

Modeling and Simulation in Science, Engineering and Technology

Series Editor

Nicola Bellomo Politecnico di Torino Italy

Advisory Editorial Board

M. Avellaneda (Modeling in Economics) Courant Institute of Mathematical Sciences New York University 251 Mercer Street New York, NY 10012, USA avellaneda@cims.nyu.edu

K.J. Bathe (Solid Mechanics) Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA kjb@mit.edu

P. Degond (Semiconductor & Transport Modeling) Mathématiques pour l'Industrie et la Physique Université P. Sabatier Toulouse 3 118 Route de Narbonne 31062 Toulouse Cedex, France degond@mip.ups-tlse.fr

M.A. Herrero Garcia (Mathematical Methods) Departamento de Matematica Aplicada Universidad Complutense de Madrid Avenida Complutense s/n 28040 Madrid, Spain herrero@sunma4.mat.ucm.es

W. Kliemann (Stochastic Modeling) Department of Mathematics Iowa State University 400 Carver Hall Ames, IA 50011, USA kliemann@iastate.edu H.G. Othmer (Mathematical Biology) Department of Mathematics University of Minnesota 270A Vincent Hall Minneapolis, MN 55455, USA othmer@math.umn.edu

L. Preziosi (Industrial Mathematics) Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino, Italy preziosi@polito.it

V. Protopopescu (Competitive Systems, Epistemology) CSMD Oak Ridge National Laboratory Oak Ridge, TN 37831-6363, USA vvp@epmnas.epm.ornl.gov

K.R. Rajagopal (Multiphase Flows) Department of Mechanical Engineering Texas A&M University College Station, TX 77843, USA KRajagopal@mengr.tamu.edu

Y. Sone (Fluid Dynamics in Engineering Sciences)
 Professor Emeritus
 Kyoto University
 230-133 Iwakura-Nagatani-cho
 Sakyo-ku Kyoto 606-0026, Japan
 sone@yoshio.mbox.media.kyoto-u.ac.jp

Andreas Deutsch Sabine Dormann

Cellular Automaton Modeling of Biological Pattern Formation

Characterization, Applications, and Analysis

Foreword by Philip K. Maini

Birkhäuser Boston • Basel • Berlin Andreas Deutsch Dresden University of Technology Center for High Performance Computing D-01062 Dresden Germany Sabine Dormann University of Osnabrück Department of Mathematics D-49069 Osnabrück Germany

AMS Subject Classifications: 00A72, 0001, 0002, 9208, 92B05, 92B20

Library of Congress Cataloging-in-Publication Data

Deutsch, Andreas, 1960-

Cellular automaton modeling of biological pattern formation : characterization, applications, and analysis / Andreas Deutsch, Sabine Dormann.

p. cm — (Modeling and simulation in science, engineering & technology) Includes bibliographical references and index.

ISBN 0-8176-4281-1 (alk. paper)

1. Pattern formation (Biology) 2. Cellular automata–Mathematical models. I. Dormann, Sabine. II. Title. III. Series.

QH491.D42 2004 571.3-dc22

20030638990 CIP

ISBN 0-8176-4281-1 Printed on acid-free paper.

©2005 Birkhäuser Boston

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media Inc., Rights and Permissions, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (TXQ/MV)

9 8 7 6 5 4 3 2 1 SPIN 10855758

Birkhäuser is a part of Springer Science+Business Media www.birkhauser.com

To our parents

Foreword

The recent dramatic advances in biotechnology have led to an explosion of data in the life sciences at the molecular level as well as more detailed observation and characterization at the cellular and tissue levels. It is now absolutely clear that one needs a theoretical framework in which to place this data to gain from it as much information as possible. Mathematical and computational modelling approaches are the obvious way to do this. Heeding lessons from the physical sciences, one might expect that all areas in the life sciences would be actively pursuing quantitative methods to consolidate the vast bodies of data that exist and to integrate rapidly accumulating new information. Remarkably, with a few notable exceptions, quite the contrary situation exists. However, things are now beginning to change and there is the sense that we are at the beginning of an exciting new era of research in which the novel problems posed by biologists will challenge the mathematicians and computer scientists, who, in turn, will use their tools to inform the experimentalists, who will verify model predictions. Only through such a tight interaction among disciplines will we have the opportunity to solve many of the major problems in the life sciences.

One such problem, central to developmental biology, is the understanding of how various processes interact to produce spatio-temporal patterns in the embryo. From an apparently almost homogeneous mass of dividing cells in the very early stages of development emerges the vast and sometimes spectacular array of patterns and structures observed in animals. The mechanisms underlying the coordination required for cells to produce patterns on a spatial scale much larger than a single cell are still largely a mystery, despite a huge amount of experimental and theoretical research. There is positional information inherent in oocytes, which must guide patterns, but cells that are completely dissociated and randomly mixed can recombine to form periodic spatial structures. This leads to the intriguing possibility that at least some aspects of spatio-temporal patterning in the embryo arise from the process of self-organization. Spatial patterns also arise via self-organization in other populations of individuals, such as the swarming behaviour of bacteria, and in chemical systems, so that it is a widespread phenomenon.

Modelling in this area takes many forms, depending on the spatio-temporal scale and detail one wishes (or is able) to capture. At one extreme are coupled systems of ordinary differential equations, in which one assumes that the system is well stirred so that all spatial information is lost and all individuals (for example, molecules) are assumed to have identical states. At the other extreme are cellular automata models, in which each element may represent an individual (or a collection of individuals) with assigned characteristics (for example, age) that can vary from one individual to the next. This approach allows for population behaviour to evolve in response to individual-level interactions. In hybrid cellular automata, one can model intracellular phenomena by ordinary differential equations, while global signalling may be modelled by partial differential equations. In this way, one can begin to address the crucial issue of modelling at different scales. There are many modelling levels between these extremes and each one has its own strengths and weaknesses.

Andreas Deutsch and Sabine Dormann bring to bear on this subject a depth and breadth of experience that few can match. In this book they present many different modelling approaches and show the appropriate conditions under which each can be used. After an introduction to pattern formation in general, this book develops the cellular automaton approach and shows how, under certain conditions, one can take the continuum limit, leading to the classical partial differential equation models. Along the way, many interesting pattern formation applications are presented. Simple rules are suggested for various elementary cellular interactions and it is demonstrated how spatio-temporal pattern formation in corresponding automaton models can be analyzed. In addition, suggestions for future research projects are included. It is also shown that the model framework developed can be used more generally to tackle problems in other areas, such as tumour growth, one of the most rapidly growing areas in mathematical biology at the present time. The accompanying website (www. biomodeling.info) allows the reader to perform online simulations of some of the models presented.

This book, aimed at undergraduates and graduate students as well as experienced researchers in mathematical biology, is very timely and ranges from the classical approaches right up to present-day research applications. For the experimentalist, the book may serve as an introduction to mathematical modelling topics, while the theoretician will particularly profit from the description of key problems in the context of biological pattern formation. The book provides the perfect background for researchers wishing to pursue the goal of multiscale modelling in the life sciences, perhaps one of the most challenging and important tasks facing researchers this century.

Philip K. Maini Centre for Mathematical Biology Oxford, GB January 2004

Contents

Foreword Philip K. Maini	vii
List of Figures	xv
List of Notation	xxi

Part I General Principles, Theories, and Models of Pattern Formation

1	Intr	oductio	n and Outline	3
2	Ont	the Orig	gin of Patterns	13
	2.1	Space,	Time, and the Mathematics of Pattern Formation: A Brief	
		Histor	ical Excursion	13
		2.1.1	Greek Antiquity: Static and Dynamic World Conceptions	13
		2.1.2	The Prescientific Age	19
		2.1.3	The Deterministic World of Classical Mechanics	19
		2.1.4	Discovering the History of Time	24
		2.1.5	From Equilibrium to Self-Organizing Systems	27
	2.2	Princip	bles of Biological Pattern Formation	31
		2.2.1	Preformation and Epigenesis	31
		2.2.2	Ontogeny and Phylogeny	34
		2.2.3	On Organizers and Embryonic Regulation	35
		2.2.4	Molecular and Genetic Analysis	37
		2.2.5	Self-Assembly	38
		2.2.6	Physical Analogues	39
		2.2.7	On Gradients and Chemical Morphogens	41
		2.2.8	Self-Organization and Morphogenesis	42
		2.2.9	Cell–Cell Interactions	42

x Contents

3	Mat	hematical Modeling of Biological Pattern Formation	45
	3.1	The Art of Modeling	45
	3.2	How to Choose the Appropriate Model	46
		3.2.1 Model Perspectives 5	51
		3.2.2 From Individual Behavior to Population Dynamics 5	53

Part II Cellular Automaton Modeling

4	Cell	lular Automata	59
	4.1	Biological Roots	60
	4.2	Cellular Automaton Models of Pattern Formation in Interacting	
		Cell Systems	63
	4.3	Definition of Deterministic, Probabilistic and Lattice-Gas Cellular	
		Automata	67
		4.3.1 Lattice Geometry and Boundary Conditions	67
		4.3.2 Neighborhood of Interaction	70
		4.3.3 States	71
		4.3.4 System Dynamics	73
	4.4	Analysis and Characterization	79
		4.4.1 Chapman-Kolmogorov Equation	81
		4.4.2 Cellular Automaton Mean-Field Equations	83
		4.4.3 Linear Stability Analysis	90
	4.5	From Cellular Automata to Partial Differential Equations	97
	4.6	Further Research Projects 1	100

Part III Applications

5	Ran	dom Movement
	5.1	Brownian Motion
	5.2	Discrete Random Walk and Diffusion 107
	5.3	Random Movement in Probabilistic Cellular Automaton Models 111
		5.3.1 Random Walk Rule According to Toffoli and Margolus 111
		5.3.2 Random Walk in Probabilistic Cellular Automata with
		Asynchronous Updating 114
	5.4	Random Movement in Lattice-Gas Cellular Automaton Models 115
		5.4.1 Stability Analysis for the One-Dimensional Random Walk
		Model with One Rest Channel 119
		5.4.2 Checkerboard Artefact 122
	5.5	Growth by Diffusion-Limited Aggregation 126
	5.6	Further Research Projects

6	Gro	wth Processes	129
	6.1	Classical Growth Models	129
	6.2	Growth Processes in Cellular Automata	131
	6.3	Growth Processes in Lattice-Gas Cellular Automata	136
	6.4	Further Research Projects	142
7	Adh	esive Cell Interaction	143
	7.1	Cellular Patterns Originating from Adhesive Interaction	144
	7.2	Adhesive Lattice-Gas Cellular Automaton	146
	7.3	Analysis of Aggregation Dynamics in the Single-Cell-Type	
		Adhesion Model	148
		7.3.1 Linear Stability Analysis	149
		7.3.2 Spatial Pattern Formation	153
	7.4	Phase Separation and Engulfment in a Two-Cell-Type Adhesion	
		Model	155
	7.5	Further Research Projects	159
8	Alig	nment and Cellular Swarming	161
	8.1	Orientation-Induced Pattern Formation	161
	8.2	A Swarm Lattice-Gas Cellular Automaton	164
		8.2.1 Linear Stability Analysis	166
		8.2.2 The Swarming Instability	168
	8.3	Further Research Projects	172
9	Pigr	nent Cell Pattern Formation	173
	9.1	Principles of Pigment Cell Pattern Formation	173
	9.2	Automaton Model with Adhesive/Orientational Interaction	175
	9.3	Simulation of Stripe Pattern Formation	178
	9.4	Development and Evolutionary Change	180
	9.5	Further Research Projects	182
10	Tiss	ue and Tumor Development	185
	10.1	Modeling Contact Inhibition of Movement in Lattice-Gas Cellular	
		Automata	186
	10.2	Tissue Growth	187
	10.3	A Cellular Automaton Model for Chemotaxis	191
	10.4	Avascular Tumor Growth	195
		10.4.1 A Hybrid Lattice-Gas Cellular Automaton Model for	
		Tumor Growth	197
		10.4.2 Simulations	202
	10.5	Further Research Projects	206

11	Turi	ng Patterns and Excitable Media	207
	11.1	Turing Patterns	207
		11.1.1 Turing Pattern Formation in Macroscopic Reaction-	
		Diffusion Systems	208
		11.1.2 A Lattice-Gas Cellular Automaton Model for	
		Activator–Inhibitor Interaction	211
		11.1.3 Pattern Formation in One Dimension: Analysis and	
		Simulations	219
		11.1.4 Pattern Formation in Two Dimensions	229
		11.1.5 Derivation and Analysis of a Macroscopic Description of	
		the Lattice-Gas Cellular Automaton	238
	11.2	Excitable Media	243
		11.2.1 Introduction	243
		11.2.2 Definition of the Automaton Rules	246
		11.2.3 Lattice-Boltzmann Equation and Its Uniform Steady States .	248
		11.2.4 Stability Analysis of the Lattice-Boltzmann Equation	251
	11.3	Further Research Projects	255
12	Disc	ussion and Outlook	257
	12.1	Cellular Automaton Characterization	258
		12.1.1 Cell-Based Instabilities and Cellular Self-Organization	258
		12.1.2 Discreteness and Finite Size Effects	259
	12.2	Cellular Automata as a Modeling Tool	261
	12.3	Diffusive Behavior and Growth Patterns	262
	12.4	Adhesive Interactions and Cell Sorting	263
	12.5	Collective Motion and Aggregation	268
	12.6	Pigment Pattern Formation	272
	12.7	Tumor Growth	272
	12.8	Turing Patterns and Excitable Media	273
	12.9	Outlook	274
		12.9.1 Further Applications	275
		12.9.2 Further Analysis	276
Ар	pendio	ces	279
A.	Grow	th Processes: A Mean-Field Equation	279
		-	
B.	Turin	g Patterns	281
	B .1	Complete Interaction Rule	281
	B.2	Linear Stability Analysis	282
C.	Excita	able Media: Complete Interaction Rule	285

D.	Isotro	py, Lattices, and Tensors	287
	D.1	Isotropic Media and Lattices	287
	D.2	Introduction to Tensors	289
	D.3	LGCA Dynamics and the Influence of the Lattice	290
Re	ferenc	es	293
Inc	lex		319

List of Figures

1.1	Morphogenesis of the coral Monoxenia darwinii	4
1.2	Myxobacterial life cycle: developmental time series and sketch	4
1.3	Homunculus	5
1.4	Epigenesis	5
1.5	Phylogenetic tree	6
1.6	Axolotl pigment pattern	7
2.1	Fibonacci spirals in the sunflower	15
2.2	The paradox of Achilles and the turtle	17
2.3	Various species of <i>Radiolaria</i>	22
2.4	Symbol of interaction: mandala	28
2.5	Letter of interaction: the Chinese letter "JIAN"	28
2.6	Raleigh-Bénard pattern formation	30
2.7	Excitable medium: Belousov-Zhabotinskii reaction	30
2.8	Plinius' "licking theory"	33
2.9	Biogenetic law	35
2.10	Drosophila segmentation	38
2.11	Branching pattern formation in L-system simulation	39
2.12	"Minimal surface as optimal shape:" unduloid form of some	
	Foraminifera species	40
2.13	Allometric transformation of fish shapes	40
2.14	Pattern formation based on spatial morphogen gradient (sketch)	41
2.15	Examples of human cell types	43
3.1	Model relations with respect to physical space and internal state	
	representation	49
4.1	An early automaton model: mechanical duck	60
4.2	Game of Life	62

4.3	Fractal growth pattern of a bacterial colony (<i>Paenibacillus dendritiformis</i>)	64
4.4	The slime mold <i>Dictvostelium discoideum</i> as an excitable medium	64
4.5	Historic Turing simulation	65
4.6	Radial pattern in the spore distribution of the ascomycete <i>Neurospora</i>	
	crassa and in CA simulation	66
4.7	Two-dimensional lattices	68
4.8	Boundaries in a one-dimensional lattice	69
4.9	Examples of interaction neighborhoods in a square lattice	71
4.10	Example of global and local lattice configurations	71
4 1 1	Node configuration in two-dimensional LGCA	73
4.12	Example of a deterministic local rule on a one-dimensional lattice	74
4 13	Example for particle collision at lattice node	77
4 14	Particle propagation in a two-dimensional square lattice	78
7.17		70
5.1	Random walk model for a single particle	108
5.2	Probability distribution for a one-dimensional random walk	109
5.3	Example of time-dependent block-partitioning of cells for a	
	one-dimensional periodic lattice	112
5.4	Example of an anisotropic random walk of one particle	113
5.5	Space-time dynamics of the one-dimensional random walk model	
	according to Toffoli and Margolus	113
5.6	Two-dimensional random walk model using the "Margolus	
	neighborhood"	114
5.7	Space-time dynamics of a one-dimensional asynchronous random	
	walk model	116
5.8	Possible node configurations for nodes of a one-dimensional lattice	
	with one rest channel	116
5.9	Space-time dynamics of a one-dimensional LGCA random walk	
	model with one rest particle	118
5.10	Dominant eigenvalues for one-dimensional LGCA random walk models	125
5.11	Diffusion-limited aggregation LGCA	127
6.1	Comparison of exponential, logistic, and Gompertz growth	131
6.2	Two-dimensional growth processes in cellular automaton models	134
6.3	Two-dimensional growth	135
6.4	Comparison of mean-field equations	137
6.5	Comparison of relative growth rates I	138
6.6	Comparison of relative growth rates II	140
6.7	Lattice-gas growth model	141
71	Sorting out of amphibian embryo cells	145
7.2	Example of adhesive interaction in the square lattice	149
73	Phase diagram of the adhesive one-species I GCA model for the	177
1.5	square lattice	154
	square ratifier	1.54

7.4	Adhesive pattern formation in the LGCA model	155
7.5	Dominant eigenvalue for diagonal waves	156
7.6	Comparison of spectra for the square and hexagonal lattice	156
7.7	Checkerboard pattern formation in the adhesive LGCA model on the	
	square lattice	157
7.8	Sorting out in the two-species LGCA model (hexagonal lattice)	157
7.9	Engulfment in the two-species LGCA model (hexagonal lattice)	158
8.1	Myxobacterial street pattern formation	162
8.2	Fibroblast aggregate formation	162
8.3	Example of swarming interaction in the square lattice	165
8.4	Swarming behavior in the swarm LGCA model (square lattice)	166
8.5	Phase diagram for the swarming model	169
8.6	Mean velocity $\bar{\varphi}$ versus sensitivity α	169
8.7	Eigenvalue spectrum for LGCA model of cellular swarming	170
8.8	Formation of swarms in the LGCA model (hexagonal lattice)	171
9.1	Phylogenetic tree of the salamander family	175
9.2	Sketch of horizontal and vertical pigment pattern formation in two	
	salamander species	176
9.3	Phase diagram for the influence of the adhesive interaction	179
9.4	Stripe pattern formation in simulations of the LGCA with adhesive	
	and orientational interaction	180
9.5	The influence of the contact guidance	181
9.6	The influence of the extracellular matrix	182
10.1	Comparison of contact inhibition and diffusive LGCA rules	187
10.2	Contact inhibition LGCA rule and diffusion LGCA rule	188
10.3	Interaction step for tissue growth	189
10.4	Tissue growth simulations.	190
10.5	Example of cell redistribution at a lattice node	193
10.6	Chemotactic pattern formation in the LGCA model	194
10.7	In vitro V-79 spheroid	195
10.8	Cell dynamics for solid <i>in vitro</i> tumor growth	196
10.9	Tumor and necrotic cells on a lattice node	197
10.10	Preference weights (sketch)	199
10.11	Tumor model: redistribution at lattice node (sketch)	200
10.12	Schematic representation of the model dynamics	201
10.13	Simulation of tumor growth with CA	203
10.14	Simulation of diameter and cell number with necrotic signaling	203
10.15	Simulation of nutrient concentration	204
10.16	Simulation of diameter and cell number without necrotic signal	204
10.17	Simulation of various tumor treatments	205
10.17		200
11.1	Turing pattern formation in activator–inhibitor model	211

11.2	One-dimensional lattice configuration for a two-component model	212
11.3	Examples of node configurations	213
11.4	Various space-time plots of activator-inhibitor LGCA simulations	215
11.5	Spatially uniform steady states for different reaction probabilities	217
11.6	Eigenvalues for different values of the reaction probabilities	219
11.7	Trajectories of the lattice-Boltzmann equation	220
11.8	Evolution of activator concentration in space and time for equal	
	diffusion coefficients	221
11.9	Critical wave numbers	222
11.10	Evolution of activator concentration in space and time if	
11110	$m_I > m_A$	223
11 11	Emergence of spatial structure in activator concentration from initial	
	condition $n_{A,1}(50,0) = 1$ all other occupation numbers are zero	224
11 12	Eigenvalues for $m_A = 3$ $m_I = 11$	224
11.12	Explution of activator concentration in space and time if	221
11.15	Evolution of a critical concentration in space and time if $m_{+} > m_{-} = 1$	225
11 14	$m_A > m_I = 1$	223
11.14	Evolution of activator concentration in space and time if the instability $h_{1}(a) < -1$ is dominant	225
11 15	$\chi_1(q) < -1$ is dominant	225
11.13	Statistics of LOCA simulations with fixed initial conditions	220
11.10	Statistics of LGCA simulations with fixed initial conditions	227
11.17	Spectral radius for different values of reaction parameters	228
11.18	Statistics of LGCA simulations with fixed initial conditions	229
11.19	Evolution of activator concentration in space and for different times in	
	a simulation of the (deterministic) Boltzmann equation with random	a aa
11.00	initial conditions	230
11.20	Channels of a node in two-dimensional lattices (one rest channel)	231
11.21	Dominant eigenvalue for the square lattice	234
11.22	Simulations: activator concentration in a two-dimensional square lattice	235
11.23	Dominant eigenvalue for the hexagonal lattice	236
11.24	Simulations: activator concentration in a two-dimensional hexagonal	
	lattice	237
11.25	Groups of unstable modes associated with wave numbers that form an	
	equilateral triangle and the induced spatial pattern	238
11.26	Largest root of the dispersion relation for the LGCA reaction-diffusion	
	system	241
11.27	Numerical solution of the continuous reaction-diffusion system started	
	from random initial conditions	242
11.28	The behavior of a typical trajectory in an excitable system	244
11.29	Typical schematic nullclines of excitable kinetics	245
11.30	Evolution of the Greenberg-Hastings CA	245
11.31	Schematic representation of the reactive interaction rule	247
11.32	Example of a possible trajectory resulting from the application of the	
	reactive interaction rule	248
11.33	Snapshot of concentration of component A in a two-dimensional	-
	square lattice	249
	*	

11.34	Trajectories at a node of the LGCA and lattice-Boltzmann model for	
	different initial conditions	250
11.35	Trajectories of a simulation run of the LGCA and the lattice-	
	Boltzmann model	251
11.36	Spectral radius dependent on the wave number represented in polar	
	coordinate form	254
11.37	Averaged densities of component A in a simulation	255
D.1	Isometries of a square	288

List of Notation

CA	cellular automaton
LGCA	lattice-gas cellular automaton/automata

Greek symbols	
$\beta \in \mathbb{N}_0$	number of rest (zero-velocity) channels
$\Gamma(q)$	Boltzmann propagator
δ	length of temporal unit
ϵ	length of spatial unit 107
$\boldsymbol{\eta}(r) = (\eta_i(r))_{i=1}^{\tilde{b}}$	node configuration in a LGCA
$\in \{0, 1\}^b$	
$\boldsymbol{\eta}_{\mathcal{N}(r)}$	local configuration in a LGCA
Λ_M	spectrum of the matrix M 91
μ	spectral radius 91
$\mu(q)$	spectral radius according to wave number q
$v = \mathcal{N}_b^I , v_o = \mathcal{N}_{bo}^I $	number of neighbors in the interaction neighborhood
$\rho(r,k) \in [0,1]$	local particle density of node <i>r</i> at time <i>k</i>
$\rho(k) \in [0,1]$	total particle density in the lattice at time <i>k</i>
$\varrho(r,k)\in[0,\tilde{b}]$	local mass of node r at time k
$\varrho(k) \in [0, \tilde{b}]$	total mass in the lattice at time k

$\sigma \in \{1, \ldots, \varsigma\}$	single component in a model with ς
	components 69
$\Psi_a\left(\boldsymbol{\eta}(r,k)\right) \in \{0,1\}$	indicator function 139

Further symbols

·	cardinality of a set
[<i>y</i>]	integer closest to $y \in \mathbb{R}^+$
[<i>y</i>]	smallest integer greater than or equal to $y \in \mathbb{R}^+$
\mathbf{y}^T	transpose of the vector y
$A_j \in \mathcal{A}_{\tilde{b}}$	permutation matrix 116
b	coordination number; number of nearest neighbors on the lattice \mathcal{L}
$\tilde{b} = b + \beta$	total number of channels at each node 72
$c_i \in \mathcal{N}_b, i = 1, \dots, b$	nearest neighborhood connections of the lattice \mathcal{L}
$\mathcal{C}_i\left(\boldsymbol{\eta}_{\mathcal{N}(r)}(k)\right) \\ \in \{-1, 0, 1\}$	change in occupation numbers 78
$\tilde{\mathcal{C}}_i\left(\boldsymbol{f}_{\mathcal{N}(r)}(k)\right) \in [0,1]$	change of the average number of particles 88
$\boldsymbol{D}\left(\boldsymbol{\eta}_{\mathcal{N}(r)}\right)$	director field
$\mathcal{E} = \{z^1, \dots, z^{ \mathcal{E} }\}$	(finite) set of elementary states
$\boldsymbol{f}(r) = (f_i(r))_{i=1}^{\tilde{b}}$ $\in [0, 1]^{\tilde{b}}$	vector of single particle distribution functions; average occupation numbers
$f^{s}(k)$	vector of spatially averaged occupation numbers
$\boldsymbol{F}(q) = (F_i(q))_{i=1}^{\tilde{b}}$	Fourier-transformed value
I	(general) interaction operator
$\boldsymbol{J}\left(\boldsymbol{\eta}(r) ight)$	flux of particles at node <i>r</i> 164
$k=0,1,2,\ldots$	time step
$\mathcal{L} \subset \mathbb{R}^d$	<i>d</i> -dimensional regular lattice
$L_i, i=1,\ldots,d$	number of cells in space direction <i>i</i>
М	shuffling (mixing) operator 115

$\mathbf{n}(r) \in \{0, \ldots, \tilde{b}\}$	total number of particles present at node <i>r</i> 72
\mathcal{N}_b	neighborhood template
\mathcal{N}_b^I	interaction neighborhood template
\mathcal{N}^{I}_{bo}	outer interaction neighborhood template
Р	propagation operator
$q \in \{0, \ldots, L\}$	(discrete) wave number
q^s	wave number observed in simulation 220
$q_* \in Q^c$	dominant critical wave number
Q^c	set of critical wave numbers
Q^+ , Q^-	subsets of critical wave numbers
$r \in \mathcal{L}$	spatial coordinate, cell, node, site 67
(r, c_i)	channel with direction c_i at node r
R	reactive interaction operator ("Turing" model)
$\mathcal{R}:\mathcal{E}^\nu\to\mathcal{E}$	cellular automaton rule
$s(r) \in \mathcal{E}$ $s: \mathcal{L} \to \mathcal{E}$	state value at node <i>r</i> 71
$\boldsymbol{s} = (s(r_i))_{r_i \in \mathcal{L}} \in \mathcal{S}$	global configuration 71
$\mathbf{s}_{\mathcal{M}} = (s(r_i))_{r_i \in \mathcal{M}}, \\ \mathcal{M} \subset \mathcal{L}$	local configuration72
$\mathcal{S} = \mathcal{E}^{ \mathcal{L} }$	state space
$W: \mathcal{E}^{\nu} \to [0, 1]$	time-independent transition probability
X_{σ}	particle of "species" σ

Cellular Automaton Modeling of Biological Pattern Formation