, such as the RUP or Fusion (see references
further).

ix

x FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

Formal techniques have undergone a steep development during the last years.
Based on formal foundations and deep theoretical results, methods and tools
have been developed to support specification and design of software systems.
Model-based and algebraic specifications, abstract state machines, CSP and
CCS, temporal logics, rewriting techniques, finite automata, model checking
and many other formal specification and verification techniques have been ap-
plied to non-trivial examples and are used in practice e.g. for the development of
safety critical systems. Nevertheless Software Engineering practitioners claim
that formal notations are not scalable enough.

This main drawback was the topic of a Dagstuhl seminar organized in May
2001 (seminar # 01221) by S. Jähnichen (Technical University of Berlin and
Fraunhöfer Institute, Berlin-Ge), J. Kramer (OPEN University, London-UK),
M. Lemoine (ONERA, Toulouse-F) and M. Wirsing (Technical University of
München, Munich-Ge). This workshop gathered a set of selected academic
people to discuss the following problem: "Can Formal Methods Cope with
Software-Intensive Systems?" For these discussions, the "BART case study"
(see Chapter 1) was suggested as a common basis to check how far the formal
methodologies promoted by the represented teams could be efficiently applied.

Based on works presented in this seminar, a few presentations have been
selected. They are the basis of the following chapters. The result is the book
you are handling right now.

We would like to thank all the authors for the work they accomplished for this
book. We also want to thank M. De Jong and C. Zitter, from Kluwer Academic
Publisher, for their continuous help and encouragements all over the process.

F. KORDON, M. LEMOINE

Contributing Authors

François Bréant (LIP6-CNRS - Univ. Paris 6, France). After he got his
Ph.D. in Computer Science in 1993 from the University P. & M. Curie (Paris,
France), he developed experiments and simulations for virtual environments at
the NASA Ames research center. He worked on tool cooperation for embed-
ded systems using CORBA technology at Mentor Graphics (European project
SOOM). Then, he worked on code allocation and partitioning and on data allo-
cation and transfer for a compiler targeting a configurable multiprocessor DSP
at Improv Systems Inc. He also worked on testbench environments based on a
transactional model for the test of Verilog designs applied to attachment proto-
cols at Perfectus Technologies Inc. He is currently engineer at the LIP6. His
interest fields include compilers, parallel systems, simulation and verification.

Jean-Michel Couvreur (LaBRI-CNRS - Univ. Bordeaux, France). Jean-
Michel Couvreur received a Ph.D. in Computer Science in 1990 from the Uni-
versity P. & M. Curie (Paris, France). He is currently an Associate Professor
at the University Bordeaux I and he is researcher at the LaBRI Laboratory. He
brings expertise in the development of algorithms for symbolic verification, and
in methods for model checking using various linear temporal logics.

Adriaan De Groot (KU Njmegen, The Netherland). Adriaan de Groot studied
computer science in Nijmegen and is currently doing his Ph.D. on Requirements
Engineering there. He uses UML and PVS as tools to help understand natural-
language specifications, leading to improved specifications. He programs for
the KDE project in his spare time, and laments the lack of requirements and
specifications in open source software projects.

Gary Fuehrer (Univ. of New Mexico, USA). Gary Fuehrer received a BS
degree in mathematics at the University of New Mexico in 1990, a few years
after beginning his career as a Windows software developer. He now serves in
a consultant capacity on the latest technologies for the Windows platform. Mr.

xi

xii FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

Fuehrer is currently finishing an MS degree in computer science, also at the
University of New Mexico.

Gervais Gaudière (ENAC, Toulouse, France). Gervais Gaudiere got an engi-
neering degree in computer sciences since 1995. After 4 years of dependability
studies at the French National Navigation Study Center (CENA), he teaches
since 1999 Software Engineering, Quality, project management and design
methods (formal and object oriented) at the French National Civil Aviation
School (ENAC). He is also a class inspector of a computer sciences engineer-
ing class since 1999.

Frédéric Gilliers (LIP6 and SAGEM S.A., France). Frédéric Gilliers is cur-
rently a Ph.D. student at the university P. & M. Curie (Paris, France) where he is
currently working on code generation from high-level formal specifications (the
Lf P language presented in this book). His research interests involve automatic
generation of distributed programs from formal languages, and deployment
techniques for distributed systems.

Martin Gogolla (Univ. Bremen, Germany). Martin Gogolla got his Ph.D.
in Computer Science from Braunschweig Technical University in 1986 and
his Habilitation in Computer science in 1993. Since 1986, he his a senior
researcher at Braunschweig Technical University and for a professorship in
1994 at the Bremen University. he has numerous publications in journals and
conference proceedings; published three books; organized and co-organized
several workshops and conferences and is an expert referee for journals and
conferences.

His research interests are: Algebraic specification; formal semantics of lan-
guages, especially data base languages; formal methods in information systems
design; Object-oriented design and languages.

Jozef Hooman (KU Njmegen, The Netherland). Jozef Hooman is a senior
lecturer at the University of Nijmegen since 1998. Before, he was a lecturer
at the Eindhoven University of Technology. There he also received a Ph.D.
degree on a thesis entitled "Specification and Compositional Verification of
Real-Time Systems" which appeared as LNCS 558. The central research theme
of Jozef Hooman is the formal specification and compositional verification of
distributed systems, with special emphasis on real-time and fault-tolerance.
Since 1993 he is an intensive user of the interactive theorem prover PVS. Recent
research concerns the use of PVS for the formal specification and analysis of
requirements, the study of an industrial software architecture, the verification

Contributing Authors xiii

of concurrency control protocols, and the combination of UML and formal
methods.

Deepak Kapur (Univ. of Nebraska at Omaha, USA). Deepak Kapur got his
Ph.D. in computer science in 1980 from MIT. After graduation, he worked at
GE R&D Center, Schenectady, New York, until 1988. In 1988, he was ap-
pointed full professor in the Department of Computer Science at the University
at Albany. He also founded the Institute for Programming and Logics, and he
served as its director till Dec. 1998. He won the excellence in research award
at SUNY in 1998. In Jan. 1999, he moved from SUNY, Albany, to chair the
Computer Science Department at the University of New Mexico. Kapur has
published over 150 papers, has edited three books, and has served on program
committees of many international conferences. He serves on the editorial board
of four journals, including the Journal of Automated Reasoning, of which he
serves as the editor-in-chief.

Fabrice Kordon ((LIP6-CNRS - Univ. Paris 6, France). Fabrice Kordon
received a Ph.D. in Computer Science in 1992 from the University P. & M.
Curie (Paris, France) and an Habilitation from this same university in 1998. He
is currently Professor of computer science at the University P. & M. Curie were
he manages a team involved in prototyping techniques for distributed systems
(modelling, formal verification using Petri nets, automatic program generation).
Since 1994, his team distributes on Internet CPN-AMI: a Petri net based CASE
environment dedicated to formal verification of distributed systems which is
used for teaching and research in many research institutes. He participates in
the Program committee of several conferences dedicated on formal methods
and software engineering. He was General co-chair for the IEEE Rapid System
prototyping workshop in 2000 and 2001 prior to be program co-chair in 2002
and 2003.

Michel Lemoine (ONERA/CdT, France). Michel Lemoine was graduated in
Computer Science from University Paul Sabatier in 1971. He then got a posi-
tion of full-time Senior Researcher at ONERA (Office National d’Études et de
Recherches Aérospatiales) in Toulouse. ONERA being strongly coupled with
ENSAE (École Nationale Suipérieure de l’Aéronautique et de l’Espace) he is
also professor (part-time) of Computer Science. His main domains of interest
are relative to design techniques (mainly Object-Oriented), to formal methods,
and to Requirements Engineering.

ONERA being in charge of many early stages of French aircraft designs he
is experimented, from a System Engineering point of view, most of the new
emerging techniques in Computer Science at an industrial level.

xiv FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

Isabelle Mounier (LIP6-CNRS - Univ. Paris 6, France). Isabelle Mounier
received a Ph.D. in Computer Science in 1994 from the University P. & M. Curie
(Paris, France). Since 1998, she is an Associate Professor of Computer Science
at the University P. & M. Curie. Her research interests concern verification of
properties of complex systems by combining reduction, abstraction and model
checking techniques.

Emmanuel Paviot-Adet (LIP6-CNRS - Univ. Paris 6, France). Emmanuel
Paviot-Adet received a Ph.D. in Computer Science in 1995 from the University
P. & M. Curie (Paris, France). He is currently Associate Professor of computer
science at the University R. Descartes (Paris, France) and he is researcher at the
LIP6 Laboratory of the University P. & M Curie (Paris, France). His research
interests involve verification of complex systems using model checking.

Denis Poitrenaud (LIP6-CNRS - Univ. Paris 6, France). Denis Poitrenaud
got is Ph.D. in Computer Science in 1996 from the University P. & M Curie
(Paris, France). Since 1997, he is an Associate Professor of Computer Science
at the University R. Descartes (Paris, France) and he is researcher at the LIP6
Laboratory of the University P. & M Curie (Paris, France). His research fields
are model checking techniques and theoretical aspects of formal languages.

Dan Regep (LIP6-CNRS - Univ. Paris 6, France). Dan Regep is currently a
Ph.D. student at LIP6 where he is works in the area of Rapid Prototyping of safe
Distributed Systems. His thesis focuses on Lf P, a language for Prototyping;
his main contribution was the development of the Lf P software architecture
style.

His research interests are mainly oriented on Formal description and mod-
elling of Software Architecture, Evolutionary Prototyping and Automatic Code
Generation techniques.

Bernhard Schätz (Tech. Univ. München, Germany). After his graduation
in Computer Science, he worked on formal foundations of models for reactive
systems in the project “Methods and Tools for the Use of Parallel Computer Ar-
chitectures” of the German Research Community (DFG). 1998 he received his
Ph.D. in Computer Science at the TU München. Currently, he works as senior
researcher at the chair of Prof. Broy for Software & Systems Engineering, TU
München, focusing on the application of formal techniques in the engineering
process. His work aims at the construction of CASE tools for a model-based
software engineering process for embedded systems. Results of his research
are incorporated in the development of AutoFocus.

Contributing Authors xv

Grégoire Sutre (LaBRI-CNRS, France). Grégoire Sutre received a Ph.D.
in Computer Science in 2000 from the École Normale Supérieure (Cachan,
France). Since 2001, he is a full-time researcher at the Computer Science Re-
search Lab of Bordeaux (LaBRI, France). His research interests are in the
automatic verification of complex systems, in particular infinite-state models
and C programs, using abstration/refinement and symbolic techniques.

Victor Winter (Univ. of Nebraska at Omaha, USA). Victor Winter got his
Ph.D. in computer science in 1994 from the University of New Mexico. Af-
ter graduation, he worked at Sandia National Laboratories as a member of the
High Integrity Software (HIS) program. In 1999 he subsequently became the
principal investigator of that program. In 2001, Dr. Winter accepted a position
as an assistant professor in the computer science department at the Univer-
sity of Nebraska at Omaha. Dr. Winter is a primary developer of a program
transformation system called HATS.

Paul Ziemann (Univ. Bremen, Germany). Paul Ziemann got his Diploma
in 2001. He is now a researcher in the DFG-project "UML-AID" (Abstract
Implementation and Documentation with UML) at the Bremen University.

His research interests are: formal semantics of UML and OCL; extension of
OCL with temporal logic; graph transformation.

Introduction

F. Kordon, M. Lemoine

1. The “Traditional” development approach

Let us consider the traditional development approach for computer-based sys-
tems. This approach can be represented by the well known “V” software life
cycle model, as shown in Figure I.1.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Figure I.1. The traditional V life cycle.

This software life cycle put emphasis on a tactical view of the development
activity: the one that aims at producing “something” on time.1 The first part
of this approach is top-down. After having defined the requirements, their are
analyzed. A solution is then elaborated: general design before the detailed one.

The coding activity corresponds to the end of the first part in a product
development. Programs are then tested (unit per unit), integrated, i.e. assem-
bled, tested again (component by component up to the complete application).
Deployment to the clients’ sites is possible and maintenance can start.

xvii

xviii FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

2. What is covered in this book

There are thousands of possible interpretations of this software life cycle (this
is the same for other life cycles too). However, developing software becomes a
much more delicate task since it comes to distributed applications, or embed-
ded, or both. In that context, formal-based methods and techniques bring an
increased level of security. The drawback is their complexity to set up and use.

This book is dedicated to the presentation of some techniques to be used in
the context of distributed and/or embedded systems. Since formal techniques
rely on models, i.e. different descriptions of the system to be designed, the
presented techniques are located in the first part of software development, as
shown in Figure I.2.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Figure I.2. Objectives of this book in the V-cycle.

We do not deal with implementation aspects. Since code generators from
specifications (like with HOOD or, more recently, with UML) are now widely
accepted and used (event if the generated code requires to be enriched), it is
obvious that the use of such tools is required for coding. Otherwise, manual
implementation may lead to a derive due to misunderstanding of the initial
system (or the integration of implementation hypotheses). But this is again out
of the scope of this book.

3. Organization of chapters

The problem of complex systems is to provide a safe implementation, and, prior
to this, a safe design. For distributed and/or embedded systems, this mainly
asks the following questions:

Is the system complete or, in other words, does it fulfill all its require-
ments?

INTRODUCTION xix

Is the system behavior understood or, in other words, can the system
behave erroneously?

This is why the book is divided in two parts. A first one deals with “Con-
ceptual” aspects (i.e. understanding of the requirements, appropriateness of the
design, etc.) and“behavioral” aspects.

Requirements

Analysis

Design

Detailed design

Coding

Unit testing

Integration & tests

Deployment

Maintenance

Chap2
Chap4

Chap3

Chap7

Chap6
Chap5

Figure I.3. Where chapters refer to in the V cycle.

Figure I.3 approximately locates which phases of the software life cycle are
considered by the methods presented in the following chapters.

How to read this book? We have decided to split the book into 4 main parts.
Part I is mainly concerned with the BART Case Study. It contains only one

chapter: the BART case study that is a common base to all chapters. Indeed
all the presented techniques have used it as their application. Proceeding this
way will allow the reader to identify where, in software life cycle, they can be
(re)used, and of course to compare them, from a notational point of view.

The reader is recommended to read the first chapter as carefully as she/he
can. Indeed you will find a Requirements Document as the Industry is used to
deliver. Rigorous needs corresponding to end users’ wishes, strong constraints
corresponding to well defined obligations the system must meet are expressed
in natural language. Moreover the authors of the Requirements Document have
presented it as numbered paragraphes. This numbering can be used to build a
traceability matrix between informal requirements and formal ones, as they are
introduced in the other chapters.

Part II is intituled “Building and Validating Conceptual Aspects”.

Chapter 2 is the description of a specification language that helps devel-
oping and analyzing reactive systems that must meet constraints such as
safety and optimality. Moreover, the specification can be transformed
into ML codes, and then run as prototypes. Transformations can be

xx FORMAL METHODS FOR EMBEDDED DISTRIBUTED SYSTEMS

proved as safe, allowing then to refine it and to arrive to a more efficient
implementation.

Chapter 3 is much more concerned with Requirements Engineering. It is
shown how an Informal Requirements Document can be transformed into
semi formal and formal models. An incremental process is suggested to
both specify rigourously the system as set of static models, and then to
validate them formally. UML as semi formal notation and = Z as formal
one are homogeneously integrated in a specific Evolutionary process.

Chapter 4 is much more classic. It refers to one possible way of using
UML for specifying reactive systems, and to the use of some formal
notation to check with a theorem prover how statecharts are right.

Part III intituled “Building and Validating Operational Aspects” contains 2
chapters.

Chapter 5 shows how some UML design can be checked efficiently using
OCL as specification language, and USE as support tool. The result is a
set of scenarios that can be played, and replayed as long as necessary, to
convince end users of the quality of the formal specification of the system
under consideration.

Chapter 6, even rather similar to Chapter 5, puts the emphasis on a for-
mal graphical Architectural Description Language, which allows both
to integrate static and dynamic aspects of any reactive system. As main
result, the built formal models can be both formally analyzed, and as well
prototyped.

Part IV is intituled “Methodological Aspects”. It contains one and only one
chapter.

Chapter 7, as expected in a methodological part, presents the AutoFocus
approach, which is real methodology. In other words a dedicated process
is introduced, with some notations, and some supporting tool. It can be
considered as a summary of what could be done if we expect to develop
a safe and secure system.

The last chapter introduces the conclusion, which is nothing more than the
view of the authors, regarding the techniques and methodology used to specify
the BART system.

Notes

1. Other“life cycles” put emphasis on maintenance (spiral), on components, on knowledge reuse. . . .
Their description is out of the scope of this book.

