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Foreword

Analogical reasoning is ubiquitous, whether in everyday common sense rea-
soning, in scientific discovery, or anywhere in between. Examples of analogi-
cal reasoning range from scientific theory creation, such as Bohr’s planetary
model of the atom, to problem solving where a teacher’s solution of an illus-
trative example problem is used to guide the student in solving new, similar
problems. Psychologists have studied how people reason analogically, though
often severely simplifying the reasoning task in order to run controlled experi-
ments. Artificial intelligence researchers, including this writer, have built com-
putational models that exhibit various forms of analogical transfer, ranging
from simple copy-and-modify processes to complex derivational-trace track-
ing and rejustifying reasoning steps for new problems. The underlying issues
are not simple. For instance, in drawing an analogy, what should be kept in-
variant, what should be modified or mapped, and what should be discarded?
At what level of reasoning is analogy most profitably applied — i.e., should
the solution to a problem be transferred and modified, should the derivation
of the solution be transferred instead, or should the underlying principles in-
voked in the derivation be the primary transfer vehicle? How does analogical
reasoning interact with classical deduction or with inductive reasoning? And
how can a solution drawn analogically be formally verified or refuted, in the
sense of formal proof checking? These and other key issues lie at the heart of
analogical reasoning research.

Artificial intelligence researchers and cognitive psychologists have ad-
dressed subsets of the analogical reasoning challenge. However, until now
there has not been a true marriage of the psychological and the computa-
tional in the realm of analogical reasoning. Although both camps cite each
other and mutually benefit from new results, Ute Schmid is the first to de-
velop, implement, test, and evaluate analogical reasoning models in depth
based directly on data from subjects performing that reasoning.

This book is a very thorough and clear report of Dr. Schmid’s deep anal-
ysis of inductive and analogical reasoning, combining key aspects of artificial
intelligence and algorithms on the one hand, and cognitive psychology on the
other. Compared with related work, the comprehensive nature of the analog-
ical reasoning model is evident: The case-based reasoning (CBR) community
focuses primarily on indexing and retrieving relevant past cases, rather than
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deriving new solutions or solving significantly different problems. Earlier ana-
logical reasoning work focused directly on problem solving — how to use past
solutions for similar problems to help construct the solution to the new prob-
lem. Veloso combined CBR and analogical reasoning, enabling large-scale
problem solving from second-principles. Subsequently, analogical reasoning
has seen new extensions such as Melis’s method for analogical construction
of mathematical proofs and the use of analogy in intelligent tutoring systems.
This book combines all the aspects of analogical reasoning, extends it to in-
clude other forms of inductive and deductive reasoning, and directly ties the
computational methods to psychological results.

June 2003 Jaime Carbonell



Preface

In this book a novel approach to inductive synthesis of recursive functions
is proposed, combining universal planning, folding of finite programs, and
schema abstraction by analogical reasoning. In a first step, an example do-
main of small complexity is explored by universal planning. For example, for
all possible lists over four fixed natural numbers, their optimal transformation
sequences into the sorted list are calculated and represented as a DAG. In a
second step, the plan is transformed into a finite program term. Plan transfor-
mation mainly relies on inferring the data type underlying a given plan. In a
third step, the finite program is folded into (a set of ) recursive functions. Fold-
ing is performed by syntactical pattern-matching and corresponds to inducing
a special class of context-free tree grammars. It is shown that the approach
can be successfully applied to learn domain-specific control rules. Control
rule learning is important to gain the efficiency of domain-specific planners
without the need to hand-code the domain-specific knowledge. Furthermore,
an extension of planning based on a purely relational domain description
language to function applications is presented. This extension makes plan-
ning applicable to a larger class of problems that are of interest for program
synthesis.

As a last step, a hierarchy of program schemes (patterns) is generated
by generalizing over already synthesized recursive functions. Generalization
can be considered as the last step of problem solving by analogy or program-
ming by analogy. Some psychological experiments were performed to inves-
tigate which kind of structural relations between problems can be exploited
by human problem-solvers. Anti-unification is presented as an approach to
mapping and generalizing program structures. It is proposed that the inte-
gration of planning, program synthesis, and analogical reasoning contributes
to cognitive science research on skill acquisition by addressing the problem
of extracting generalized rules from some initial experience. Such (control)
rules represent domain-specific problem-solving strategies.

All parts of the approach are implemented in Common Lisp.

Acknowledgements. Research is a kind of work one can never do com-
pletely alone. Over the years I profited from the guidance of several profes-
sors who supervised or supported my work, namely Fritz Wysotzki, Klaus
Eyferth, Bernd Mahr, Jaime Carbonell, Arnold Upmeyer, Peter Pepper, and
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Gerhard Strube. I learned a lot from discussions with them, with colleagues,
and students, such as Jochen Burghardt, Bruce Burns, the group of Hartmut
Ehrig, Pierre Flener, Hector Geffner, Peter Geibel, Peter Gerjets, Jiirgen
Giesl, Wolfgang Grieskamp, Maritta Heisel, Ralf Herbrich, Laurie Hiyaku-
moto, Petra Hofstedt, Rune Jensen, Emanuel Kitzelmann, Jana Koehler,
Steffen Lange, Martin Miihlpfordt, Brigitte Pientka, Heike Pisch, Manuela
Veloso, Ulrich Wagner, Bernhard Wolf, and Thomas Zeugmann (sorry to ev-
eryone I forgot). T am very grateful for the time I could spend at Carnegie
Mellon University. Thanks to Klaus Eyferth and Bernd Mahr who motivated
me to go, to Gerhard Strube for his support, to Fritz Wysotzki who accepted
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