
Lecture Notes in Computer Science 1526
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

�
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Manfred Broy Bernhard Rumpe (Eds.)

Requirements Targeting
Software and
Systems Engineering

International Workshop RTSE ’97
Bernried, Germany, October 12-14, 1997
Proceedings

��

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Manfred Broy
Bernhard Rumpe
Institut für Informatik, Technische Universität München
Arcisstraße 21, D-80290 München, Germany
E-mail: {broy,rumpe}@in.tum.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Requirements targeting software and systems engineering : proceedings /
International Workshop RTSE ’97, Bernried, Germany, October 12 - 14, 1997.
Manfred Broy ; Bernhard Rumpe (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998

(Lecture notes in computer science ; Vol. 1526)
ISBN 3-540-65309-0

CR Subject Classification (1998): D.2, F.3

ISSN 0302-9743
ISBN 3-540-65309-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10692867 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

Software engineering research has different profiles in Europe and North Amer-
ica. While in North America there is a lot of know how in the practical, technical,
and organizational aspects of software engineering, in Europe the work concen-
trates more on foundations and formal modeling of software engineering issues.
Both approaches have their individual strengths and weaknesses. Research driven
solely by practice in software engineering runs in the danger of developing into a
shallow field failing to find a solid scientific basis or to contribute substantially
to the progress in software engineering. Work concentrating on formal aspects
alone is in the danger of becoming too theoretical and isolated from practice so
that any transfer into practical application will fail.

Substantial progress in software engineering can be achieved, however, by
bringing together pragmatic and foundational work in software engineering re-
search. This can provide a step towards a common scientific basis for software
engineering that allows us to integrate the various research results, leading to
fruitful synergetic effects. It will also help to identify critical research paths and
to develop an adequate paradigm for the scientific discipline of software engi-
neering.

In software and systems engineering it is necessary to distinguish the enor-
mous difference between the dynamics in development we refer to and the lim-
ited scope assumed by many of today’s software managers who still use outdated
techniques. Many of the unsolved problems associated with the old techniques
are symptoms of a lack of formalization and a lack of automation support.

It was the goal of this workshop to bring together experts from science and
practice in software and systems engineering from North America and Europe.
The workshop focussed on unified sets of formal models and associated methods
suitable for automation for many aspects of software development, in particular
those that address change and those that apply on a large scale. Some of the
aspects of software evolution are

– modifiable software architectures,
– resource changes,
– context changes,
– requirements changes,
– changes to decomposition structures, and
– changes in plans.

These issues are closely related to formal representations of the version his-
tory, and formal representations of the activities that produced existing versions
or have been proposed to produce future versions. The essence of the software
engineering product model is to establish and maintain consistency among var-
ious kinds of software artifacts throughout the development and evolution pro-
cess, including consistency between requirements, architectures, and programs.

VI Preface

Automation support is needed to determine dependencies and to use this depen-
dency information to provide decision aid for software synthesis, analysis, and
evolution. Many versions of each artifact are produced as the software evolves,
and changes in the dependency structure must be recognized and reacted to.
The challenge is to formalize the problems in this area better, and to develop
some of the badly needed technical solutions.

If we as a community can succeed in doing this, the results will provide con-
vincing evidence that formal methods can have strong practical value, and help
reverse the trend of weakening support for the subject from both industry and
governments. It seems that previous work on formal methods can be applied to
problems related to these topics, but it may require non-traditional approaches.
This challenge helped to trigger new ideas at the workshop, and perhaps opened
new opportunities for progress.

It is well recognized nowadays that software and systems engineering as an
important issue in technical systems still lack a proper scientific basis. The many
efforts in academia, especially under the heading formal methods, towards such
a scientific basis have produced many valuable and interesting scientific results;
but still a lot of work lies ahead of us to actually integrate this with the practice
of software engineering. Nevertheless, we can observe that a beginning has been
made to bring together practical and scientific approaches. A good example for
this is the Unified Modeling Language, which was designed only recently and
will evolve further. The fact that a proper semantic basis is needed for a proper
methodological support is much more recognized than before. Further efforts are
now needed to give scientific research the right focus on the questions that are
important in practice and to stimulate a transfer of ideas between academia and
application. It was the goal of the workshop to contribute to this process.

The workshop took place in early October 1997 in Bernried, Germany. It
was a highly successful event and an encouraging step towards the unification of
the various aspects and techniques of software and systems engineering. It is our
pleasure to thank Luqi for the excellent cooperation in preparing and implement-
ing the workshop and Sascha Molterer for his distinguished help in organizing
the workshop. We also thank the Army Research Office and in particular Dave
Hislop for the financial support.

August 1998 Manfred Broy, Bernhard Rumpe

Table of Contents

Foundations of Software Engineering

Domains as a Prerequisite for Requirements and Software Domain
Perspectives and Facets, Requirements Aspects and Software Views 1

Dines Bjørner

Software and System Modeling Based on a Unified Formal Semantics 43
Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and
Katharina Spies

Postmodern Software Design with NYAM: Not Yet Another Method 69
Roel Wieringa

Methodology

A Discipline for Handling Feature Interaction . 95
Egidio Astesiano and Gianna Reggio

Merging Changes to Software Specifications . 121
Valdis Berzins

Combining and Distributing Hierarchical Systems . 133
Chris George and D- ỗ Tiến Dũng

Software Engineering Issues for Network Computing . 155
Carlo Ghezzi and Giovanni Vigna

A Two-Layered Approach to Support Systematic Software Development . . 179
Maritta Heisel and Stefan Jähnichen

Evaluation and Case Studies

A Framework for Evaluating System and Software Requirements
Specification Approaches . 203

Erik Kamsties and H. Dieter Rombach

Formal Methods and Industrial-Strength Computer Networks 223
Joy Reed

VIII Table of Contents

Tool Support and Prototyping

Integration Tools Supporting Development Processes 235
Stefan Gruner, Manfred Nagl, and Andy Schürr

Formal Models and Prototyping . 257
Luqi

Abstraction and Modular Verification of Infinite-State Reactive Systems . . 273
Zohar Manna, Michael A. Colón, Bernd Finkbeiner, Henny B. Sipma,
and Tomás E. Uribe

NSA’s MISSI Reference Architectures - Moving from Prose to Precise
Specifications . 293

Sigurd Meldal and David C. Luckham

Requirements Engineering Repositories: Formal Support for Informal
Teamwork Methods . 331

Hans W. Nissen and Matthias Jarke

Author Index . 357

