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Abstract. Features are a structuring mechanism for additional func-
tionality, usually in response to changing requirements. When several
features are invoked at the same time, by the same, or different com-
ponents, the features may not interwork. This is known as feature in-
teraction. We employ a property-based approach to feature interaction
detection: this involves checking the validity (or not) of a temporal prop-
erty against a given system model. We use the logic LTL for temporal
properties and the model-checker Spin to prove properties.

To gain any real insight into feature interactions, it is important to be
able to infer properties for networks of any size, regardless of the underly-
ing communication structure. We present an inference mechanism based
on abstraction. The key idea is to model-check a system consisting of a
constant number (m) of components together with an abstract compo-
nent representing any number of other (possibly featured) components.
The approach is applied to two systems with communication which is
peer to peer and client server. We outline a proof of correctness in both
cases.

The techniques developed here are motivated by feature interaction anal-
ysis, but they are also applicable to reasoning about networks of other
types of components with suitable notions of data abstraction.

1 Introduction

Features are a structuring mechanism not dissimilar from objects and agents. For
example, services are built up from a number of feature components. However, a
major philosophical difference is that feature components are usually additional
to a core body of software, often they are a response to new, or changing require-
ments. Typically, features are added incrementally, at various stages in the life
cycle, usually by different developers, and often cutting across object boundaries.
So when deployed, while each feature functions well on its own, they may not
interwork. Namely, when several features are added to a service, or services are
composed with each other there may be behavioural incompatibilities or modi-
fications. This is known as the feature interaction problem [3,13,21,4,1]. While



feature interactions are not necessarily undesirable (the addition of any feature
to the base system is an interaction!), we need at least to know of their exis-
tence, before determining desirability or resolution. This is known as detection,
the subject of this paper. Although traditionally applied to telecommunications
systems, the concept of feature interaction can equally apply to any distributed
system in which features are offered.

We consider modelling features and analysing feature interactions in two
different paradigms: a telecommunications system and an email system. Both
systems consist of a network of basic components with different sets of features
enabled. But the two paradigms represent different communication structures.
The former is peer to peer, whereas the latter is client server.

In the first case, our model is based on the specification described more fully
elsewhere [6] and follows the IN (Intelligent Networks) distributed functional
plane [19]. In the second case, our model is based on a specification also described
in more detail elsewhere [8], and is derived from Hall’s email model [17].

To gain any real insight into the feature interaction problem, it is important
to be able to infer properties for networks of any size, regardless of the underlying
communication structure. But this is an example of the parameterised model
checking problem (PMCP) which is, in general undecidable [2]. However, in some
subclasses of systems the PMCP is decidable.

Our goal is to develop, in both paradigms,

— an interaction analysis which is fully automated, based on model-checking,
and

— techniques to infer results about systems consisting of any number of com-
ponents.

In the next section we introduce the concept of feature interaction, giving ex-
amples in the context of a telephone system and an email system. We explain the
role of configurations and the novelty of our approach. In section 3 we describe
the two network architectures that we will be considering. In sections 4 and 5 we
give an overview of a basic service and feature behaviour in a telephony system
and an email system respectively and in section 6 we provide a brief summary
of the Promela implementation in each case.

In section 7 we give a brief overview of model checking and the model-checker
Spin. We describe how model checking is used to perform feature interaction
analysis on small, fixed size models of our examples and give the results. In sec-
tion 8 we define PMCP and describe our solution, an abstraction technique. We
apply it to our two example systems and give an outline of a proof of correct-
ness. In section 9 we discuss our approach in the context of feature interaction
analysis. Conclusions are in section 10.

We note that we have presented our basic Promela models and discussed
feature interaction analysis for both paradigms elsewhere [6,8]. In addition we
have discussed our generalisation approach for the telecommunications example
in [7] and for the email example in [8]. However, we have not compared the
results for the two different communications architectures or provided any proof
of the generalisation results in any previous publication.



The techniques presented here are motivated by feature interaction analysis,
and illustrated in that context. However, they are, in principle, applicable to
reasoning about about networks of other types of components such as objects
and agents. The only requirement, is for suitable data abstractions and charac-
terisations of the of observable behaviour of sets of components.

2 Feature Interaction

2.1 Feature Interactions in Telephony

Feature interaction detection in telecommunications has been the topic of intense
research over the last decade [5]. In a telephone system, control of the progress
of calls is provided by a (software) service at an exchange (a stored program
control exchange). This software must respond to events such as handset on or
off hook, as well as sending control signals to devices and lines such as ringing
tone or line engaged. A feature is additional functionality, for example, a call
forwarding capability, or ring back when free; a user is said to subscribe to or
invoke a feature.

An example of an interaction is the following. Suppose a user subscribes to
call waiting (CW) and call forward when busy (CFB) and is engaged in a call.
What happens when there is a further incoming call? If the call is forwarded,
then the CW feature is clearly compromised. If the subscriber receives the call
waiting signal, then the CFB is compromised. In either case, the subscriber will
not have his/her expectations met. This is an example of a single component
(SC) interaction — the conflicting features are subscribed to by a single user.
More subtle interactions can occur when more than one user/subscriber are in-
volved, these are referred to as multiple component (MC) interactions. Consider
when user A subscribes to originating call screening (OCS), with user C on the
screening list, and user B subscribes to CFB to user C. If A calls B, and the call
is forwarded to C, as prescribed by B’s CFB, then A’s OCS is compromised. If
the call is not forwarded, then we have the converse. These kind of interactions
can be particularly difficult to detect (and resolve), since different features are
activated at different stages of a call.

2.2 Feature Interactions in Email

The problem of feature interaction in email was first suggested and investigated
by Hall [17], who presented a systematic methodology based on simulation and
formal test coverage. An example of an interaction is the obvious (desirable)
interaction between an encryption feature and a decryption feature. However, a
more subtle interaction arises between a filtering feature and an autoresponse
feature. Suppose that a client A filters messages from client B, and that client
A also has the autoresponse feature. If a message from B arrives at A, will the
message be simply discarded, or will an automatic response be sent back to B?
In either event, one feature is compromised.



2.3 Configurations for Feature Interaction Detection

Feature interaction detection involves examining scenarios, e.g. component A
with features f; and f> performs some action which affects components B and
C with features f3 and f4 respectively. But in order to detect scenarios, one has
to first determine the configuration: the number of components, and the enabled
features for each component.

Nearly all analysis in the literature vary only one aspect of the configuration:
the enabled features. They do not vary the number of components, but rather
obtain results for a specific system of fized size, i.e. for a system consisting of a
fized number of components. The results are (informally) assumed to hold for
the general case, but there is no proof of such a generalisation.

In this paper, we first summarise feature interaction results obtained by
model checking for systems of fixed size in both the telephone example and
the email example. Second, we expand on the generalisation approach suggested
in [7] and [8], to generalise our feature interaction results to networks of arbitrary
size.

Our analysis is pairwise, known as 2-way interaction analysis. While at first
sight this may appear limiting, empirical evidence suggests that 3-way interac-
tions that are not detectable as a 2-way interaction are exceedingly rare [22].

2.4 Property based Approach

A property based approach to feature interaction detection assumes a formal
model of the entire system and a given set of properties (usually temporal)
associated with the features. Two features are said to interact if a property that
holds for the system when only one of the features is present, does not hold when
both features are present. For features f; and fs we define feature interaction
as follows:

Definition 1. Let M be the model of a system of N components in which nei-
ther f1 or fy are present and M(f1), M(f2) and M(f1 N f2) models in which
only f1, only fy and both fi and fs have been added respectively. If ¢, and ¢ are
properties that define f1 and fo respectively then fi1 and fo are said to interact

if M(f1) |E é1 but M(f1 0 f2) & b1; or M(f2) | ¢2 but M(fi N f2) £ 2.

Note that this definition is relatively high-level, it does not contain details of
the configuration. Thus it does not distinguish between SC and MC interactions.
When we report on results later (section 7) we will make this distinction. Note
also that this analysis will only reveal interactions that exist with respect to the
particular properties ¢; and ¢-. For complete analysis it may be necessary to
perform analysis for a suite of properties for each feature, or to conjoin properties.

3 Communication within Telephone and Email Systems

The two communication mechanisms we consider are illustrated in Figure 1.



Fig. 1. Telephone and email network communication

Client, Client, Client, Client _;
Mailer
(a) Peer to peer (b) Client server

In peer to peer communication every member of a network can communicate
with every other member of the network.

An example of such a network is an (unfeatured) basic telecommunications
system. In our system, communication between call components (Users) takes
place via channels. There is one channel associated with each user. Each channel
has capacity for at most one message: a pair consisting of a channel name (the
other party in the call) and a status bit (the status of the connection). Figure
1 (a) illustrates communication channels within a telephone system with 6 User
components.

The email system is an example of a system which uses client server com-
munication. This system consists of a number of clients and one server, in this
case the mailer component. Figure 1 (b) illustrates an email system for m Client
components. In our email system, each client has a unique mail address. Clients
send mail messages, addressed to other clients (or themselves) to the mailer;
the mailer delivers mail messages to clients. Communication between client and
server is asynchronous. Therefore, mail messages are not necessarily received by
clients in the (global) order in which they were sent, but local temporal ordering
is maintained, i.e. if client A sends messages 1 and 2 to client B, in that order,
then client B will always receive message 1 before message 2 (though it may
receive other messages in between).

4 Basic Telephone System and Features

Figure 2 is a high-level, abstract automaton for the basic call service behaviour
(note the full implementation is somewhat more complicated, for example, some
states (e.g. unobtainable) have been omitted). States to the left of the idle state
represent terminating behaviour, states to the right represent originating be-
haviour. Transitions between states are triggered by user-initiated events at the
terminal device, such as (handset) on and (handset) off, or by communication
events on shared channels. We have excluded some trivial behaviour from the



automaton. For example, it is possible to perform a dial event (with no effect)
from most states. Note also that while the state preidle is an important detail
of the implementation (where local and global variables are reset), it does not
play a part in the observable behaviour of a call component.

Originating and terminating automata can affect each other’s behaviour
through communication via (shared) channels. In the automaton, the channels
are referred to as ¢, for the channel associated with that component, and p, for
the channel associated with the partner component. In the originating side of
the automaton, p is chosen non-deterministically. Otherwise, p is determined by
the nature of incoming messages. We use the notation clz,y to denote write the
value (z,y) to the channel ¢, c!llz, y to denote overwrite the channel ¢ with (z,y),
c? < x,y > to denote poll or non-destructively read value (z,y) from channel
¢, and c?z,y to denote destructively read value (z,y) from channel c. When the
value may be arbitrary, we use variables x and y; otherwise we use the actual
constants required, e.g. 0,1, p, etc. If a read or write statement is written in ital-
ics it implies a condition. The appropriate action should be taken if and when
the relevant channel is not empty/full. When there are two transitions from a
particular state, one of which has a condition labelling it (e.g. from calling) the
italicised transition should be taken if the condition holds.

A call component is not connected to, or attempting to connect to, any other
call component when its associated communication channel is empty, When a
communication channel is not empty, then the associated call component is en-
gaged in a call, but not necessarily connected to another user. The interpretation
of messages is described more comprehensively in [7].

Fig. 2. Basic Call - States and Events

4.1 Features of the Telephone System

Consider a set of 7 features to be added to the basic call, with the following
properties.



CFU - call forward unconditional Assume that User[j] forwards to
Userlk]. If User[i] rings User[j] then a connection between User[i] and
User[k] will be attempted before User[i] hangs up.

CFB — call forward when busy Assume that User[j] forwards to User[k].
If User[i] calls User[j] when User[j] is busy then a connection between
Userl[i] and User[k] will be attempted before User[i] hangs up.

OCS - originating call screening Assume that User[i] has User[j] on
its screening list, 4 # j. No connection from User[i] to User[j] is possible.
ODS - originating dial screening Assume that User[i] has User[j] on
its screening list, ¢ # j. User[i] may not dial User[j].

TCS — terminating call screening Assume that User[i] has User[j] on
its screening list, 4 # j. No connection from User[j] to User][i] is possible.
RBWF —ring back when free Assume that User[i] has RBWF. If User|i]
has requested a ringback to User[j], i # j, (and not subsequently requested
a ringback to another user) and subsequently User[i] is idle when User|i]
and User[j] are both free (and they are still free when User[i] is no longer
idle) then User[i] will hear the ringback tone.

OCO - originating calls only Assume that User[j] has OCO. No con-
nection from User[i] to User[j] is possible.

TCO — terminating calls only Assume that User[j] has OCO. No con-
nection from User[j] to User[i] is possible.

RWF — return when free Assume that User[j] has RWF. If User][i] calls
User[j] when User[j] is busy (i # j), then User[i] will hear the ret_alert
tone and retnum(i] will be set to j (before User[i] returns to the idle state).

The logic we use to formalise these properties is LTL — linear temporal logic. This
logic has temporal operators [| (always), () (eventually), X (next) and U (weak
until), the only path operator is (implicit) universal quantification. Conjunction
is denoted by A. We do not give full details of all the LTL here, but give one
example the formula for RBWF:

[=(eAgArns)AN((pAgATAs)U((pA(=g) Ar) A((=8)UQ))))
where p = (rgbknuml[i] == j), s = (len(chan_nameli]) == 0), ¢ = (User[i|@Qidle),
r = (len(chan_name[j]) == 0), and t = (network_event[i]| == ringbackev).

The propositions p,q etc. refer to the state of internal variables, these should
be self-explanatory.

5 Basic Emalil Service and Features

High level, abstract automata for the client and mailer components are given
in figure 3. Note that in these figures, some transitions are again labelled by
conditions, e.g. in figure 3(a) a transition from initial to sendmail is only possible
if the channel mbox is empty and the channel network is not full. Local and
global variables are updated at various points; most variable assignments (apart
from reset, in which all local variables are reset to their original values) are
omitted from the diagrams. In order to avoid continuous blocking of the network



channel, Client behaviour must occur in one of two indivisible loops. If the
Client’s mailbox is non-empty, the Client can send a message in which case
variables are reset, and the Client returns to the initial state. Otherwise, if
the network channel is not full and the Client’s mailbox is empty, the Client
may send a message via the network channel. Again variables are reset and the
Client returns to the initial state. Unlike the automata of figures 2 and 3(b) an
indivisible global transition (or atomic statement — see section 6) is represented
by one of these loops. As a result, in figure 3(a) notice that the write statement
from the sendmail state to the endClient state is unitalicised. This is because this
transition happens immediately after the transition from initial to sendmail, at
which point it is established that the network channel is not full. Thus a write to
this channel will be always be enabled. In figures 2 and 3(b) on the other hand,
each transition between the abstract states (idle, dial etc. or start and deliver
respectively) is an indivisible global transition.

Fig. 3. Email components

specify recipient;
specify message;
specify sender;

network!msg deliverbox!msg
network?msg .
nempty(mbox) @ find deliverbox
delivermail @
(a) Client component with mailbox mboz (b) Mailer component

5.1 Features of the Email System

Hall’s email model [17] included a suite of 10 features. Consider 7 of these fea-
tures.

Encryption If Client[i] has encryption on, then if Client[j] receives a mes-
sage whose sender is Client[i], then the message will be encrypted.
Decryption If Client[i] has decryption on, then all messages received by
Client[i] will have been decrypted.

Autoresponse If Client[i] has autorespond on, then if Client[j] sends a
message to Client[i], and Client[j] hasn’t already received an automatic
response from Client[i], then Client[j] will eventually receive a reply from
Client[i]. Alternatively, Client[i] eventually stops sending messages because
network can’t be accessed.



Forwarding If Client[i] forwards messages to Client[j], then it is possible
for Client[j] to receive messages not addressed to Client[j] (or to the default
value M).

Filtering If Mailer filters messages from Client[i] to Client[j] then it is not
possible for Client[j] to receive a message from Client[i].

Mailhost If mailhost is on and Client[i] is a non-valid name Client[j] sends
a message to Client[i] then, if i # j, Client[j] will eventually receive a
message from postmaster.

Remail Suppose that Client[i] has the remailer feature and has a pseudonym
of k. If Client[i] sends a message to Client[j], then Client[j] will eventually
receive a message from k. Also, if Client[j] sends a message to k, then if
j # i, Client[i] will eventually receive a message from Client[j].

Again, we do not give the LTL for all properties, the first five are given in
[8]. The LTL for mailhost and remail are as follows:

Mailhost: [|(p— > ()q) assuming i # j, p = (last_sent_from[j]-to == i) and
q = (last_del _to[j]-from == pseud(i)).

Remail: the conjunction of:

N(((=p) A X (p))— > X(()q)), where p = (last_sent_from[i]-to == j) and
q = (last_del _to[j]-from == pseud(i)), and

0(((~p) A X(p))— > X({)q)), assuming i # j, p = (last_sent_from[j]-to ==
pseud(i)) and q = (last_del to[i]-from == j).

Again, the propositions refer to internal variables and should be self-explanatory.

6 Implementation in Promela

Both example systems have been implemented in Promela, the source language
for the model-checker Spin. Promela is an imperative, C-like language with ad-
ditional constructs for non determinism, asynchronous and synchronous commu-
nication, dynamic process creation, and mobile connections, i.e. communication
channels can be passed along other communication channels.

In the telecomms example, each call component (see figure 2) is an instanti-
ation of the (parameterised) proctype User. Similarly, in the email model, each
Client component (see figure 3(a)) and the Mailer component (see figure 3(b))
are instantiations of a Client and Network_Mailer proctype. Code relating to
each abstract state (e.g. idle, dial etc. and deliver, start etc.), is contained within
an atomic statement. The atomic statements cannot block because there are no
read or write statements from a possibly empty or full channel contained within
the atomic statement, except possibly at the beginning of the statement. Thus
the statement is either unexecutable, or the whole statement will be executed as
one. This ensures that every global transition in the resulting model involves a
change in the abstract state of one component.

In both examples, features are added to the code by way of inline statements
(a Promela procedure mechanism). In the telecomms example the feature_lookup



inline encapsulates centralised intelligence about the state of calls, i.e. what is
known as single point call control. Calls at pertinent places in the code result
in different behaviour according to whether relevant features are switched on.
In the email example, a separate inline is included in the code for each feature.
In most cases, feature implementation merely involves calls to these inlines to
determine if the relevant feature is switched on. In general, the presence of the
features simply results in additional transitions or steps during one or more of the
abstract states of the client or mailer components. The exception is autorespond,
because this feature involves both reading — a message from a client channel, and
writing — a message to the network channel. Both events are potentially blocking,
hence cannot take place within one atomic step. Therefore, to implement this
feature, we add an additional data structure to indicate whether or not a client
requires to send an autoresponse. We enhance the initial state to include the
possibility that an autoresponse message needs to be sent, and give priority to
this over any other event.

7 Model Checking

Model checking is an technique for verifying finite state systems. Systems are
specified using a modelling language and the model — or Kripke structure [9)
associated with this specification is checked to verify given temporal properties.
In this section we give a a brief explanation of Spin, followed by a formal defini-
tion of model checking and results of feature interaction analysis for fixed sized
systems.

7.1 Reasoning with SPIN

Spin [18] is the bespoke model-checker for Promela and provides several reason-
ing mechanisms: assertion checking, acceptance and progress states and cycle
detection, and satisfaction of temporal properties, expressed in LTL.

Spin translates each component defined in the Promela specification into a
finite automaton and then computes the asynchronous interleaving product of
these automata to obtain the global behaviour of the concurrent system. This
interleaving product is essentially a Kripke structure (see below), describing the
behaviour of the system. It is this Kripke structure to which we refer when we
talk about the model of our system. The set of states of this Kripke structure is
referred to as the state-space of the model.

7.2 Kripke Structures and Model-checking

Definition 2. Let AP be a set of atomic propositions. A Kripke structure over
AP is a tuple M = (S, Sy, R, L) where S is a finite set of states, So is the set of
initial states, R C S x S is a transition relation and L : S — 24F is a function
that labels each state with the set of atomic propositions true in that state.

For a given model M, and temporal property ¢, model checking allows us to
show that M |= ¢. This is known as the model checking problem.



7.3 Feature Interaction Analysis for Models of Small Size

We give our feature interaction detection results for the two example systems.

Tables 1 and 2 indicate the feature interactions obtained for a telephone sys-
tem and an email system with a small number of User/Client components. A x
denotes no interaction, S and M denote single and multiple component interac-
tions, respectively. In this section we limit ourselves to at most 4 components.
Indeed, unless checking for MC interactions between a pair of filtering or forward
features, 3 suffice. However we show in section 9 that for complete analysis it
would be necessary to consider 5 or more components in some situations. Note
that properties relating to forwarding and (in the email system) mailhost as-
sume that i # j. It is important that our results are analysed to ensure that no
false interactions are recorded. For example, although the filtering property is
violated when features filter[0] = 1 and filter[0] = 2 are both selected, this is
due to the fact that we only allow screening lists to have length 1 (so the second
feature overrides the first). Similarly, we do not record an SC interaction for two
forwarding features.

Table 1. Feature interaction results for the telephone example

| [CFUJCFB|OCS|ODS[TCS[RBWEF[OCO[TCO[RWE]

CFU | M [SM[SM[ x | M
CFB |S,M S.M SM
0CS x x
ODS
TCS
RBWF
0CO
TCO
RWF

X X X

X|X[X|[X|X|Z]|X

X[ X[X[X|[X|ZIX|Z

XX [X[X|X[X[X]|X]|X

X|X|[X|X]|X]|X
XX X[X|X|X[X[X
X|IX[X|X|X]|X
X|IX[X[X|X|X[X[X
X|IX[X[X|X|X[X[X
X | X[ X|X|[X|X]|X

Table 2. Feature interaction results for the email example

Encrypt[Decrypt|Filter[Forward| Autoresp|Mailhost|Remail]

Encrypt X S,M X X X X X
Decrypt X X X X X X X
Filter X X X M X X X
Forward X X X M X X X
Autoresp| X X SSM| S,M X S,M S,M
Mailhost X X S S X M M
Remail X X S S,M X S,M M




7.4 Use of Perl Scripts

For each pair of features, set of feature parameters, associated property and set
of property parameters, a relevant model needs to be individually constructed
to ensure that only relevant variables are included and set. For each example
system, we have developed two Perl scripts, for automatically configuring the
model and for generating model-checking runs. These scripts greatly reduce the
time to prepare each model and the scope for errors. The results reported above
were obtained using these scripts (running overnight). It is important to note
that a certain amount of simple symmetry reduction is incorporated within the
Perl script to avoid repeating runs of configurations which are identical up to
renaming of components.

8 Any Number of Components

An obvious limitation of the model checking approach is that only finite-state
models can be checked for correctness. Sometimes however we wish to prove
correctness (or otherwise) of families of (finite-state) systems. That is to show
that, if My = M(po||p1]|---|lpn—1) is the model of a system of N concurrent
instantiations of a parameterised component p, then My = ¢ for all N > 1.

This is known as the parameterised Model Checking problem which is, in
general, undecidable [2]. The verification of parameterized networks is often ac-
complished via theorem proving [25], or by synthesising network invariants [10,
23, 26]. Both of these approaches require a large degree of ingenuity.

In some cases it is possible to identify subclasses of parameterised systems for
which verification is decidable. Examples of the latter mainly consist of systems
of N identical components communicating within a ring topology [15,16] or
systems consisting of a family of N identical user components together with a
control component, communicating within a star topology [24,16,20]. A more
general approach [14] considers a general parameterised system consisting of
several different classes of components.

One of the limitations of both the network invariant approach and the sub-
class approach is that it can only be applied to systems in which each component
(contained in the set of size N) is completely independent of the overall struc-
ture of the system: adding an extra component (to this set) does not change the
semantics of the existing components. A generalisation of data independence is
used to verify arbitrary network topologies [12] by lifting results obtained for
limited-branching networks to ones with arbitrary branching.

All of these methods fail when applied to asynchronously communicating
components like ours, where components communicate asynchronously via shared
variables.

We describe an abstraction technique that is applicable to asynchronously
communicating components, namely it enables us to infer properties of a model
of system of any size from properties of a finite abstract model. The key idea is to
define an abstract component — an environment — which represents the (observ-
able) behaviour of a number of components. For a given m, we then examine the



behaviour of the system consisting of m (slightly modified) components and the
abstract component. From this behaviour, we can infer the general behaviour. In
the following, we apply the approach to our two examples, and outline a proof
of correctness.

8.1 The abstract Model for the Telephone System

Let us first consider the telephone system. For any feature f, we say that f is
indexed by Iy = {ig,...i,—1} if the feature relates to User[io],...,User[i,_1].
For example if f is “User[0] forwards calls to User[3]”, then f is said to be
indexed by 0 and 3. Similarly we say that a property ¢ is indexed by a the set
I; where Iy is the set of User ids associated with ¢. For a (possibly empty) set
of features F' = {fo... fs_1} and property ¢, we define the complete index set I
of {p} UF, tobe Iy, U...Uls , UlI,.

Suppose that we have a system S of N telephone components (with or with-
out features) where S = po||p1||-..||[pn—1 with associated model My = M(S).
For any m < N we define an abstract system abs;(m) where

absi(m) = pyl|pLll - - - ||Ph_1]|Abstract,(m) if m < N

or
absi(m) = pyl|pi|] - . -|ph,—; otherwise.

(For simplicity we will assume from now on that m < N.) In this system, the
p;, for 0 < i < m — 1 are modified User components and behave exactly the
same as the original (concrete) components, p;, 0 < i < m — 1 except that, for
0<i<m-1:

1. component p; no longer writes to (the associated channels of) any of the
components P, Pmt1,---,PN (the abstracted components), but there is a
non-deterministic choice whenever such a write would have occurred as to
whether the associated channel is empty or full (thus, whether the write is
enabled or not).

2. An initial call request from any abstracted component to p; now takes the
form (out-channel,0), regardless of which abstracted component initiated
the call. When such a message arrives on p}’s channel, p; may read it.
Henceforth p} no longer reads from (the associated channels of) any of the
abstracted components. Instead, p; makes a non-deterministic choice over
the set of possible messages (if any) that could be present on such a channel.

The component Abstract;(m) encapsulates part of the observable behaviour
of all of the abstracted components. The component Abstract;(m) has id = m
and an associated channel named out_channel. A call initiation from an ab-
stracted component to a concrete component is replaced by a message of the
form (out_channel,0) from Abstract;(m) to the relevant channel (zero, one etc.)
which is always possible, provided the channel is empty. Any other message pass-
ing from the abstracted components is now represented by the non-deterministic
choice available to the modified components, as described above.



In particular, suppose that S = pol||p1]|..-||pn-1 is a system of telephone
components in which at least the features F' are present. If ¢ is a property and
only components pg,p1,---,Pm—1 are involved in the features F' or in ¢ then,
regardless of whether components p,,, Pm+1,---,PN—1 have associated features
or not (with some conditions attached), we will show that if ¢ holds for the model
associated with abs¢(m) (namely M s, (m)), then it holds for M(S). This case
is illustrated in figure 4.

Users
Po P1 ---Pm-1 Pmst Pmasz ---Pnos p(; p1‘ .+ Py Modified Users
N ) \ )
Y Y

Users involved in  Users not
features/property involved in

features/property

—
i Abstract Clients

Fig. 4. Abstraction technique for N-User telephone model

In fact, because there is a bidirectional correspondence between M s, (1m)
and

M@ 13- - - 1P, _, [|Abstract,(m"))
where {ig,%1,...,im—1} is a subset of {0,1,...,N — 1} of size m and m' the
smallest element of {0,1,..., N—=1}\{ip,%1,-..,%m—1}, we can extend this result

to all cases where the total index set has size m. Thus we show:

Theorem 1. Let S = pol|p1]| ... ||pn—1 be a system of telephone components in
which at least the features F are present, and ¢ a property.

1. If the total index set of F U {¢} is {0,1,...,m — 1} then if components
DPms Pmtls - -+, PN—1 do not have any of the features CFU, CFB or TCS,
Mabs,(m) = ¢ tmplies that M(S) |= ¢.

2. If the total index set of F U {¢} is {io,i1,...,im—1} and o the permuta-
tion that maps j to i; for 0 < j < m —1 and m to m' where m' is the
smallest element of {0,1,...,N —1}\ {io,i1,-.-,im—1}, then if components
Po(m)s Po(m+1)s -+ s Po(N—1) do not have any of the features CFU, CFB or
TCS, Maps,(m) | ¢ implies that M(S) |= o(e).



Application of this theorem, for example, allow us to infer that many of the
results of Table 1 (for networks of size 3 or 4) scale up to networks of arbitrary
size. Proof of the theorem is outlined below.

Note that the features CFU, CFB and TCS are the only features in our
feature set whose presence in the partner of a User component affects the be-
haviour of the User itself (the host). As can be seen from the proof below, this
is the reason that their presence in the abstracted components is disallowed.

An outline of the Proof of Correctness of the Abstraction We will as-
sume throughout that the components pg, p1, - .., pm—1 do not have any features
other than those contained in the set F'. The first stage of the proof of correct-
ness of Theorem 1 involves the construction of a reduced model M;* via data
abstraction [11] for any m < N. First we give some definitions:

Definition 3. Let X = {zg,z1,...,21-1} denote a set of variables such that
each variable x; ranges over a set D;. Then D = Dy x Dy X -+ X D;_1 is called
the domain of X. A set of abstract values D' = D{ x D] x --- x D;_, is called
an abstract domain of X if there exist surjections hg, hy, ho, ..., hj—1 such that
hi : D; — D} for all 0 < i <1 — 1. If such surjections ezxist they induce a
surjection h : D — D' defined by

h((mg,ml, Ce ,37[_1)) = (ho(wo),hl(wl), .. .,hl_l(xl_l)).

In the following definition (taken from [9]) data abstraction is used to define
a reduced structure whose variables are defined over an abstract domain:

Definition 4. Let M = (S, R, So, L) be a Kripke structure with set of atomic
propositions AP and set of variables X with domain D. If D' is an abstract
domain of X and h the corresponding surjection from D to D' then h determines
a set of abstract atomic propositions AP'. Let M' denote the structure identical
to M but with set of labels L' where L' labels each state with a set of abstract
atomic propositions from AP'. The structure M’ can be collapsed into a reduced
structure M, = (Sy, R, S§, L!.) where

Sy ={L'(s)|s € S}, the set of abstract labels.

sp € S§ if and only if there exists s such that s, = L(s) and s € Sp.

AP, = AP'.

As each s, is a set of atomic propositions, L.(s,) = s,.

R, (sr,t,) if and only if there exist s and t such that s, = L'(s), t, = L'(t),
and R(s,t).

Grds o o =

The following lemma (which is a restriction of a result proved in [11] ) shows
how we may use a reduced structure M, to deduce properties of a structure M.

Lemma 1. If M and M, are a Kripke structure and a reduced Kripke structure
as defined in definition 4 then for any LTL property ¢, M, = ¢ implies that
M = ¢.



We do not give full details of our reduced model M here, but instead give
a brief description of the abstract domains involved.

The abstract domains of local variables of components pp,, P41, ---,PN—1
are the trivial set {¢true}. In My all other variables, apart from those associated
with channel names or contents, have domains equal to the set {0,1,..., N —1}
(the set of component ids). Each of these variables have abstract domains equal
to the set {0,1,...,m — 1} and a surjection from the original domain D to the
abstract domain D' is given by hy : D — D’ where

ez ifz<m,
h(z) = {m otherwise

for all z € D. In M, the domains of channel variables such as sel f and partner,
consist of the set of channel names name[0], name[1],...,name[N — 1] (where
name[0], name[l], etc. represent the channel names zero, one, etc.). The ab-
stract domains for such variables is name[0], name[l1], ..., name[m] and the sur-
jection hy is an obvious extension of h; above. Similarly abstract domains for
the variables of contents of channels name[0], namel[l1], ..., name[m —1] (a chan-
nel name and a status bit in each case) can be defined, and a surjection given
in each case. The abstract domains for the variables of contents of channels

name[0], name[l], ..., name[m — 1] are the trivial set.
From lemma 1 it follows that for any LTL property ¢, M, |= ¢ implies that
M = ¢.

The next stage of our proof involves showing that, for all m < N, M*
simulates M aps, (m)- Again we provide some useful definitions:

Definition 5. Given two structures M and M' with AP D AP’', a relation
H C S xS is a simulation relation between M and M’ if and only if for all s
and s', if H(s,s') then

1. L(s)NAP' = L'(s")
2. For every state s; such that R(s,s1), there is a state s| with the property
that R'(s',s}) and H(s1,s}).

If a simulation relation exists between structures M and M’ we say that M’
simulates M and denote this by M < M'.

Lemma 2. Suppose that M <X M'. Then for every LT L formula ¢ with atomic
propositions in AP', M' = ¢ implies M = ¢.

To prove that, for all m < N, M simulates Mgy, (m), it is first necessary,
for all m < N, to define a relation between the set of states of M (S say)
and the set of states of M ps,(m) (S say). Suppose V' is the set of variables
associated with My and V,. a reduced set of variables, such that V. is identical
to V except that the local and global variables associated with components
Prms Pm+1s - - -, PN—1 have been removed. The atomic propositions relating to My
is the set AP = {z =y :2 € V and y € D(x)}, where D(z) is the domain of
z. Let us consider the alternative set of atomic propositions AP' = {z = y :



z € V, and y € D'(z)}, where D'(x) is the abstract domain of z. If we let L,
denote the labelling function associated with AP’, then we can define a relation
H between S;* and S;"; as follows: For s € S and s’ € S3%, H(s,s') if and only
if L.(s) = L.(s").

To show that H is a simulation relation, it is necessary to show that for all
(s,s') € H, every transition from (s, s;) in M is matched by a corresponding
transition (s',s]) in Mps, (m), Where (s1,s]) € H. Every transition in M ei-
ther only involves a change to the global variables or involves a change to the
value of the local variables of one of the (concrete) components. If the former is
true, then the transition involves an initial message being placed on the channel
of one of the (concrete) components pg,p1, ..., Pm—1 by one of the components
PmsPm+1,---,PN—1. This transition is reflected in Mpq,(m) by a transition in-
volving the Abstract component in which a message is placed on the channel
of the concrete component. If ¢ is a transition in M]* involving concrete com-
ponent p(i) then either ¢ does not involve any component other than p(7) or ¢
involves only component p; plus another concrete component or one or more of
the following holds:

1. Component p; is not currently in communication with another component
and ¢ involves a read from the channel of p; as a result of the initiation of
communication by one of the components py,, Pm41,---,PN-1-

2. Component p; is currently in communication with one of the components
DPms Pm+1, - - -, PN—1 and t involves p; reading a message from this component
or

3. Component p; is currently in communication with one of the components
Dms Pm+1, - - -, PN—1 and t involves a call to the feature_lookup function.

(Notice that a write to one of the components p.,, Pm+1,-.-,PN—1 does not
involve a change of state, as the abstract domains associated with the channel
contents of each of these components is trivial.)

Let t = (s,s1) and suppose that H(s,s') for s’ € Sp,. If t = (s,s;) does
not involve any component other than p;, or ¢ involves p; and another concrete
component, there is clearly an identical transition (s',s]) € Mg, (m) such that
H(s,s').

If ¢t involves a read from its channel of an initial message sent by one of the
components pp, Pm+1,---,pN—1 then ¢ is reflected by a transition in Mg, (m)
(p; will still read such a message). However, if ¢ involves any other read from
one of the components pp,, Pm+1, - - -, PN—1, non-deterministic choice in pj (the
corresponding component in abs;(m)) ensures that an equivalent transition in
M ps, (m) exists.

If p; is currently involved in communication with one of the components
PmsPm+1,---,PN—1 and t involves a call from p; to the feature_lookup function
then we must consider the cases of when components p,,,, Pm+t1,---,PN—1 have
no associated features, and when they do have associated features, separately.
(We have previously assumed that the components po,p1,...,pm—1 do not have
any features other than those contained in the set F'.)



If components pm,Pm+1,--.,PN—1 have no associated features, then any
guard g within the feature_lookup function that holds for a state in My (from
which featurelookup is called) will hold at the associated state in M. If s is
such a state and s" a state in Mgy, (m) such that H(s,s') then g holds at s" and
it is clear that any transition ¢ in M from s is reflected in M5, (m)-

However, if components p,,, pm+1, - - -, PN—1 have associated features the sit-
uation is more difficult. Some guards within the feature_lookup inline depend
only on whether the associated feature is present within the host component.
Others depend on whether the feature is present within the partner compo-
nent. Knowledge of the particular features that are present in the components
DPrms Pm+1s - - -, PN—1 would be required to determine if the guards are true or not
in the latter case. This scenario presents an open problem, which is beyond the
scope of this paper. However, of our 9 features, guards relating to only 3 features
depend on whether the partner component has the feature (namely CFU, CFB
and T'C'S). Therefore, under the conditions of Theorem 1, we can conclude that
there is a simulation relation between MJ" and My, (m)-

From Lemma 2 we can conclude that, for any LTL property ¢, if components
Prms Pm+1s - -+, PN—1 do not subscribe to features CFU, CFB or TCS then, if
Maps,(m) | ¢ then M* |= ¢ and the first part of Theorem 1 follows from
Lemma 1.

It is straightforward to show that there is a correspondence between M 5, (1m)
and

M 1611 118}, | Abstract,(m'))

where {ig,%1,...,im—1} is a subset of {0,1,...,N — 1} of size m and m' the
smallest element of {0,1,...,N — 1} \ {é0,41,--.,%m—1}. The second part of
Theorem 1 follows as a result of this correspondence.

8.2 The abstract Model for the Email System

Suppose that we have a system S of N — 1 Client components and a Mailer
component where S = My||p1||p2]| - - - ||[pn—1 with associated model My = Mg.
For any m < N we define an abstract system abs.(m) where

abs.(m) = M||p\||P5|| - - - ||ph,_1||Abstract. (m) if m < N

or
abs.(m) = M}||pi|| ... ||p,,_, otherwise.

In this system, M} and the p}, for 1 < i < m — 1 are a modified Mailer com-
ponent and modified Client components respectively. The p) behave exactly the
same as the original (concrete) Client components except that they send/receive
messages only to/from other concrete components or the abstract component
(representing any of the other Client components). The Mailer’ component
behaves exactly the same as the original Mailer component except that the
Mailer' component no longer writes to (the associated channels of) any of the
components Pm, Pm+1,---,PN—1 and a read from such components is replaced



by a non-deterministic choice. Thus the Mailer is modified in the same way that
the p;, 0 < i < m — 1 were modified in the telephone system abstraction.

The component Abstract.(m) encapsulates part of the observable behaviour
of all of the abstracted components. The component Abstract.(m) has id = m
and can send messages to concrete components or to another abstracted com-
ponent (via the Mailer component in each case).

In particular, suppose that S = My||p1||p2]| ... |lpN—1 is a system of email
components in which at least the features F' are present. Let ¢ be a property and
suppose that only components pi, ps, ..., Pm—1 are involved in the features F' or
in ¢ (we will assume that the Mailer component is not involved in the property,
for ease of notation). Regardless of whether components py,, Pm+1, - - -, PN—1 have
associated features or not (again, with some conditions attached), we will show
that if ¢ holds for the model associated with abs.(m) (namely M, (m)), then
it holds for M (S). This case is illustrated in figure 5.

Clients
p1 p2 "'pm-1 pm+1 pm+2 "'pN-1

H_JL\(_)

Clients involved  Clients not
in involved in
features/property features/property

i Abstract Clients
|

Fig. 5. Abstraction technique for N-Client email model

PiPy ... P,  modified Clients

modified Mailer

Because the inline functions relating to all of the features apart from encryp-
tion and decryption are called by the Mailer component (so behaviour of the
Mailer depends on the features subscribed to by all parties in a communication,
including abstract components), our results for the email case only hold when
the abstracted components have no features apart from possibly the encryption
or decryption features. We can prove the following:

Theorem 2. Let S = My||p1||p=|| - - ||[pn—1 be a system of email components
in which at least the features F' are present, and ¢ a property.

1. If the total index set of F U {¢} is {1,2,...,m — 1} then if components
DPms Pmt1s - -+, PN—1 40 not have any features apart from possibly encryption
and/or decryption, then M ays_ (m) = ¢ implies that M(S) = ¢.



2. If the total index set of F U {¢} is {i1,ia,...,im—1} and o the permuta-
tion that maps j to i; for 1 < j < m —1 and m to m' where m' is the
smallest element of {1,2,...,N —1}\ {i1,i2,...,im—1}, then if components
Po(m)s Po(m+1), -+ s Po(N—1) d0 not have features apart from possibly encryp-
tion and/or decryption, M s, (m) = ¢ implies that M(S) | o(¢).

The proof is similar to that of Theorem 1, and is omitted here.

9 The Abstract Approach and Feature Interaction
analysis

The correctness of our approach, as presented above, is based upon theorems of
the form

Mabs(m) ': ¢ = M(S) ': ¢

In the context of feature interaction detection, this means “if there is no
interaction in the network of size m, with the abstract component, then we can
infer that there is no interaction for any network (of arbitrary size)”.

But what can we infer when there is an interaction? Namely, what can we
infer when Mps(m) # ¢? We cannot necessarily infer M(S) [~ ¢, because
one is not a conservative extension of the other, i.e. there is only a simula-
tion relationship, not a bisimulation relationship. For example, because of in-
creased non-determinism, there may be additional loops in M gps(;,) Which are
not possible in any instance of M (S). Thus some liveness properties may actu-
ally hold in M(S), when they do not hold in M (). However, if the property
does not hold for a network of size m (without the abstract component), i.e.
M@illpicll - Pir ) & (00 M(piy il - |Ipi,,_,) b ¢ in the email exam-
ple) then we can infer M(S) £ ¢. In practice, we have yet to encounter a false
negative.

In the email example, for all combinations of features and associated property,
m < 4 and full verification is possible. However, for some pairs of features in
the telephone example, full analysis requires us to test scenarios where m = 5.
For example, to fully analyse the pair of features CFU and T'C'S we must verify
that, if User[j] forwards to User[k] and User[l] screens calls from User[m] then
the CFU property (see [6]) holds. The CFU property has 3 parameters: j and
k (as above) and a further parameter i. Hence, if i, j, k, | and m are all distinct,
we have m = 5. In some situations where m = 5, and in a few (very rare)
cases where m = 4, full verification is not possible under our current memory
restriction of 3Gb.

10 Conclusions

Features are a structuring mechanism for additional functionality. When several
features are invoked at the same time, for the same, or different components,
the features may not interwork. This is known as feature interaction. In this
paper we take a property based approach to feature interaction detection; this



involves checking the validity (or not) of a temporal property against a given
system model. We have considered two example systems: a telecommunications
system with peer to peer communication, and a client server email system.

A challenge for feature interaction analysis, indeed a challenge for reasoning
about any system of components, is to infer properties for networks of any size,
regardless of features associated with components, and the underlying commu-
nication structure. To solve this, for some cases, we have developed an inference
mechanism based on abstraction. The key idea is to model-check a system con-
sisting of a constant number (m) of components together with an abstract com-
ponent representing any number of other (possibly featured) components. The
approach is sound because there is a simulation between the fixed size system
and any system, based on data abstraction. We have applied our approach to
both examples and give a upper bound for the value of m (5).

The techniques developed here are motivated by feature interaction analysis,
but they are also applicable to reasoning about networks of other types of com-
ponents such as objects and agents, provided there is a suitable data abstraction
and characterisations of the of observable behaviour of sets of components. The
results can also inform testing. For example, the upper bound m allows one to
configure (finite) tests which ensure complete coverage.
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