Lecture Notes in Artificial Intelligence 2654
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Ute Schmid

Inductive Synthesis
of Functional Programs

Universal Planning, Folding of Finite Programs,
and Schema Abstraction by Analogical Reasoning

6 Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Author

Ute Schmid

University of Osnabriick

Institute of Computer Science

Department of Mathematics and Computer Science
Albrechtstr. 28, 49069 Osnabriick, Germany
E-mail: schmid @informatik.uni-osnabrueck.de

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): 1.2.2,1.2.3,1.2.4,1.2.8, D.1.2, E3.1, F4.1, D.2.11

ISSN 0302-9743
ISBN 3-540-40174-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Coverillustration: "Nachtigall II" by Heinrich Neuy

Printed on acid-free paper SPIN: 10932261 06/3142 543210

For My Parents and
In Memory of My Grandparents

Foreword

Analogical reasoning is ubiquitous, whether in everyday common sense rea-
soning, in scientific discovery, or anywhere in between. Examples of analogi-
cal reasoning range from scientific theory creation, such as Bohr’s planetary
model of the atom, to problem solving where a teacher’s solution of an illus-
trative example problem is used to guide the student in solving new, similar
problems. Psychologists have studied how people reason analogically, though
often severely simplifying the reasoning task in order to run controlled experi-
ments. Artificial intelligence researchers, including this writer, have built com-
putational models that exhibit various forms of analogical transfer, ranging
from simple copy-and-modify processes to complex derivational-trace track-
ing and rejustifying reasoning steps for new problems. The underlying issues
are not simple. For instance, in drawing an analogy, what should be kept in-
variant, what should be modified or mapped, and what should be discarded?
At what level of reasoning is analogy most profitably applied — i.e., should
the solution to a problem be transferred and modified, should the derivation
of the solution be transferred instead, or should the underlying principles in-
voked in the derivation be the primary transfer vehicle? How does analogical
reasoning interact with classical deduction or with inductive reasoning? And
how can a solution drawn analogically be formally verified or refuted, in the
sense of formal proof checking? These and other key issues lie at the heart of
analogical reasoning research.

Artificial intelligence researchers and cognitive psychologists have ad-
dressed subsets of the analogical reasoning challenge. However, until now
there has not been a true marriage of the psychological and the computa-
tional in the realm of analogical reasoning. Although both camps cite each
other and mutually benefit from new results, Ute Schmid is the first to de-
velop, implement, test, and evaluate analogical reasoning models in depth
based directly on data from subjects performing that reasoning.

This book is a very thorough and clear report of Dr. Schmid’s deep anal-
ysis of inductive and analogical reasoning, combining key aspects of artificial
intelligence and algorithms on the one hand, and cognitive psychology on the
other. Compared with related work, the comprehensive nature of the analog-
ical reasoning model is evident: The case-based reasoning (CBR) community
focuses primarily on indexing and retrieving relevant past cases, rather than

VIII Foreword

deriving new solutions or solving significantly different problems. Earlier ana-
logical reasoning work focused directly on problem solving — how to use past
solutions for similar problems to help construct the solution to the new prob-
lem. Veloso combined CBR and analogical reasoning, enabling large-scale
problem solving from second-principles. Subsequently, analogical reasoning
has seen new extensions such as Melis’s method for analogical construction
of mathematical proofs and the use of analogy in intelligent tutoring systems.
This book combines all the aspects of analogical reasoning, extends it to in-
clude other forms of inductive and deductive reasoning, and directly ties the
computational methods to psychological results.

June 2003 Jaime Carbonell

Preface

In this book a novel approach to inductive synthesis of recursive functions
is proposed, combining universal planning, folding of finite programs, and
schema abstraction by analogical reasoning. In a first step, an example do-
main of small complexity is explored by universal planning. For example, for
all possible lists over four fixed natural numbers, their optimal transformation
sequences into the sorted list are calculated and represented as a DAG. In a
second step, the plan is transformed into a finite program term. Plan transfor-
mation mainly relies on inferring the data type underlying a given plan. In a
third step, the finite program is folded into (a set of) recursive functions. Fold-
ing is performed by syntactical pattern-matching and corresponds to inducing
a special class of context-free tree grammars. It is shown that the approach
can be successfully applied to learn domain-specific control rules. Control
rule learning is important to gain the efficiency of domain-specific planners
without the need to hand-code the domain-specific knowledge. Furthermore,
an extension of planning based on a purely relational domain description
language to function applications is presented. This extension makes plan-
ning applicable to a larger class of problems that are of interest for program
synthesis.

As a last step, a hierarchy of program schemes (patterns) is generated
by generalizing over already synthesized recursive functions. Generalization
can be considered as the last step of problem solving by analogy or program-
ming by analogy. Some psychological experiments were performed to inves-
tigate which kind of structural relations between problems can be exploited
by human problem-solvers. Anti-unification is presented as an approach to
mapping and generalizing program structures. It is proposed that the inte-
gration of planning, program synthesis, and analogical reasoning contributes
to cognitive science research on skill acquisition by addressing the problem
of extracting generalized rules from some initial experience. Such (control)
rules represent domain-specific problem-solving strategies.

All parts of the approach are implemented in Common Lisp.

Acknowledgements. Research is a kind of work one can never do com-
pletely alone. Over the years I profited from the guidance of several profes-
sors who supervised or supported my work, namely Fritz Wysotzki, Klaus
Eyferth, Bernd Mahr, Jaime Carbonell, Arnold Upmeyer, Peter Pepper, and

X Preface

Gerhard Strube. I learned a lot from discussions with them, with colleagues,
and students, such as Jochen Burghardt, Bruce Burns, the group of Hartmut
Ehrig, Pierre Flener, Hector Geffner, Peter Geibel, Peter Gerjets, Jiirgen
Giesl, Wolfgang Grieskamp, Maritta Heisel, Ralf Herbrich, Laurie Hiyaku-
moto, Petra Hofstedt, Rune Jensen, Emanuel Kitzelmann, Jana Koehler,
Steffen Lange, Martin Miihlpfordt, Brigitte Pientka, Heike Pisch, Manuela
Veloso, Ulrich Wagner, Bernhard Wolf, and Thomas Zeugmann (sorry to ev-
eryone I forgot). T am very grateful for the time I could spend at Carnegie
Mellon University. Thanks to Klaus Eyferth and Bernd Mahr who motivated
me to go, to Gerhard Strube for his support, to Fritz Wysotzki who accepted
my absence from teaching, and, of course, to Jaime Carbonell who was my
very helpful host. My work profited much from the inspiration I got from
talks, classes, and discussions, and from the very special atmosphere suggest-
ing that everything is all right as long as “the heart is in the work.” I thank
all my diploma students who supported the work reported in this book —
Dirk Matzke, Rene Mercy, Martin Miihlpfordt, Marina Miiller, Mark Miiller,
Heike Pisch, Knut Polkehn, Uwe Sinha, Imre Szabo, Janin Toussaint, Ulrich
Wagner, Joachim Wirth, and Bernhard Wolf. Additional thanks to some of
them and Peter Pollmanns for proof-reading parts of the draft of this book. I
owe a lot to Fritz Wysotzki for giving me the chance to move from cognitive
psychology to artificial intelligence, for many interesting discussions, and for
critically reading and commenting on the draft of this book. Finally, thanks
to my colleagues and friends Berry Claus, Robin Hornig, Barbara Kaup, and
Martin Kindsmiiller, to my family, and my husband Uwe Konerding for sup-
port and high-quality leisure time, and to all authors of good crime novels.

Table of Contents

1.

Introduction 1

Part I. Planning

2.

State-Based Planning o 13
2.1 Standard SErips 13
2.1.1 A Blocks-World Example 14
2.1.2 Basic Definitions i 14
2.1.3 Backward Operator Application 18
2.2 Extensions and Alternatives to Strips 20
2.2.1 The Planning Domain Definition Language 20
2.2.2 Situation Calculus 24
2.3 Basic Planning Algorithms 27
2.3.1 Informal Introduction of Basic Concepts............. 28
2.3.2 Forward Planning 29
2.3.3 Formal Properties of Planning 32
2.3.4 Backward Planning oL 35
2.4 Planning Systems 40
2.4.1 Classical Approaches.......... o i, 40
2.4.2 Current Approaches 42
2.4.3 Complex Domains and Uncertain Environments 44
2.4.4 Universal Planning 45
2.4.5 Planning and Related Fields 48
2.4.6 Planning Literature......... 50
2.5 Automatic Knowledge Acquisition for Planning 51
2.5.1 Pre-planning Analysis......... 51
2.5.2 Planning and Learning 51
Constructing Complete Sets of Optimal Plans 50
3.1 Introduction to DPlan 55
3.1.1 DPlan Planning Language 56

3.1.2 DPlan Algorithm 57

XII

Table of Contents
3.1.3 Efficiency Concernsc.ooiiiiiiinnao... 58
3.1.4 Example Problems 59
3.2 Optimal Full Universal Plans 64
3.3 Termination, Soundness, Completeness 66
3.3.1 Termination of DPlan......... 66
3.3.2 Operator Restrictions 67
3.3.3 Soundness and Completeness of DPlan 70
Integrating Function Application in Planning 71
4.1 Motivation 71
4.2 Extending Strips to Function Applications 74
4.3 Extensions of FPlan 79
4.3.1 Backward Operator Application 79
4.3.2 Introducing User-Defined Functions................. 81
4.4 Examples.o 82
4.4.1 Planning with Resource Variables 83
4.4.2 Planning for Numerical Problems................... 85
4.4.3 Functional Planning for Standard Problems.......... 87
4.4.4 Mixing ADD/DEL Effects and Updates 88
4.4.5 Planning for Programming Problems................ 88
4.4.6 Constraint Satisfaction and Planning 90
Conclusions and Further Research 93
5.1 Comparing DPlan with the State of the Art 93
5.2 Extensionsof DPlan 94
5.3 Universal Planning versus Incremental Exploration 95

Part II. Inductive Program Synthesis

6.

Automatic Programming 99
6.1 Overview of Automatic Programming Research............. 100
6.1.1 Al and Software Engineering....................... 100
6.1.2 Approaches to Program Synthesis 102
6.1.3 Pointers to Literature 109
6.2 Deductive Approaches i 110
6.2.1 Constructive Theorem Proving 110
6.2.2 Program Transformation 115
6.3 Inductive Approaches i 124
6.3.1 Foundations of Induction 124
6.3.2 Genetic Programming............. 134
6.3.3 Inductive Logic Programming 140

6.3.4 Inductive Functional Programming 150

Table of Contents XIII

6.4 Final Comments.t 164
6.4.1 Inductive versus Deductive Synthesis 164
6.4.2 Inductive Functional versus Logic Programming 165

Folding of Finite Program Terms 167

7.1 Terminology and Basic Concepts 168
7.1.1 Terms and Term Rewriting 168
7.1.2 Patterns and Anti-unification 171
7.1.3 Recursive Program Schemes 172

7.2 Synthesis of RPSs from Initial Programs 182
7.2.1 Folding and Fixpoint Semantics 182
7.2.2 Characteristicsof RPSs 182
7.2.3 The Synthesis Problem............ 185

7.3 Solving the Synthesis Problem 185
7.3.1 Constructing Segmentations 186
7.3.2 Constructing a Program Body 195
7.3.3 Dealing with Further Subprograms 198
7.3.4 Finding Parameter Substitutions 206
7.3.5 Constructingan RPS 215

7.4 Example Problems...... 220
7.4.1 Time Effort of Folding 220
7.4.2 Recursive Control Rules 222

Transforming Plans into Finite Programs 227

8.1 Overview of Plan Transformation......................... 228
8.1.1 Universal Plans 228
8.1.2 Introducing Data Types and Situation Variables. 228
8.1.3 Components of Plan Transformation 229
8.1.4 Plans as Programs.......... 229
8.1.5 Completeness and Correctness 231

8.2 Transformation and Type Inference 231
8.2.1 Plan Decomposition 231
8.2.2 Data Type Inference 233
8.2.3 Introducing Situation Variables 234

8.3 Plans over Sequences of Objects 235

8.4 Plans over Sets of Objects 240

8.5 Plans over Lists of Objects 246
8.5.1 Structural and Semantic List Problems.............. 246
8.5.2 Synthesizing ‘Selection-Sort’ 248
8.5.3 Concluding Remarks on List Problems 257

8.6 Plans over Complex Data Types................. 259
8.6.1 Variants of Complex Finite Programs 259
8.6.2 The ‘Tower’ Domain i, .. 260

86.3 Towerof Hanoi.......... i o, 267

XIV Table of Contents

9. Conclusions and Further Research 271
9.1 Combining Planning and Program Synthesis 271

9.2 Acquisition of Problem Solving Strategies 272
9.2.1 Learning in Problem Solving and Planning 272

9.2.2 Three Levels of Learning 273

Part III. Schema Abstraction

10. Analogical Reasoning and Generalization 279
10.1 Analogical and Case-Based Reasoning..................... 279
10.1.1 Characteristics of Analogy 279
10.1.2 Sub-processes of Analogical Reasoning 281
10.1.3 Transformational versus Derivational Analogy........ 282
10.1.4 Quantitive and Qualitative Similarity 283
10.2 Mapping Simple Relations or Complex Structures 284
10.2.1 Proportional Analogies.......... 284
10.2.2 Causal Analogies 286
10.2.3 Problem Solving and Planning by Analogy 286
10.3 Programming by Analogy 288
10.4 Pointers to Literature 290
11. Structural Similarity in Analogical Transfer............... 291
11.1 Analogical Problem Solving 291
11.1.1 Mapping and Transfer 292
11.1.2 Transfer of Non-isomorphic Source Problems......... 293
11.1.3 Structural Representation of Problems 294
11.1.4 Non-isomorphic Variants in a Water Redistribution
Domain 296
11.1.5 Measurement of Structural Overlap 300
11.2 Experiment 1o 300
11.2.1 Methodo 302
11.2.2 Results and Discussioncooiiniine..... 303
11.3 Experiment 2 305
11.3.1 Method 306
11.3.2 Results and Discussion, 307
11.4 General Discussionoiiuiinininninenann... 309
12. Programming by Analogy 311
12.1 Program Reuse and Program Schemes 311
12.2 Restricted 2nd—order Anti—unification 312
12.2.1 Recursive Program Schemes Revisited............... 312

12.2.2 Anti-unification of Program Terms.................. 314

Table of Contents XV

12.3 Retrieval Using Term Subsumption 316

12.3.1 Term Subsumption 316

12.3.2 Empirical Evaluation 317

12.3.3 Retrieval from Hierarchical Memory 318

12.4 Generalizing Program Schemes 319

12.5 Adaptation of Program Schemes.......................... 320

13. Conclusions and Further Research 323

13.1 Learning and Applying Abstract Schemes 323

13.2 A Framework for Learning from Problem Solving 324

13.3 Application Perspective 325

Bibliography 327
Appendices

A. Implementation Details 343

A.1 Short History of DPlan........ i, 343

A2 Modules of DPlan i 345

A.3 DPlan Specifications 345

A.4 Development of Folding Algorithms 347

A5 Modules of TFold 348

A.6 Time Effort of Folding 349

A.7 Main Components of Plan-Transformation 349

A.8 Plan Decompositioncooiiiiiiiiiiiaa.. 350

A.9 Introduction of Situation Variables 351

A.10 Number of MSTsina DAG.......... 351

A.11 Extracting Minimal Spanning Trees from a DAG 352

A.12 Regularizing a Tree 353

A.13 Programming by Analogy Algorithms 355

B. Concepts and Proofs......... 357

B.1 Fixpoint Semanticscuiiiiinni. 357

B.2 Proof: Maximal Subprogram Body 360

B.3 Proof: Uniqueness of Substitutions........................ 365

C. Sample Programs and Problems 369

C.1 Fibonacci with Sequence Referencing Function 369

C.2 Inducing ‘Reverse’ with Golem 370

C.3 Finite Program for ‘Unstack’....... 373

C.4 Recursive Control Rules for the ‘Rocket’ Domain 375

C.5 The ‘Selection Sort” Domain 376

C.6 Recursive Control Rules for the ‘Tower’ Domain............ 377

XVI

Table of Contents

C.7 Water Jug Problems i
C.8 Example RPSs

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

Analogical Problem Solving and Learning 5
Main Components of the Synthesis System 6
A Simple Blocks-World 14
A Strips Planning Problem in the Blocks-World 18
An Alternative Representation of the Blocks-World 19
Representation of a Blocks-World Problem in PDDL-Strips 21
Blocks-World Domain with Equality Constraints and Conditioned

Effects ..o 22
Representation of a Blocks-World Problem in Situation Calculus . 26
A Forward Search Tree for Blocks-World 31
A Backward Search Tree for Blocks-World 36
Goal-Regression for Blocks-World 37
The Sussman Anomaly i 39
Part of a Planning Graph as Constructed by Graphplan 43
Representation of the Boolean Formula f(z1, z2) = x1 Azg as OBDD 47
The Clearblock DPlan Problem 60
DPlan Plan for Clearblock0 60
Clearblock with a Set of Goal States 60
The DPlan Rocket Problem 61
Universal Plan for Rocket........ 62
The DPlan Sorting Problem 62
Universal Plan for Sorting o i ... 63
The DPlan Hanoi Problem 63
Universal Plan for Hanoi i, 64
Universal Plan for Tower 64
Minimal Spanning Tree for Rocket 67
Tower of Hanoi (a) Without and (b) With Function Application . 73
Tower of Hanoi in Functional Strips (Geffner, 1999) 74
A Plan for Tower of Hanoic ... 80
Tower of Hanoi with User-Defined Functions................... 82
A Problem Specification for the Airplane Domain............... 83
Specification of the Inverse Operator fly~! for the Airplane Domain 84

XVIII List of Figures

4.7 A Problem Specification for the Water Jug Domain 86
4.8 A Plan for the Water Jug Problem 86
4.9 Blocks-World Operators with Indirect Reference and Update. 89
4.10 Specification of Selection Sort 89
4.11 Lightmeal in Constraint Prolog 91
4.12 Problem Specification for Lightmeal....... 91
6.1 Programs Represent Concepts and Skills 125

6.2 Construction of a Simple Arithmetic Function (a) and an Even-2-
Parity Function (b) Represented as a Labeled Tree with Ordered

Branches (Koza, 1992, figs. 6.1, 6.2) ..., 135
6.3 A Possible Initial State, an Intermediate State, and the Goal State

for Block Stacking (Koza, 1992, figs. 18.1,18.2) 137
6.4 Resulting Programs for the Block Stacking Problem (Koza, 1992,

chap. 18.1) ... 139
6.5 O-Subsumption Equivalence and Reduced Clauses............... 142
6.6 O-Subsumption Lattice 143
6.7 An Inverse Linear Derivation Tree (Lavra¢ and Dzeroski, 1994,

DD 40) 144
6.8 Part of a Refinement Graph (Lavra¢ and Dzeroski, 1994, p. 56) .. 146
6.9 Specifying Modes and Types for Predicates 147
6.10 Learning Function unpack from Examples 152
6.11 Traces for the unpack Example 153
6.12 Result of the First Synthesis Step for unpack................... 155
6.13 Recurrence Relation for unpack. 155
6.14 Traces for the reverse Problem 159
6.15 Synthesis of a Regular Lisp Program 162
6.16 Recursion Formation with Tinker........ 164
7.1 Example Term with Exemplaric Positions of Sub-terms.......... 170
7.2 Example First Order Pattern 172
7.3 Anti-Unification of Two Terms i, 173
7.4 Examples for Terms Belonging to the Language of an RPS and of

a Subprogramof an RPS 176
7.5 Unfolding Positions in the Third Unfolding of Fibonacci 179
7.6 Valid Recurrent Segmentation of Mod 187
7.7 Initial Program for ModList. 190
7.8 Identifying Two Recursive Subprograms in the Initial Program for

ModListo 200
7.9 Inferring a Sub-Program Scheme for ModList................... 201
7.10 The Reduced Initial Tree of ModList 202
7.11 Substitutions for Mod 207
7.12 Steps for Calculating a Subprogram............... 216
7.13 Overview of Inducing an RPS 218

7.14 Time Effort for Unfolding/Folding Factorial 220

List of Figures XIX

7.15 Time Effort for Unfolding/Folding Fibonacci 221
7.16 Time Effort Calculating Valid Recurrent Segmentations and Sub-
stitutions for Factorial 221
7.17 Initial Tree for Clearblock. 223
7.18 Initial Tree for Tower of Hanoi 224
8.1 Induction of Recursive Functions from Plans 227
8.2 Examples of Uniform Sub-Plans 232
8.3 Uniform Plans as Subgraphs 233
8.4 Generating the Successor-Function for a Sequence 236
8.5 The Unstack Domain and Plan 237
8.6 Protocol for Unstack i 238
8.7 Introduction of Data Type Sequence in Unstack 238
8.8 LISP-Program for Unstack......... 239
8.9 Partial Order of Set. i 240
8.10 Functions Inferred/Provided for Set............. 242
8.11 Sub-Plans of Rocket......... 244

8.12 Introduction of the Data Type Set (a) and Resulting Finite Pro-
gram (b) for the Unload-All Sub-Plan of Rocket ({2 denotes “un-

defined”) ... i 244
8.13 Protocol of Transforming the Rocket Plan 245
8.14 Partial Order (a) and Total Order (b) of Flat Lists over Numbers. 247
8.15 A Minimal Spanning Tree Extracted from the SelSort Plan 252
8.16 The Regularized Tree for SelSort 254
8.17 Introduction of a “Semantic” Selector Function in the Regularized

Tree .o 256
8.18 LISP-Program for SelSort 258
8.19 Abstract Form of the Universal Plan for the Four-Block Tower ... 264
9.1 Three Levels of Generalization 274
10.1 Mapping of Base and Target Domain 281

10.2 Example for a Geometric-Analogy Problem (Evans, 1968, p. 333) . 285
10.3 Context Dependent Descriptions in Proportional Analogy (O’Hara,

1992) L 285
10.4 The Rutherford Analogy (Gentner, 1983) 286
10.5 Base and Target Specification (Dershowitz, 1986) 288
11.1 Types and degrees of structural overlap between source and target

Problems 295
11.2 A water redistribution problem......... 297

11.3 Graphs for the equations 2-2+5 =9 (a) and 3.2+ (6 —2) = 16 (b)301

12.1 Adaptation of Subto Add 321

XX

C.1
C.2
C.3
C4

List of Figures

Universal Plan for Sorting Lists with Three Elements 376
Minimal Spanning Trees for Sorting Lists with Three Elements ... 377
Minimal Spanning Trees for Sorting Lists with Three Elements ... 378
Minimal Spanning Trees for Sorting Lists with Three Elements ... 378

List of Tables

2.1
2.2
2.3
24

3.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

Informal Description of Forward Planning 29
A Simple Forward Planner........... 31
Number of States in the Blocks-World Domain 33
Planning as Model Checking Algorithm (Giunchiglia, 1999, fig. 4) 47
Abstract DPlan Algorithm.......... 58
Database with Distances between Airports..................... 84
Performance of FPlan: Tower of Hanoi 88
Performance of FPlan: Selection Sort 90
Different Specifications for Last 103
Training Examples. 127
Background Knowledge i 127
Fundamental Results of Language Learnability (Gold, 1967, tab. 1)132
Genetic Programming Algorithm (Koza, 1992, p. 77) 136
Calculation the Fibonacci Sequence 139
Learning the daughter Relation............ 141
Calculating an rlgg ... 143
Simplified MIS-Algorithm (Lavrac¢ and Dzeroski, 1994, pp.54) 145
Background Knowledge and Examples for Learning reverse(X,Y) . 149
Constructing Traces from I/O Examples....................... 153
Calculating the Form of an S-Expression 154
Constructing a Regular Lisp Program by Function Merging 161
A Sample of Function Symbols 169
Example foran RPS 174
Recursion Points and Substitution Terms for the Fibonacci Function178
Unfolding Positions and Unfolding Indices for Fibonacci 180
Example of Extrapolating an RPS from an Initial Program 183
Calculation of the Next Position on the Right 195
Factorial and Its Third Unfolding with Instantiation succ(succ(0))

(a) and pred(3) (b) ..o 196
Segments of the Third Unfolding of Factorial for Instantiation

succ(suce(0)) (a) and pred(3) (b) ... 196

XXII List of Tables

7.9 Anti-Unification for Incomplete Segments...................... 198
7.10 Variants of Substitutions in Recursive Calls 207
7.11 Testing whether Substitutions are Uniquely Determined 209
7.12 Testing whether a Substitution is Recurrent 210
7.13 Testing the Existence of Sufficiently Many Instances for a Variable 211
7.14 Determining Hidden Variables........ 213
7.15 Calculating Substitution Terms of a Variable in a Recursive Call . 214
7.16 Equality of Subprograms i i 219
7.17 RPS for Factorial with Constant Expression in Main............ 222
8.1 Introducing Sequence 235
8.2 Linear Recursive Functions 239
8.3 Imtroducing Set 241
8.4 Structural Functions over Listso i 247
8.5 Introducing List..... ... 248
8.6 Dealing with Semantic Information in Lists 249
8.7 Functional Variants for Selection-Sort 250
8.8 Extract an MST from a DAG 253
8.9 Regularization of a Tree i i 253
8.10 Structural Complex Recursive Functions. 260
8.11 Transformation Sequences for Leaf-Nodes of the Tower Plan for

Four Blocks. ... 265
8.12 Power-Set of a List, Set of Lists 266
8.13 Control Rules for Tower Inferred by Decision List Learning 267
8.14 A Tower of Hanoi Programcouiiieiiaen... 268

8.15 A Tower of Hanoi Program for Arbitrary Starting Constellations . 269

10.1 Kinds of Predicates Mapped in Different Types of Domain Com-

parison (Gentner, 1983, Tab. 1, extended) 280
10.2 Word Algebra Problems (Reed et al., 1990) 287
11.1 Relevant information for solving the source problem 299
11.2 Results of Experiment 1 304
11.3 Results of Experiment 2 i 308
12.1 A Simple Anti-Unification Algorithm 315
12.2 An Algorithm for Retrieval of RPSs 317
12.3 Results of the similarity rating study........... 318

12.4 Example Generalizations 320

	Foreword
	Preface
	Table of Contents
	List of Figures
	List of Tables

