
Machine Learning, 7, 45-83 (1991) 
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Learning to Perceive and Act by Trial and Error 

STEVEN D. WHITEHEAD (WHITE@CS.ROCHESTER.EDU) 
Department of Computer Science, University of Rochester, Rochester, New York 14627 

DANA H. BALLARD (DANA@CS.ROCHESTER.EDU) 
Department of Computer Science, University of Rochester, Rochester, New York 14627 

Editor: Richard Sutton 

Abstract. This article considers adaptive control architectures that integrate active sensory-motor systems with 
decision systems based on reinforcement learning. One unavoidable consequence of active perception is that the 
agent's internal representation often confotmds external world states. We call this phoenomenon perceptual alias- 
ing and show that it destabilizes existing reinforcement learning algorithms with respect to the optimal decision 
policy. We then describe a new decision system that overcomes these difficulties for a restricted class of decision 
problems. The system incorporates a perceptual subcycle within the overall decision cycle and uses a modified 
learning algorithm to suppress the effects of perceptual aliasing. The result is a control architecture that learns 
not only how to solve a task but also where to focus its visual attention in order to collect necessary sensory 
information. 
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1. Introduct ion 

Recently there has been a resurgence of interest in intelligent control architectures that 
are based on reinforcement learning methods (RLM) (Barto et al . ,  1990a; Clocksin & Moore, 
1988; Holland, 1986; Miller  et al., 1990; Sutton, 1988; Watkins, 1989; Whitehead & Ballard, 
1989a; Wilson, 1987). These architectures are appealing because they are both situated 
and adaptive. Unlike tradit ional plan-based controllers,  RLM systems do not make deci- 
sions by appealing to a t ime consuming search through a space of  possible plans. Instead, 
they maintain a policy function that maps situations directly into actions. Decision making 
reduces to computing the instantaneous value of  the policy function and can be  performed 
in constant t ime-- for  example, a policy function can be implemented using a table, CMAC, 
or  neural net (all of which can be evaluated in constant time). 

The immediacy of  decision making puts RLM systems in close relationship with other 
reactive systems (Agre & Chapman,  1987; Brooks, 1986; Georgeff  & Lansky, 1987; Firby, 
1987; Drummond,  1989; Nilsson, 1989; Schoppers, 1987). However, RLM systems 
distinguish themselves from these and most  reactive systems in that they are adaptive. The 
vast majori ty  of  reactive systems do not learn. Instead, their decision knowledge is hand 
coded into them by their designers,  either explicitly (e.g.,  Agre,  1988; Brooks, 1986; 
Georgeff  & Lansky, 1987; Firby, 1987) or through hand-coded world models  which even- 
tually get compiled into a set of reactive rules (e.g., Blythe & Mitchell ,  1989; Fikes et 
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al., 1972; Laird et al., 1986; Schoppers, 1989). RLM systems do not rely on hand-coded 
decision knowledge. They learn their control strategies by trial and error, by interacting 
with the world and receiving feedback in the form of rewards. This adaptability relieves 
the burden of providing complete domain knowledge a priori since it is acquired with ex- 
perience. It also allows the system to adapt to changing circumstances and learn new tasks. 

Although RLM systems are promising, to date they have only been applied to relatively 
simple tasks, such as pole balancing (Barto et al., 1983; Sutton, 1984), simplified naviga- 
tion (Barto & Sutton, 1981; Booker, 1982; Sutton, 1990a; Watkins, 1989; Wilson, 1987), 
and easy manipulation games (Anderson, 1989; Whitehead & Ballard, 1989a). Before these 
systems can be scaled to larger, more complex control problems a number of issues must 
be addressed. These include developing techniques for improving the learning rate, develop- 
ing space-efficient implementations of policy and value functions, and incorporating more 
realistic models of perception and action. Progress on the first two of these issues looks 
promising (for faster learning see Franklin, 1988; Mahadevan & Connell, 1990; Sutton, 
1990b; Whitehead & Ballard, 1989b; for efficient implementations see Girosi & Poggio, 
1989; Hormel, 1989). This article deals with the third issue, adopting more realistic models 
of the agent's sensory-motor system. 

The vast majority of work in AI has not dealt realistically with perception, and research 
in reinforcement learning is no exception. A common simplifying assumption is that a 
decoupled (often implicit) sensory system automatically provides an embedded decision 
system with an internal representation that completely describes the state of the external 
world. This representation frequently takes the form of a set of propositions that describe 
the relationships between, and the features of, all the objects in the domain. Unfommately, 
even for simple toy domains such representations lead to large internal state spaces and 
unrealistic assumptions about the capabilities of the sensory system. For example, in a 
classical blocks-world domain containing n blocks, the size of the state space using a tradi- 
tional representation is O(n! ) (Ginsberg, 1989). For n = 20 the state space has over forty 
billion (42,949,672,940) states. Most of the information that distinguishes states in the in- 
ternal representation is irrelevant to the immediate task faced by the agent and only in- 
terferes with decision making (and learning) by clogging the system with irrelevant detail. 
Furthermore, an overly descriptive representation places undue pressure on the sensory 
system to maintain its fidelity. 

Agre and Chapman have recognized this problem and suggest deictic representations, 
as a more feasible approach based on active sensory-motor systems (Agre & Chapman, 
1987; Agre, 1988; Chapman, 1989). The central premise underlying a deictic representa- 
tion is that the agent need not name and describe every object in the domain, but instead 
should register information only about objects that are relevant to the task at hand. That 
is, at any moment the agent's internal representation should register only the features of 
a few key objects and ignore the rest. Also, those objects should be indexed according 
to the intrinsic features and properties that make them significant. This approach has three 
important implications: 1) it leads to compact, task-dependent representations that reflect 
the complexity of the task instead of the complexity of the domain (which could be ar- 
bitrary); 2) it leads to systems that actively control their sensory apparatus since they must 
tract relevant objects and change their focus of attention as objects come into and fade from 
significance (Ballard, 1989); and 3) it leads to architectures with feasible sensory-motor 
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subsystems since perception and action are reduced to a process of finding, tracking, and 
responding to only a few key objects at a time. In the case of a blocks-world task, the agent 
might focus on two or three key blocks at a time and be oblivious to the rest (Chapman, 
1989). 

In this article, we describe our experiences with architectures that incorporate both deictic 
representations (for feasible perception) and reinforcement learning methods (for adaptive 
control). In particular, we show that integrating deictic representations (and active percep- 
tion in general) and reinforcement learning into a single control architecture is non-trivial 
because the use of deictic representations results in internal states that confuse states in 
the external world. We term this phenomenon perceptual aliasing and show that it can 
severely interfere with the decision system's ability to learn an adequate control policy. 
What makes learning in this context difficult is that, in addition to learning the overt ac- 
tions needed to solve a problem, the agent must also discover how to configure its sensory 
system (i.e., focus its attention) in order to accurately represent the state of the world with 
respect to the task. If  the agent attends to the few key objects relevant to the task, then 
its internal state accurately represents the world. If, however, the agent does not attend 
to those key objects, then the internal state may say nothing useful about the world. A 
dilemma arises: in order for the agent to learn to solve a task, it must accurately represent 
the world with respect to the task; but, in order for the agent to learn an accurate represen- 
tation, it must know how to solve the task. 

We approach these issues by focusing on a restricted class of decision problems which 
we callproblem-solving tasks. In a problem-solving task, the agent is repeatedly presented 
with instances of the task (a series of trials). In each trial, the agent is presented with an 
instance of the problem to be solved (i.e., an initial state). The agent's objective is to ex- 
ecute a sequence of actions that drives the world into a desirable goal state. When the goal 
is achieved the agent receives a positive reward and the trail ends. I f  after a predetermined 
number of steps the agent fails to solve the problem, it gives up and goes on to the next trial. 

A new decision system that learns problem-solving tasks has been developed. The deci- 
sion system embeds a perceptual cycle within the overall decision cycle and uses a modified 
learning algorithm to eliminate the undesired effects of perceptual aliasing. What makes 
the decision system unique is that, while learning the overt control strategy needed to solve 
the task, it simultaneously learns a perceptual control strategy and a task-dependent represen- 
tation of the world. The system learns incrementally. That is, it first learns to solve and 
represent very simple instances of the task. The solutions to those instances provide it with 
enough knowledge to learn to represent and solve slightly more difficult problems. This 
boot-strapping process repeats itself indefinitely until the agent has learned to represent 
and solve all instances of the task. The new design does not require any special ordering 
of problem instances because the learning algorithm is stable (i.e., an inability to solve 
hard problems does not disrupt the agent's knowledge for solving easy problems) and the 
agent eventually gives up on problems it deems too hard (Blum & Blum, 1975). 

The remainder of the article is organized as follows. Section 2 presents the background 
material needed for discussing the integration of deictic representations and reinforcement 
learning. In particular, a formal model of the agent and its environment is presented, the 
principles of deictic sensory-motor systems are elaborated, and the essentials of reinforce- 
ment learning are reviewed. Perceptual aliasing and its impact on learning are discussed 
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in Section 3. In particular, we introduce the notion of inconsistent  internal  states and show 
how they destabilize reinforcement learning algorithms with respect to the optimal policy. 
In Section 4, the new decision system is described. An example of the new system is given 
in Section 5, where we describe a program that learns to solve a simple block manipula- 
tion task. A discussion of the system's limitations and future prospects can be found in 
Section 6, and the conclusions are drawn in Section 7. 

2. Foundations 

2.1. Embedded learning systems 

Before going into the details of deictic representations, reinforcement learning, and perceptual 
aliasing, it is useful to formalize concepts such as "the world" "the agent; '  "the sensory- 
motor system," and "the decision system." For this purpose we begin by adopting a formal 
model for describing embedded learning systems. The model, shown in Figure 1, extends 
a model proposed by Kaelbling (1989) by explicitly representing the dynamic relationship 
between external world states and the agent's internal representation. 

2.1.1. The external  w o r m  

The world is modeled as a discrete time, discrete state, Markov decision process (Bellman, 
1957; Ross, 1983; Bertsekas, 1987) and is described by the tuple (SE, AE, %V, 61), where 
Se is the set of world states, and As is the set of physical actions that can be executed by 
the agent. Time is modeled by the discrete sequence, t = 0, 1, 2 . . . . .  and a clock tick 
occurs whenever a physical action is executed. %V is a state transition function that maps 
the current state and an action into the next world state (i.e., %V : SE × A~ ~ Se) .  In 
general, transitions can be probabilistic so that ~vV (s, a)  may return a sample state from 
a probability distribution over SE. The probabilities that govern the transition function de- 
pend only upon the current state and the action and are denoted by Px.y (a) ,  where 

Px,y(a) = P r ( X V ( x ,  a )  = y ) .  (1) 

61 is the reward function and maps world states into real valued rewards (i.e., 61 : Se -~ 
9~). As with 'W, 6t is probabilistic and can be described by a reward distribution function 
Prwd(X, r), where 

Prwg(X, r) = Pr(61(x) = r). (2) 

Rewards associate value to individual states and are used by the agent to improve perfor- 
mance. Positive rewards indicate that the world is in a desirable state and negative rewards 
indicate undesirable states.l'2 
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Figure 1. A formal model for an agent with an embedded learning subsystem and an active sensory-motor sub- 
system. The table summarizes the functions implemented by each of the model's modules. 

2.1.2. The agent's task 

Roughly, the aim of the agent is to maximize the reward it receives over time. The agent 

does not want to merely maximize its immediate reward in the current state: it wants to 

maximize the cumulative reward it receives over some period of  time in the future. Several 
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measures of cumulative reward can be used. We will  assume that the agent tries to max- 
imize a total discounted sum of  the reward it receives over time. This sum will  be called 
the return and for t ime t is defined as 

rt = ~ "~n-lFt+n (3) 
n=l  

where rt is the reward received at t ime t, and 3, is a discount factor between 0 and 1. 
The agent 's  overt  behavior  can be characterized by a policy function r e ,  which maps 

states into actions (TrE : SE ~ Ae). I f  the world is in state s and the agent follows the 
policy 7re indefmitely, then the agent 's  expected return is denoted by V~e(s ). V~e is called 
the value function for policy 7re, and V~e(s ) is called the utility of  state s. Formally,  V~e(s ) 
is defined as 

V~E(s) = E[R(s, r e ,  1) + . . . ' y n - l R ( s ,  7rE, n) + ...1 (4) 

where R(s, 7re, n) is the random variable denoting the reward received at time t + n, given 
that at t ime t the system is in state s and follows r e  for n-steps? If  a decision is defined 
as the act of  choosing to execute an action in a given state, and is denoted by the state- 
action pair  (s, a), then a function that associates a value with each possible decision can 
be defined. This function, called the action-value function, is denoted as Q~e for policy 
r e  and is defined as the expectation of  the return the system will  receive given that it ex- 
ecutes action a in state s and follows policy r e  thereafter. That is, 

Q~e(s, a) = E[(R(S(s, a)) + "yV~e(~dT(s , a))].  (5) 

For stationary Markov decision processes it can be shown (Bellman, 1957; Ross, 1983) 
that an optimal policy, denoted 7r~: 

1. is determinist ic 
2. uniformly maximizes the value function over  all s ta tes-- that  is, for all s E SE, 

V~(s) = max(V~(s)) (6) 
~r 

3. corresponds to the set of  decisions that for each state maximizes the action-value 
funct ion-- that  is, for all s ~ SE, 

Try(s) = a such that Q~(s, a) = max(Q~(s ,  b)). (7) 
bEA E 

The agent's objective is to learn and implement an optimal decision policy. 
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2.1.3. Problem-solving tasks 

In this article, attention is focused on a restricted class of Markov decision problems, which 
we term problem-solving tasks. In a problem-solving task, the following restrictions apply: 

• The world is completely deterministic (i.e., ~ and (R are deterministic functions). 
• The reward function is uniformly zero for all states except a set of distinguished goal 

states in which the agent receives a fixed positive reward. 
• The task is organized into a series of trials, where each trial begins when the agent is 

presented with a new instance of the problem and ends when either a goal state is achieved 
or a time limit expires. 

• After each trial, the agent's return is reset so that the return associated with each trial 
depends only upon the time it takes the agent to solve the immediate problem instance. 

Although they represent a restricted class of Markov decision problems, problem-solving 
tasks (or problems similar to them) are fairly common in the reinforcement learning/adap- 
tive control literature (Anderson, 1989; Barto et al., 1983; Sutton, 1990a; Whitehead, 1989; 
Yee et al., 1990). Problem-solving tasks are the focus here for two reasons: 1) they are 
simple, yet sufficient to demonstrate the difficulties caused by perceptual aliasing; and 2) 
the new learning algorithm described below exploits the reliability of deterministic worlds 
to deal with perceptual aliasing. 4 The fact that the agent can quit and go on to a new in- 
stance of the task if it fails to solve a problem after a sufficiently long period of time is 
an important feature of our task definition. It allows the agent to indirectly filter difficult 
instances (and avoid the long searches associated with them) and focus on solving simpler 
instances first. The agent learns to solve difficult instances through an incremental bootstrap- 
ping process that is more efficient than when quitting is not allowed. 

2.L4. The agent 

Our model of the agent has two major subsystems: a sensory-motor subsystem and a deci- 
sion subsystem. The sensory-motor subsystem implements three functions: 1) a perceptual 
function (P; 2) an internal configuration function 5; and 3) a motor function BE. The pur- 
pose of the sensory-motor subsystem is to ground internal perceptions and actions in the 
real world. On the sensory side, the system translates the world state into the agent's inter- 
nal representation. Since perception is active, this mapping is dynamic and dependent upon 
the configuration of the sensory-motor apparatus. Formally, let SI be the finite set of possi- 
ble internal states, and C be the (possibly infinite) set of sensory-motor configurations. 
Then, the relationship between external world states and the agent's internal representa- 
tion is modeled by the perceptual function (P, which maps world states SE and sensory- 
motor configurations C onto internal representations Sl (i.e., (P : SE × C ~ SI). On the 
motor side, the agent has a fmite set of internal motor commands, AI, that affect the model 
in two ways: they can either change the state of the external world (by being translated 
into external actions, AE), or they can change the configuration of the sensory-motor sub- 
system. Internal commands that change the state of the external world are called overt actions 
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and are denoted by the set Ao, whereas commands that change just the configuration of 
the sensory-motor system are called perceptual actions and denoted by the set Ap. As with 
perception, the configuration of the sensory-motor system relativizes the effects of internal 
commands. This dependence is modeled by the functions 9E and 5, which map internal 
commands and sensory-motor configurations into actions in the external world and into 
new sensory-motor configurations, respectively (that is, ~ : At × C ~ AE and 9 : AI 
x C ~ C ) .  

The other component in the agent's architecture is the decision subsystem. This sub- 
system is like a homunculus that sits inside the agent's head and controls its actions. On 
the sensory side, the decision subsystem has access only to the agent's internal representa- 
tion, not to the state of the external world. Similarly, on the motor side, the decision sub- 
system generates internal action commands that are interpreted by the sensory-motor system. 
Formally, the decision subsystem implements a behavior function ~ that maps sequences 
of internal states and rewards ( S l x  9~)* into internal actions, Az. 

In the vast majority of reinforcement learning systems, the sensory-motor subsystem and 
the dynamic relationship it maintains between the world and the agent's internal represen- 
tation is not modeled explicitly. Instead, the decision system is coupled directly to the world 
and has complete knowledge of the world state. In contrast, the decision problem facing 
our decision subsystem is not the same as the general problem facing the agent. In general, 
the decision subsystem's objective is to learn a control policy that takes as inputs the agent's 
internal representation and generates internal action commands, which when translated cor- 
respond to optimal actions in the world. The decision subsystem has the additional task 
of controlling the agent's sensory-motor system, which it must exploit to gain knowledge 
about the external world. 

2.2. Reinforcement learning 

The task faced by the agent is representative of learning problems that have previously 
been studied in reinforcement learning: that is, given the current state, a set of possible 
actions, and previous trial and error experience, choose the best next action. As will be 
seen in the next section, classical reinforcement learning algorithms cannot be directly 
applied to problems in which the decision system's access to the world is modulated by 
a limited (albeit dynamic) sensory-motor system. Nevertheless, a brief review of reinforce- 
ment learning is in order since our eventual design is based directly on those classical ap- 
proaches. For this subsection we will temporarily ignore the sensory-motor interface and 
neglect the distinction between the world (SE, Ae) and the decision system's view of it (SI, 
,41). In our experiments we have focused on a representative learning algorithm known as 
Q-learning, and our brief review follows the development in Watkins (1989). However, our 
analysis applies virtually all reinforcement learning algorithms that use temporal difference 
methods to solve the temporal credit assignment problem (Sutton, 1988). A more thorough 
treatment of Q-learning can be found in Watkins (1989), and reviews of reinforcement learn- 
ing in general can be found in Barto et al., (1990b); and Williams, (1987). 

In Q-learning the agent maintains an action-value function of its own. For time t this 
function is denoted Qt. The agent's action-value function is intended to estimate the action- 
value function of the optimal policy (i.e., Q = Q ~  and, hopefully, llmt~ ~at = O~r~). 
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Given Q, the agent's policy, denoted a- t for time t, is determined by analogy with Equa- 
tion 7. For all s E Se, 

7rt(s ) = a such that Qt(s, a) = max(Qt(s, b)). (8) 
bEA E 

That is, for a given state s, the policy function simply selects the action that, according 
to Qt, maximizes the expected return. 

In Q-learning, the action-value function is estimated by keeping track of  actual returns 
received after making a decision. Recall from Equation 3 that the return at time t is defined 
a s  

r t = ~ "[n- lr t+ n (9) 
n = l  

Because 3' < 1, ,yn will approach zero as n becomes large, and because rewards are assum- 
ed to be bounded, for each value of  -y there will be some number of time-steps n after 
which the remaining part of the actual return will be negligible. Hence, the agent may 
calculate an acceptable estimate of  the actual return after n time-steps. To obtain an even 
better estimate, the agent may correct for the terms that are discarded by adding in (ap- 
propriately discounted) the return the system expects to receive starting from time 
t + n. Watldns (1989) refers to this type of estimate as the corrected n-step truncated return 
and defines it as 

r} ~) = ~ "yk- lr t+ k + "ynVt(Xt+n) (10) 
k= l  

where Vt(xt+n) is the agent's estimate of  the return it expects to receive starting from state 
xt+~. Vt estimates the optimal value function based upon the agent's current action-value 
function and is given by 

Vt(x) = Qt(x, 7~t(x)) (11) 

Given r} n), the action-value function can be updated using the following n-step Q- 
learning rule: 

Q,+n(xt, at) = Qt(x,, a,) + o~(r}"~ - Qt(xt, at)). (12) 

Here r~  ) - Qt(xt, at) is an estimate of  the error in Qt that is based on watching the reward 
received over the next n - 1 steps, and c~ is a constant that affects the learning rate. Ac- 
tually, Equation 12 defines a family of  learning rules, one for each n. For large n, the agent 
waits for the future to unfold before updating Qt and does not heavily rely on Vt(xt+n). 
Conversely, for small n, the agent updates Qt after a short delay and relies heavily on 
Vt(xt+n) to accurately predict future reward. 5 
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For the remainder of the article, when it is convenient and when there is no possibility 
of confusion, the explicit time subscripts will be dropped from Q, ~r, and V. Under these 
circumstances, it is important to remember that these functions are estimates maintained 
by the agent that change over time and with experience. 

Figure 2 outlines a simple but representative decision/learning cycle for a decision system 
based on 1-step-Q-learning. The first step in the cycle is to select the next action for execu- 
tion. With probability p, the system selects the action specified by its control policy 7r(x); 
otherwise, it chooses an action at random. The action is then executed and the subsequent 
state and reward are noted. Once the effects of the action are known, the error in the action- 
value function for the current decision is computed and used to update Q. Finally, a-(x) 
and V(x) are updated to reflect changes in Q. The reason the decision system does not always 
select the action specified by its policy is that the action-value of a decision is only updated 
when that decision is executed. Occasionally, selecting a random action ensures that each 
decision will be evaluated periodically. Because the action-value of a decision is updated 
after a 1-step delay, 1-step-Q-learning is particularly simple. Nevertheless, the learning rule 
is effective. Watldns has shown that under standard assumptions for Markov decision proc- 
esses, decision systems based on 1-step-Q-learning, using an appropriate exploration strategy 
and an appropriately decreasing learning rate, are guaranteed to learn an optimal decision 
policy (Watldns, 1989). Even though the algorithm in Figure 2 will learn the optimal policy 
(~" ~ r/r,) for any problem solving task, the control algorithm will not perform optimal- 
ly since with probability 1--p the system chooses a random action. This inconvenience 
can be improved upon by adopting a slightly more complex procedure for controlling ex- 
ploration (Barto et al., 1990). 

E x a m p l e  decision cycle  for 1-s tep  Q- learn ing:  

1) Generate a random number q between 0.0 and 1.0 
2) If (q < p) 

then action ~-- 7r(x), where 7r is the policy function and x is the current state 
else action ~ R(AE) ,  where R 0 is a random selection function. 

3) Execute action, let x~,~ be the resulting state and r be the reward received. 
4) Compute the 1-step error: 

error *- [r + 7V(x ,~ ) ]  - Q(x, action) 
5) Update the action-value of the selected decision: 

Q(x,  action) ~-- Q(x,  action) q- aerror 
6) Update the decision policy (for state x): 

7r(x) -- a such that Q(x, a) ~- maxb~AE [Q(x, b)] 
7) Update the evaluation function (for state x): 

V(x)  ~- Q(x,  7r(x)) 
8) Update the current state: x +- x~e~ 
9) Go to 1. 

Figure 2. The steps in the decision cycle of a system based on 1-step Q-learning. 
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2.3. Deictic representations 

Although the above formal model of the sensory-motor system admits a variety of designs, 
our research has been motivated directly by the work of Agre and Chapman on deictic 
representations 6 (Agre & Chapman, 1987; Agre, 1988; Chapman, 1989). This subsection 
discusses the essential ideas behind deictic representations and describes the deictic sensory- 
motor system we used in a program that learns a simple block manipulation task. 

A central concept underlying deictic representations is the marker, around which nearly 
all perception and action revolve. 7 Markers are best thought of as pointers implemented 
by the sensory-motor system: ideally, a marker points at an object in the world and registers 
features of that object in the internal representationY We will describe a marker as bound 
to an object if  the marker is pointing to it. A marker can be bound to only one object 
at a time, and it is assumed that the sensory-motor system maintains the marker's binding 
at all times. Changing a marker's binding is accomplished by executing explicit actions 
specifically targeted for that marker. These actions index target objects in the world accord- 
ing to specific features that distinguish them from other objects. For example, a system 
might have a marker M1 and an associated action Move-Ml-to-Red, which is used to index 
and mark red objects. In this case, executing Move-Ml-tO-Red causes the sensory-motor 
system to search the world for a red object and bind M1 to it. I f  a red object cannot be 
found, the action fails and M~s binding remains unchanged. If  multiple red objects exist, 
the sensory-motor system chooses the first one it comes to. 

With respect to our formal model (Section 2.1.4), the configuration of the agent's sensory- 
motor system is defined by its marker bindings since knowledge of those bindings, along 
with knowledge of the world state, is sufficient to determine the values of the bits in the 
agent's internal representation. 

In a deictic representation the agent's sensory inputs fall into three general categories: 
peripheral aspects, local aspects, and relational aspects. Peripheral aspects register general, 
spatially non-specific information about the world, such as the presence or absence of cer- 
tain colors, shapes, and motions. Both local aspects and relational aspects register proper- 
ties of marked objects. Local aspects register intrinsic, local features of a marked object, 
such as its shape, color, and texture. Relational aspects register relational properties be- 
tween marked objects, such as relative shape, relative color, and relative position. The 
moment-by-moment values of these three sets of inputs define the agent's internal 
representation. 

A key feature of deictic representations is that there are only a limited number of markers, 
say less than ten (the system described below has two markers). The small number of markers 
and the limited number of features associated with each marker keep both the internal 
representation and the number of possible actions much smaller than is possible with con- 
ventional representations. If  an object in the world is not marked, then it is invisible to 
the system (except for the effects it registers in the periphery). The emphasis is on keeping 
the internal representation small and task-specific. Also, because the sensory-motor system 
is active, the system can dynamically track the objects that are relevant and change its focus 
of attention (marker bindings) as these objects come into and fade from significance. 

Markers also play an important role in motor control since overt actions are predominately 
specified with respect to them. In this case, a marker's binding acts to establish the reference 
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frame in which an action is performed. For example, the overt action Place-at-M1 might 
cause the agent to place an object it is holding at the location currently pointed to by marker 
M1. We distinguish two types of markers: overt markers and perceptual markers. A marker 
is overt if it has an action associated with it that affects the state of the external world. 
Otherwise, it is a perceptual marker. Overt markers are used for establishing reference 
frames for actions in the world, while perceptual markers are used for collecting addi- 
tional information about the current state. Actions associated with overt markers are called 
overt actions and actions associated with perceptual markers are called perceptual actions. 9 

As an example, Figure 3 lists the specifications for the deictic sensory-motor system used 
by a program (to be described later) that learns to solve a simple block manipulation task. 
The system has two markers: an action marker and an attention marker. The action marker 
is used for both perception and action, while the attention marker is used only for percep- 
tion. Each marker has a set of local aspects associated with it; these report the color and 
shape of the marked object, the number of blocks stacked above the marked object, whether 
or not the marked object is sitting on the table, and whether or not the marked object is 
being held by the robot. The system has two relational aspects--one for recording vertical 
alignment between the two markers and one for recording horizontal aligmnent. Peripheral 
aspects include inputs for detecting the presence of colors in the scene (red, green, and 
blue) and for detecting whether the robot is currently holding an object. 

The internal motor commands available to the decision subsystem are shown on the right 
in Figure 3. In this example, all overt actions are made with respect to the action marker. 
The two primary overt actions are for grasping and placing objects. For grasping, the ac- 
tion grasp-object-at-action-marker causes the robot to pick up the object marked by the 
action marker. The action works if the robot's hand is empty and the marked object has 
a clear top. Similarly for placing, the action place-object-at-action-frame causes the system 
to place a block it is holding on top of the object pointed to by the action marker. This 
action works if the robot is holding a block and the target object has a clear top. Other 
overt actions include commands for moving the action marker. Although these may appear 
to be perceptual actions, they are overt actions in the strictest sense because they affect 
the robot's ability to perform other overt actions. 

The attention marker is a perceptual marker and has a repertoire of perceptual actions 
that are used exclusively for gathering additional sensory information. As will be seen in 
Section 4, the attention marker plays an important role in allowing the system to disam- 
biguate world states. 

All told the sensory-motor system has a 20-bit input vector (See Figure 3, left): 4 bits 
of peripheral aspects, 14 bits of local aspects, 2 bits of relational aspects; and 14 actions: 
8 overt and 6 perceptual. 

Notice that the internal state space defined by the sensory inputs is small compared to 
the state space that could result if every object in the domain were represented. The prin- 
cipal advantage is that this reduction leads to more feasible perception and simpler deci- 
sion tasks. The principal disadvantage is that it limits the complexity of the problems that 
can be solved by the agent. For example, if during the course of a problem, a decision 
depends upon features of three separate blocks, then an agent with the above sensory-motor 
system will not be capable of solving the problem because it cannot simultaneously repre- 
sent features of more than two blocks. Of course, the sensory-motor system could be 
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Sensory Inputs: Internal Action Commands: 

Peripheral l 
aspects 

Local 
aspects 

Relational ( 
aspects 

~ l u  red-in-scene 
een-in-scene 
e-in-scene 

ject-in-hand 

~ } action-frame-color: (00 - red, 01 - green, 10 - blue) 
_~ ~tion-frame-shape: (0 - block, 1 - table) 

} action-frame-stack-height (00 - 0, 01 - 1, ...) 
...J tction-frame-table-below 
~ ~tion-frame-in-hand 

} atm-frame-color: (00 - red, 01 - green, 10 - blue) 
ttm-frame-shape: (0 - block, 1 - table) 

atm-frame-stack-height (00 - 0, 01 - 1, ...) 
~tm-frame-table-below 
attn-frame-in-hand 
frames-vertically-aligned-p 
frames-horizontally- aligned-p 

Action Frame Commands: 

grasp-object-at-action-frame, 
place-object-at-action-frame, 
move-action-frame-to-red, 
move-action-frame-to-green, 
move-action-frame-to-blue, 
move-action-fr ame-to-stack-top, 
move-action-frame-to-stack-bottom, 
move-action-frame-to-table 

Attention Frame Commands: 

move-atm-frame-to-red, 
move-arm -frame -to-green, 
move-atm-frame-to-blue, 
move-atm-frame-to-stack-top, 
move-atm-fr ame-to-stack-bottom, 
move-atm-frame-to-table 

Figure 3. The specification for a deictic sensory-motor system containing two markers. The system has a 20-bit 
input vector, 8 overt actions, and 6 perceptual actions. The values registered in the input vector and the effects 
of internal action commands depend upon the binding between markers in the sensory-motor system and objects 
in the external world. 

expanded to allow the system to register features of three blocks (for example, by adding 
an additional marker) ,  but  in general new problems can always be defined that are beyond 
the scope of the current system. Our  contention is that many of  the problems we are in- 
terested in solving (or learning to solve) only involve keeping track of  a few objects at 
a t ime (for example, see (Chapman, 1989)). 

Also, notice that individual objects in the world are referenced not by arbitrarily assigned 
names, but by the features that make them relevant. For  example, the action Move-action- 
marker-to-stack-top would cause the action marker  to move upwards from its current posi-  
tion until it reaches the block at the top of  the stack. What  makes this top block significant 
is not any absolute name like "BLOCK-43" '  but the relationship it holds with the rest of  
the world. Namely, this block is at the top of  a stack and affords (Gibson, 1979) being 
removed and placed on the table (possibly to get at another more important  block). The 
variety of  features and propert ies that can be used as indices also delimits the types of 
problems that an agent can solve. 

Finally, notice that physical action in the world (e.g.,  picking and placing blocks) occurs 
relative to the reference frame defined by the action marker. This is consistent with the 
view that objects in the world fill roles according to their features and that the control 
strategy learned by the decision system is specified in terms of those abstract roles. 
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3. Perceptual aliasing 

The straightforward integration of deictic representations and reinforcement learning leads 
to undesirable interactions that prevent the decision subsystem from learning an optimal 
control strategy. These interactions arise because the mapping between world states and 
the agent's internal representation is many-to-many. That is, a state s E SE in the world, 
depending upon the configuration of the sensory-motor subsystem, may map to several in- 
ternal states; conversely, a single internal state, s'  ~ SI, may represent multiple world states. 
We call this overlapping between the world and the agent's internal representation percep- 
tual aliasing. Figure 4 illustrates perceptual aliasing in a simple blocks-world domain, where 
we have adopted the deictic sensory-motor system defmed in Figure 3. Figure 4a shows 
two different world states (top) that generate the same internal representation simply because 
the markers are focused on parts of the world that are similar. In the figure, the (+) represents 
the action-frame marker and the (*) represents the attention-frame marker. Similarly, Figure 
4b shows that a single world state (block configuration) can produce multiple internal 
representations, depending upon the placement of the markers. 

Perceptual aliasing has a devastating impact on the decision subsystem's ability to learn 
an adequate control policy because it causes the system to confound world states that it 
must necessarily distinguish in order to solve the task. The easiest way to illustrate the 
problem is to consider the effect of perceptual aliasing in a simple problem-solving task. 
Consider the task whose transition diagram is shown in Figure 5a. In this task, the world 
has eight states, Se = {so, sl, s2 . . . .  s6, g}, and there are two overt actions, AE = {at, 
ar}. The goal of the task is to enter state g, whereupon the agent receives a fixed reward, 
6~(g) = 5000. Non-goal states yield zero reward, fft(sk) = 0 for k = 0 to 6. 

At this point, there are two decision problems that must be distinguished: the decision 
problem faced by the agent and the decision problem faced by the embedded decision sub- 
system. The problem faced by the agent is the original problem-solving task defined by 
the world. The problem faced by the decision subsystem corresponds to the original prob- 
lem as transformed by the sensory-motor interface. We call these the actual (or external) 
problem and the perceived (or internal) problem, respectively. 

For problem-solving tasks, the optimal value function, denoted I~e,, is an exponentially 
decreasing function of the distance to the goal. That is, l~e(s) = 6~(g)3, (d(s)-l), where 3' 
< 1, 6/(g) is the reward the agent receives upon entering the goal state, and d(s) is the 
distance (number of steps) from state s to the goal. The optimal policy, 7r~, corresponds 
to choosing the action that minimizes the distance to the goal. When faced with an in- 
stance of the problem, the optimal solution trajectory corresponds to performing a gra- 
dient ascent of l~e. For the actual problem-solving task given above, the optimal policy 
corresponds to moving right (ar) at every opportunity (i.e., for all s fi SE, ~-~(s) = ar), 
and the optimal solution to a given trial corresponds to a trajectory where l~e(xt) is 
monotonically increasing in time. This result is illustrated in Figure 6a, which plots l~e(xt) 
versus time for a trial that begins in state So at time t = 0 and follows the optimal trajectory 
t o g a t t i m e t  = 7. 

If the agent's sensory-motor subsystem is transparent and gives the decision subsystem 
direct access to the actual decision problem (i.e., SI = SE and AI = AE), then the deci- 
sion subsystem could learn the actual task directly. In general, however, the decision problem 
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a) 

World state I: [ J ~  World state 2: [ J q  

* and ÷ On Blue b l o c k ~  / a n d  + on Blue block 

Intemalrepresentaliaa: 

b) 

World state: 

/ / / / / / / / / / / / / / / / / / /  

* and ÷ on Blue block 

Intemal rep 1: / /  ~ * on Green block, Blue block 
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Internal rep 2: 
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Figure 4. Generally the mapping between external world states and the agent's internal representation is many 
to many. a) shows how two different external states can generate the same internal representations and b) shows 
how one external state may have more than one internal representation. In the figure, the (+) represents the action- 
frame marker and the (*) represents the attention-frame marker. 

seen by the embedded decision subsystem, the perceived problem, depends upon the map- 
ping defined by the sensory-motor subsystem. For the task shown in Figure 5a, consider 
an agent with a sensory-motor subsystem that implements a mapping between the world 
and the agent's representation that is fixed, one-to-one, and onto except for states sz and 
sa, which get mapped to the same internal state s~,5. That is, let SI = {s~, st, s'2,5, s~, s,~, 
sd, g ' } ,  where except for s' 2,5, s] (and g')  represents world state sj (and g). Also let AI 
= {a/, a~}, where a/and a~ map to at and ar, respectively. The transition diagram describ- 
ing the perceived decision problem is shown in Figure 5b. Note that this decision problem 
is not Markovian since the effects of actions are not independent of the past but depend 
upon the hidden, unperceived state of the actual, underlying decision problem. For example, 
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a,' a,' 

at' at' , ~  

a/' 

Figure 5. Transition diagrams for a simple problem-solving task: a) the diagram for the actual decision problem, 
b) the diagram for the perceived decision problem when interpreted through a sensory-motor system with percep- 
tual aliasing. 

of the actual, underlying decision problem. For example, the optimal trajectory from sd 
' ' s '  s '  s~, g '  and contains s~,5 twice--once when to g' is the sequence So, sl, 2,5, s~, s~, 2,5, 

the world is in state s2 and once when it is in state s 5. However, the embedded decision 
system will never see the sequence sd, s[, s' s~, g'. 2,5, 

This system does not have a stable decision policy. I f  the policy for the decision system 
is initialized to the optimal policy and the control rule is fixed so that the system follows 
the optimal policy with probability p = 0.99 and chooses a random action otherwise, and 
if the decision system is run for many trials and allowed to estimate the value and action- 
value functions (denoted VI and Qt, respectively) then we observe the following. First, 
since the value and action-value functions are based on expected returns, for the state s~,5, 
they take on values somewhere between the corresponding values for s2 and s5 in the ac- 
tual decision problem. That is, 

F*e(s2) _ Vi(s~,5) <_ F*e(s5), (13) 

Q~(s2, ar) <- Qi(s~,5, ar) <- Q~(ss, ar), (14) 

and 

S t * S  Q~(s2, at) < QI( 2,5, al3 <- Qe( 5, al). (15) 
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overestimates the expected return at t = 2. Similarly, the second time s~, 5 is encountered, 
when t = 5 and the world is in state Ss, Vl(s~,5) underestimates the expected return. 

I f  we relax our hold on the decision policy and allow the system to adapt, we find that 
the optimal policy is unstable! Not only is the system unable to find the optimal policy, 
it actually moves away from it. In general, it can be shown that the system will oscillate 
among policies, never finding a stable one. The instability can be understood by consider- 
ing the effect of  the aberrational maximum on the policy. According to Equation 8 the system 
locally adjusts its policy in order to maximize the expected return. Thus, in state s~ the 
policy will be changed so that the system tends to take actions that move it back to s~,5 
instead of forward to s~ (since Vl(s~,5) > Vt(s~)). The aberrational max imum acts as an 
attractor for nearby states, such as s~, and causes them to change their local policy away 
from optimal. An intuitive way to understand the problem is to consider a local homun- 
culus that sits at s~ and can see the utilities of its neighbors. From his point of view, s~,5 
looks desirable since once the system is in s~,5 it can execute ar, which often leads to sd 
(one step from the goal). On the other hand, choosing the action which leads to s~ leaves 
the system still three steps from the goal. From the homunculus '  point of view, going to 
s~,s is on average better than going to s~. What the homunculus cannot perceive (because 
of perceptual aliasing) is that going f rom s~ directly to s~,5 always returns the real world 
to state s2, which cannot reach s~ directly. The problem is that the homunculus cannot 
distinguish between s2 and ss, as they are both represented by s~,5, and he erroneously 
assumes that the effects of  actions only depend on the current perceived state (the Markov 
assumption). 

The aberrational max imum is also unstable because it is based on a running average 
of the expected returns. If, because of policy changes, s 5 is rarely visited, the aberration 
will disappear. Unfortunately, as soon as the policy changes back so that s5 begins to be 
encountered more  frequently, the aberration reappears. Thus, the system oscillates from 
policy to policy, unable to converge on a stable one. 

The trouble with perceptual aliasing is that it prevents the decision system from learning 
accurate estimates of  the utility and action-value functions by causing the system to average 
different values from different world states. The internal state s~,5 can never accurately 
represent both (or either) s2 and s5 since its value and action-value functions are based 
on averages. Intuitively an internal state, s '  is a good representation if 1) every state it 
represents in the actual world has the same utility and 2) there is one internal action that 
when executed in s '  maps to the optimal action in the world. This intuition about a good 
representation can be formalized by introducing the notion of a consistent decision and 
a consistent state. 

Let us begin by defining three sets that are useful for discussing relationships between 
states and decisions in the actual and perceived decision problems. First define SRep(s ') 
to be the set of world states that for one configuration or another of  the sensory-motor 
system map to the internal state s'. Formally, s ~ SRep(s ' )  if and only if there exists a sensory- 
motor configuration c ~ C such that 6~(s, c) = s'. 

Similarly, define DRep(d  ') to be the set of  actual decisions (state-action pairs in the ac- 
tual decision problem) that for one configuration or another of the sensory-motor system 
map to the internal decision d ' = (s', a ' ) .  Formally, d = (s, a) E DRep(d  ') if and only 
if there exists c E C such that (P(s, c) = s '  and ~lZ(a', c) = a. 
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Figure 6 Plots of the utility versus time as the agent traverses from state s o at t = 0 to g at t = 7 (for 3' = 
0.8): a) the utility for the actual decision problem, I"*E; b) the utility estimated by the decision subsystem for 
the perceived decision problem, V 1. 

Second,  the value funct ion for the perceived problem,  I/i, no longer  monotonica l ly  in-  
creases as the system traverses the opt imal  trajectory. This anomaly  is shown graphical ly 
in Figure  6b, which plots Vt(xt) as a funct ion of  t ime as the system follows the opt imal  
trajectory f rom s6 to g' .  The figure shows that a local m a x i m u m  occurs  at t = 2 when  
the system first encounters  s~,5. We call  this event an aberrational max imum since it does 
not  reflect the true expected re turn of the actual  decis ion problem.  In  reality, the world 
is in state s2 and the t rue expected re turn  is l~e(s2) ( =  2048 for 3' = 0.8), but,  because 
of perceptual  aliasing, the decision system cannot  dist inguish s2 and s5 and,  consequently, 
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Finally, define Con(s, s ~) to be the set of sensory-motor configurations that map the world 
state s into the internal state s'. Formally, c ~ Con(s, s') if and only if  (P(s, c) = s '. 

Now, an internal decision d '  = (s', a ' )  is defined to be consistent with respect to the 
actual task if  and only if  every decision it represents in the actual decision problem has 
the same optimal action-value. That is, 

d '  is consistent iff 3k~  Vd~ Onep(a') [Q~(d) = k]. (16) 

Similarly, an internal state s '  is defined to be consistent with respect to the actual deci- 
sion problem if the state has one decision, the optimal decision, that 1) is consistent and 
2) for every world state represented by s '  maps to the optimal decision in the actual deci- 
sion problem. That is, s '  is consistent if and only if there exists d '  = (s', a ' )  such that 
d '  is consistent and 

V~SRe~,(~') V~ Co,,<~,~') [ ~ ( a ' ,  c) = 7r~(s))]. 

Given these definitions of consistency, internal states can be labeled as either consistent 
or inconsistent. Inconsistent states give rise to aberrational maxima and interfere with learn- 
ing, whereas consistent states serve as true representations of the actual world state. In 
the example task given above, the decision d '  s '  = ( 2,5, a ' )  is inconsistent since the cor- 
responding decisions in the actual problem differ (i.e., Q~(s2, ar) = 2048 and Q~(ss, ar) 

s S t = 4000). Similarly, s2.5 is inconsistent since the optimal decision (d = ( 2,5, ar)) is 
inconsistent--the optimal action-values for s2 and s5 differ, even though the optimal ac- 
tion is the same. 

The negative effects of  perceptual aliasing need not arise only in systems with limited 
perception. It can also arise when assigning credit to the internal structures of  a decision 
system. For instance in an example similar to the one described above, Grefenstette (1988) 
showed how strength averaging in the rules of  a classifier system, using the bucket brigade 
algorithm (Holland et al., 1986) for credit assignment, prevents the system from learning 
an optimal control strategy. In this case, rules that match multiple world states (allowed 
to improve generalization) exhibit a kind of  perceptual aliasing and as a result are vulnerable 
to inconsistencies and inaccurate return estimates. 

4. Dealing with perceptual aliasing 

Perceptual aliasing can be a blessing or a curse. I f  the mapping between the external world 
and the internal representation is chosen correctly, a potentially huge state space (with all 
its irrelevant variation) collapses onto a small simple internal state space. Ideally, this pro- 
jection will group world situations that are the same with respect to the task at hand. But, 
if the mapping is not chosen carefully, inconsistencies will arise and prevent the system 
from learning an adequate control strategy. The main result of  our study is a first attempt 
at a decision system, based on reinforcement learning, that can cope with perceptual alias- 
ing. The new decision system is designed specifically to be embedded within an agent with 
an active sensory-motor system and to actively control perception to overcome the negative 
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effects of perceptual aliasing. The decision system learns not only the correct overt actions 
needed to solve a problem, but also how to control its sensory subsystem in order to focus 
on those objects in the world that are relevant to the task. 

The design is based on three observations/assumptions: 

1. In active perception a world state can be represented by multiple internal states, one 
of which is usually consistent. That is, in any given state, if the agent looks around 
enough it will eventually attend to those objects that are relevant to the task, and the 
internal state associated with that sensory configuration will be consistent. Our algorithm 
depends on the existence of one consistent internal state for each world state. 

2. Inconsistent states disrupt the decision system's ability to learn by promising erroneously 
large expected returns. If  we can detect inconsistent states and actively lower their action- 
value estimates, we can minimize their negative effects. 

3. If  the world is deterministic, then inconsistent states will (because of averaging) 
periodically overestimate the utility of the actual world state, whereas the incidence 
of overestimation in consistent states can be made to diminish with time. Therefore, 
inconsistent states can be detected by monitoring the sign of the estimation error in 
the updating rule, Equation 12. 

4.1. The overt cycle 

The algorithm used by the new decision system is outlined in Figure 7. The decision sub- 
system recognizes two classes of internal action commands (AD: overt actions and percep- 
tual actions, denoted Ao and Ap, respectively. Overt actions change the state of the 
external world whereas perceptual actions change the mapping between world and the 
internal states. 10 

The main decision cycle is the overt cycle, which concerns itself with choosing overt 
actions in an attempt to maximize return. Embedded within the overt cycle is a perceptual 
cycle. After each overt action, the system executes a series of perceptual actions (the percep- 
tual cycle) in an attempt to assess the true state of the external world. The objective of 
the perceptual cycle is to find an internal state that is a consistent representation of the 
current world state. Upon completion, the perceptual cycle returns a list, St, of the inter- 
nal states encountered during the perceptual cycle. Each state corresponds to a different 
view (representation) of the current external world. The utility of  the current world state, 
V~xt), is estimated as the maximum utility of the individual internal states, maxs~st(Vx(s)). 
As will be described below, our algorithm for adjusting the utility estimates of internal 
states severely lowers the utility estimates of inconsistent states. Consequently, utility 
estimates for world states tend to be based on the utilities of consistent states and not biased 
by the apparitional maxima associated with inconsistent states. 

Once V~xt) has been estimated, the action-value estimates Qz, for the previous overt 
action are updated (as described below). The overt cycle then continues by selecting an 
overt action to execute. With probability p (e.g., p = 0.9), the system chooses the action 
consistent with its policy; the rest of the time it chooses an action at random. When following 
policy, the action is chosen by searching among active internal states, St, for the decision 
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O v e r t  Cyc le :  

1) Execute P e r c e p t u a l  C y c l e  and generate St,  a set of internal 
representations for the  current world state.  

2) Es t imate  the  utility of the  current world state,  st: VE(s t )  "-- m a x ,  es,[V1(8)]. 
3) Execute U p d a t e - O v e r t - Q - E s t i m a t e s  based on VE(st), r~, oact~-i  and liont-1; 

where rt is the reward received at t ime t, oactt-1 is the last overt action executed, 
and l iont-1 is the  internal s tate selected to represent the previous world s tate  (see below). 

4) Choose the  next  overt action to execute: 
Wi th  probability p follow policy: 

oaet ~-- a~ such tha t  qs~es,[Ql(S~r, a~) = max(s,a)~St×A o [Ql(S, a)]] 
Otherwise choose randomly: oact +- R ( A o )  

5) Select the  Lion: L ion  ~-- (SL, oact) such tha t  QI(SL,  oact) = m a x s e s t [ Q i ( s ,  oaet)]. 
6) Execute oact to obtain a new world state and go to 1). 

U p d a t e - O v e r t - Q - E s t i m a t e s :  

1) Es t imate  the  error in the  lion's action-value: error ~-- (rt  + 7VE(st)) - Q i ( L i o n t - 1 ) .  
2) Update  the  action-value of the  Lion: 

I f  (error  < 0) then the  lion is suspected of being inconsistent,  so suppress it: Q i ( L i o n t - 1 )  ~ 0.0 
Else update  it using the  s tandard  1-step Q-learning rule: Q i ( L i o n t - 1 )  +- Q i ( L i o n t - 1 )  + c~error. 

3) Update  non-lion internal states: 
For each s E St-1  and s # s ta t e (L ion t -1 )  do: 

Q i (  s,  oact t -1)  +- Q i(  s,  oact t -1)  + a '  error - -  where ~ '  < a.  

P e r c e p t u a l  Cyc le :  

1) Initialize St: St *-- {so}, where sc is the  current internal s tate.  
2) Do n times: (in our implementat ion n = 4) 

i) select the  next  perceptual action: 
with probability p~ : pact  ~-- a such tha t  Qi(sc ,  a) = maXbeAp[Qt(sc ,  b)], 
otherwise: pact  +- R(Ap) .  

ii) execute pact  to obtain a new internal s ta te  s ~. 
iii) update  the  action-value est imate  for the decision (se, pact): 

Oz(sc,paet) *- O~(so,pact) + ~(v1(s') - O~(sc,pact). 
iv) add s '  to St: St = St U {s'} 
v) update  s~: s ,  *-- d .  

3) Return  St. 

Figure 7. An outline of the steps executed by the new decision system designed specifically to overcome the dif- 
ficulties caused by perceptual aliasing. 

with the largest action-value. That is, after collecting St, the system has IStl × IAo] deci- 
sions it must consider, one for each possible action in each possible representation of  the 
current state. We denote this set by O t. The system's policy is to choose the decision, d~ 
= (s~, a~), called the policy decision, such that 

Ql(STr, a~) = max  [Ql(S, a)].  (17) 
(s,a)~St×A 0 

Once an overt action is chosen, it is executed and the overt cycle begins anew. Figure 8 
shows a cartoon of the new decision system in action. The large nodes represent world 
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Perceptual actions 

f World states - - ~  

Overt action 

Internal states 

Consistent internal states 

Figure 8. A sketch of the new decision system in action. The large (super) graph depicts the overt cycle, where 
large nodes correspond to world states and arcs correspond to overt actions. The subgrapbs embedded within 
each large node depict perceptual cycles, with nodes corresponding to internal representations of the current world 
state and arcs corresponding to perceptual actions. 

states, and the arcs between them overt actions. Embedded within each large node is a 
subgraph representing the perceptual cycle. The nodes in this graph correspond to represen- 
tations seen by the decision system, and the arcs between them correspond to perceptual 

actions. 

4.2. Learning a new action-value function 

Standard Q-learning algorithms estimate the action-value of  a decision as the return the 
system expects to receive given that it makes that decision and follows its policy thereafter 
(cf. Equation 5). However, for inconsistent decisions this definition leads to artificially 
high action-values (aberrational maxima). We have developed a modified learning algorithm 
that is based on Q-learning but incorporates a competitive component. This component 
tends to suppress the action-values of  inconsistent decisions while allowing action-values 
for consistent decisions to take on their nominal values. Since action-values for policy deci- 
sions are now based on predictions from consistent decisions, they more accurately estimate 

the true values of  the actual decisions. 
The learning algorithm is based on identifying one decision among Dt that takes the 

"lion's share" of the responsibility (credit or blame) for the outcome of the next overt ac- 
tion. We identify this decision as the Lion.  If  aL is the next overt action to be executed 
by the system, then the lion is defined as the maximal decision among O t that is consis- 

tent with the action aL. That is, 

Lion = (sL, aL) such that QI(sL, aL) = max(Ql(S ,  aL)). (18) 
s~St 

When the system is following its policy, the lion is just the policy decision, Lion = dr. 
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The idea underlying the use of a lion is that in every situation the lion should be a con- 
sistent decision; whenever it is not, the inconsistency in the decision should be detected 
and its action-value should be suppressed. That is, we would like the decision system to 
learn a new action-value function in which the action-values of consistent decisions take 
on their actual values, and the action-values of inconsistent decisions are zero: 

Qidealts a) = ( Ql*(S, a) if (s, a) is consistent 
l k , 

0 otherwise. (19) 

Inconsistent lions are detected and suppressed as follows. I f  at time t, the action-value 
of the lion, QI(SL, aL) is greater than the estimated return obtained after one step, rt + 
"YVl(St+l)  , then the lion is suspected of being inconsistent and the action-value associated 
with it is suppressed (e.g., reset to 0.0). Actively reducing the action-values of lions that 
are suspected of being inconsistent gives other (possibly consistent) decisions an oppor- 
tunity to become lions. I f  the lion does not overestimate the return, it is updated using 
the standard 1-step Q-leaming rule. To prevent inconsistent decisions from climbing back 
into contention, the estimates for non-lion decisions in D t are updated at a much lower 
learning rate and only in proportion to the error in the lion's estimate. The observation 
that allows this algorithm to work is that inconsistent decisions will eventually (at one time 
or another) overestimate their action-values and, thus, will eventually be suppressed. On 
the other hand, it can be shown that a consistent lion is stable (i.e., it will not overestimate 
its action-value) if every state between the lion's state and the goal also has a consistent 
policy decision. Thus, inconsistent decisions are unstable with respect to lionhood while 
consistent decisions eventually become stable. The steps for updating action-values are shown 
in Figure 7 under the Update-Overt-Q-Estimates heading. 

4.3. The perceptual subcycle 

The steps in the perceptual cycle are sketched in Figure 7 under the Perceptual Cycle 
heading. The objective of the perceptual cycle is to accumulate a set of internal representa- 
tions of the external world, one of which has a consistent policy decision. This goal is 
achieved by executing a series of perceptual actions. In our current implementation, each 
perceptual cycle executes a fixed number (n = 4) of perceptual actions. This number has 
proven adequate for our experiments, but it is easy to imagine variable length perceptual 
cycles in which the cycle either terminates as soon as a consistent internal state is found 
or increases when inconsistent states are encountered. 11 The algorithm for selecting ac- 
tions within the perceptual cycle is similar to the algorithm for choosing overt actions in 
the overt cycle. With probabilityp'  (e.g., p '  = 0.9), the system follows its policy, otherwise 
it selects at random. When following policy, the action selected is the perceptual action 
ap such that QI(S, ap) = maxbeae(Qi(s, b)), where s is the system's current internal state. 
That is, the policy calls for perceptual actions that lead to internal states with maximal 
expected returns. 
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The rules for updating action-values for perceptual actions are those for standard 1-step 
Q-learning, as shown in Figure 7 within the Perceptual Cycle procedure. These updating 
rules lead to action-values that average the utilities of the states that result from executing 
a perceptual action. Since consistent states tend to have higher utilities than inconsistent 
states (whose action-values are suppressed), the effect is to choose perceptual actions that 
lead to consistent internal states. 

The lion algorithm's response to variation in the return estimates is extreme. The utility 
of a state that exhibits the slightest variation in return is suppressed. A similar, but somewhat 
less extreme approach has been used by Grefenstette in a classifier system called SAMUEL 
(Grefenstette, 1988; Grefenstette, 1989; Grefenstette et al., 1990). In SAMUEL, the variance 
in a rule's return is estimated as well as its mean, and the strength of the rule is determined 
based on the difference between estimates for its mean and its variance. Using this variance- 
subtraction formula, consistent rules tend to be favored over inconsistent ones whose returns 
vary. 

While Grefenstette had success using variance-subtraction in a simple missile evasion 
task, it performed poorly when we applied it to a simple block stacking task (cf. Section 
5). Our initial attempt to deal with perceptual aliasing in the block stacking task was to 
use exactly variance-subtraction. Only later did we develop the lion algorithm. There are 
at least two reasons why variance subtraction did not work for us. First, it is difficult to 
obtain accurate, unbiased estimates of the return variance since the world states associated 
with a given internal state are not encountered equally often. This is especially true once 
the system begins to converge on a policy. As a result, even a decision that is wildly incon- 
sistent may have a small variance estimate and may not be suppressed. Also, variance sub- 
traction does not guarantee that consistent decisions will eventually dominate--subtracting 
(even an accurate) variance estimate from the mean may not reduce the action-value of 
a decision enough to permit a competitor to dominate. As a result, inconsistent decisions 
may continue to participate in action-value/utility estimation and create aberrational maxima. 

The particular circumstances that allow variance-subtraction to succeed in the missile 
evasion task studied by Grefenstette are difficult to obtain from the available literature 
(Grefenstette, 1988; Grefenstette, 1989; Grefenstette et al., 1990; Ramsey et al., 1990). 
However, this issue is certainly worthy of further investigation as are other algorithms for 
detecting and coping with inconsistent decisions. 

5. An example 

To test our ideas, we implemented a system that learns a simple block manipulation task. 
In this task, the agent is presented with a pile of blocks on a conveyor belt. The agent 
can manipulate the pile by picking and placing blocks. When the agent arranges the blocks 
in certain goal configurations, it receives a fixed reward of 5000 units. Otherwise, it receives 
no reward. When the agent solves the puzzle, the pile immediately disappears and a new 
pile comes down the belt. I f  the agent fails to solve the puzzle after a fixed number of 
steps, nquit  , the pile falls off the end of the conveyor and a new pile appears at the front. 
A pile can have any number of blocks in it and can be arranged in arbitrary stacks. A 
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block can be any one of three colors: red, green, or blue. We make the standard assump- 
tions that a block can be picked up only if its top is clear and that a block can be placed 
only at locations with clear tops. 

We have implemented a program that learns to solve a simple version of the block 
manipulation game. The program uses the deictic sensory-motor system described in Figure 
3, and the decision system described above. The objective of the program is to demonstrate 
the feasibility of the lion algorithm and no special effort has been taken to optimize 
performance. 

The particular task we studied rewards the agent whenever it picks up a green block. 
That is, goal configurations consist of those states in which the robot is holding a green 
block. We chose to study this task because it is very simple, but adequate to demonstrate 
the difficulties caused by perceptual aliasing. These problems can be seen in Figure 9, 
which shows a typical sequence of world states the agent might traverse in solving one 
instance of the problem. The trick to this task is for the agent to learn to focus on the 
green block. That is, depending upon the placement of the attention frame, world states 
1,3,4,5, and 6 may have inconsistent internal representations. If  the attention frame is fixed 
on the green block, then the internal states are consistent; if  the attention frame is fixed 
on any other block, then the internal representations of the states are inconsistent. For ex- 
ample, in state 6, if  the attention frame is fixed on the blue block, then state 6 cannot be 
distinguished from other world states that are identical except with additional blocks above 
the green block. The system overcomes this ambiguity by learning to direct its attention 
frame to the green block, which provides sufficient extra information (the height of the 
green stack) needed to disambiguate the situation. 
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Figure 9. A sequence of world states in a typical solution path for the block manipulation task. Depending upon 
the placement of the attention frame, states 1, 3, 4, 5, and 6 may be represented ambiguously. The (+) shows 
the course of the action frame. Not shown are the states of the perceptual subcycle, where the attention frame moves. 
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A series of  experimental runs were performed to obtain qualitative data on the new deci- 
sion system's performance. In each run, the robot was sequentially presented with 1000 
instances of the task (i.e., 1000 trials). Each instance consisted of a randomly configured 
pile of 4 blocks, with the pile always containing exactly one green block. Randomly select- 
ing problem instances guaranteed that the system would get a good mix of easy and dif- 
ficult problems. An easy problem, for instance, is one in which all three blocks are uniformly 
placed on the table. In this case, the robot need merely fixate and grasp the green block. 
Conversely, a more difficult problem is one in which the green block is at the base of a 
stack containing 3 blocks. In this case, the robot must unstack each block until it clears 
the green one. If  in any trial the robot fails to solve the problem after nquit overt actions, 
it decides that the instance is too difficult and moves on to the next trial. 

Performance results for a typical experimental run are shown in Figure 10. The graph 
shows the number of overt actions taken by the agent for each of the 1000 instances of 
the task it encounters during a typical run. Initially, the agent fails on almost every trial 
(i.e., it takes 30 steps and quits). It does, however, manage to solve a few instances. These 
early successes are invariably easy problems, requiring only one or two correction actions 
to solve. After about 100 trials, the agent begins to solve more and more instances including 
more difficult problems. Eventually, the agent learns to solve even the most difficult in- 
stances and rarely fails (e.g., < 5% failure after 1000 trials). 

The agent's performance on a given trial depends strongly on the difficulty of the trial 
instance; consequently, Figure 10 appears very noisy. A clearer picture of the agent's per- 
formance is obtained by averaging results over multiple experimental runs. Figure 11 plots 
the average over 200 runs of the number of overt actions taken per trial. Plots for the optimal 
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Figure 10. A plot of the number of steps per trial as a function of the instances seen by the agent for a typical 
experimental run. Noisiness is due to the wide variety of tasks being solved. 
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Figure//. A plot of the average number of steps per trial as a function of the instances seen by the agent. The 
average is taken over 200 runs and provides a smoother picture of the agent's learning curve. The agent's steady 
state performance is approximately 125 % optimal. Also shown is the average number of steps taken by an agent 
acting randomly. 

number of steps (average of 200 runs) and for an agent behaving randomly are also shown. 
The figure clearly shows that the agent's initial performance is poor--near the maximum 
of 30 steps per trial--but improves considerably during the first few hundred trials. The 
agent's performance settles just under 12 steps per trial (about 125 % optimal). 

The agent's performance fails to converge to optimal for two reasons. First, with proba- 
bility 1--p (p  = 0.9), the decision subsystem chooses its overt action randomly, reflecting 
a simplification in our decision algorithm that can be eliminated by incorporating a slightly 
more complex procedure for controlling exploration (Barto et al., 1990b). Second, the deci- 
sion subsystem is not guaranteed in every case to find a consistent lion (even if it exists) 
since in our implementation the perceptual subcycle only executes 4 perceptual actions 
and chooses the lion from the set of at most five unique internal states. Further, perceptual 
actions are also occasionally (p '  = 0.9) selected randomly. As a result, residual inconsis- 
tent lions occasionally arise and interfere with the agent's performance. 

Figures 10 and 11 show that the agent learns to solve the task, but they say nothing about 
which instances the agent learns to solve first or the order in which the agent learns its 
task-dependent representation. To get a glimpse of the order in which the instances of the 
task are learned, each problem instance was classified into one of four categories: easy, 
intermediate, difficult, and very difficult. Easy problems correspond to instances in which 
the green block is clear and the agent need only pick it up. Intermediate problems include 
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instances where the green block is covered by one block; difficult problems, two blocks; 
and very difficult problems, three blocks. Plots of the average trial times and average suc- 
cess rate for each of these four classes of problems are shown in Figure 12 and Figure 
13, respectively. Both figures show that the agent first learns to solve easy tasks reliably, 
and then learns more and more difficult ones. In Figure 12, the agent shows improvement 
on easy tasks immediately; it shows improvement on intermediate tasks after 10-20 trials; 
on difficult tasks after 50-60 trials; and on the most difficult tasks after 70-80 trials (see 
Figure 12b). A similar trend is seen in Figure 13, which also shows that the agent eventu- 
ally learns to reliably solve all but the most difficult tasks and then only fails about 10% 
of the time. 12 

To determine the order in which the agent learns a consistent representation, statistics 
were collected to measure the amount of overestimation that occurs during learning. As 
before, world states were classified into four categories according to their distance to the 
goal: easy, intermediate, difficult, and most difficult. For each class, the fraction of times 
(over 200 experimental runs) the lion overestimated (and was suppressed) was maintained 
as a function of the number of trials seen. These percentages are plotted in Figure 14. As 
expected, the agent initially overestimates a high fraction of the time. This fraction is espe- 
cially high because a single overestimation can cause a chain of subsequent overestima- 
tions; and lacking knowledge on how to control perception, the agent frequently fails to 
choose a consistent lion. With experience, however, the agent eventually learns to select 
consistent internal states, and the amount of overestimation decreases. 

We expected the agent to learn consistent lions for easy states first and then to boot-strap 
its way to consistency for more and more distal states. To some extent this expectation is 
verified in Figure 14, which shows that the amount of overestimation decreases first for 
easy states and decreases later for more difficult states. Early on, the fractions for in- 
termediate, difficult, and most difficult problems are rarely solved, and when they are, 
they tend to be inefficient. For example, when solving an intermediate problem, it is com- 
mon for the agent to stack an extra block on the green pile, try other unhelpful actions 
within that configuration for a while, unstack the block, and go on to solve the problem. 
Thus, the agent sees mixes of  intermediate, difficult, and most difficult states. Initially, 
therefore, all trials end up visiting about the same fraction of consistent states. This ran- 
dom searching is much less prevalent in easy tasks whose solutions involve only one or 
two correct actions. Eventually, as the agent learns to solve easy problems (after 80-100 
trials), intermediate states become increasingly consistent and the agent visits harder states 
less frequently on its way to the goal. The inconsistency in intermediate states tends to 
decrease while the consistency of more difficult states remains unchanged. 

Figure 14 also shows that after 1000 trials the agent continues to overestimate a substantial 
fraction of the time. This fraction is fairly low for easy states (-~ 5 %) but unexpectedly high 
for the most difficult states ( =  45%). There are three reasons for this high rate of over- 
estimation. First, as previously mentioned, our implementation is not guaranteed to always 
find a consistent internal state, even if one exists. This explains the small fraction of steady 
state overestimation that occurs even for easy states. Second, a single overestimation (and 
suppression) tends to cause a chain reaction of overestimations in earlier "set-up" states 
(even for consistent states). Thus, the high fraction of overestimation in more distal (dif- 
ficult) states is explained by the fact that occasional overestimations in easy states propagate 
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Figure 12. Plots of the average number of steps per trial for each of the four classes of problem instances: i) 
easy (no unstacking); ii) intermediate (1 to unstack); iii) difficult (2 to unstack); and iv) most difficult (3 to unstack). 
a) shows a complete plot ranging from 0 to 1000 trials; b) shows a focused plot ranging from 0 to 200 trials. 
The plots show that the agent learns to solve easier tasks first. 

back to these states and destroy consistencies there. Third, when overestimations occur 
they tend to temporarily break the agent's decision policy. Often the agent will waste a 
great deal of time in an inconsistent confused loop until it gives up or manages to luck 
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Figure 13. Success rates for each of the four classes of problem instances versus the number of trials seen by 
the agent, a) shows a complete plot ranging from 0 to 1000 trials; b) shows a focused plot ranging from 0 to 
200 trials. The plots show that the agent learns to solve easier tasks first and eventually learns to solve all in- 
stances fairly reliably. 

into a state from which it can solve the problem. As a result, these statistics are misleading 
in that they tend to report more overestimations than there are inconsistent internal states. 
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Figure 14. The fraction of overestimations encountered over 200 runs for each of the four classes of world states. 
The plot shows that consistent representations are learned for easy states first, followed by consistent representa- 
tions for more difficult states, and that the agent continues to perform in the face of residual inconsistencies and 
overestimation. 

The robustness of the agent's performance in the face of persistent overestimations led 
us to consider tasks with more than four blocks. Another  set of experiments were per- 
formed in which the problem instances ranged from easy (0 blocks to unstack) to most 
difficult (3 blocks to unstack). In these experiments,  however, additional outlying blocks 
were added to the pile. The number of  outliers was randomly chosen between 0 and 20. 
Outliers interfere with the system's abili ty to learn the most difficult instances because the 
agent's sensory motor system cannot distinguish between stacks containing four or more 
blocks. Therefore, the agent has no way of  distinguishing (under any sensory-motor con- 
figuration) states where it has to unstack three blocks from states where it has to unstack 
4,5,6, or  more  blocks. These states do not have consistent internal representations. Results 
from the experiments are shown in Figure 15. They are comparable  to the results from 
our earl ier  experiments,  except with slightly longer average solution times and a slightly 
lower success rate (especially for the most difficult instances). Nevertheless, even in the 
face of inconsistencies the agent is capable of learning a robust decision policy. 

6. Discussion: Limitations and future prospects 

In this section current limitations of the architecture and the lion algorithm are discussed. 
Where  possible, we also outline approaches that may be useful in overcoming these limita- 
tions. As yet, none of the suggestions outlined have been implemented or tested; therefore, 
the discussion is necessari ly speculative. 
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Figure 15. Performance plots for experiments that include piles of up to 20 outlying blocks, a) The average solu- 
tion time for each class of problem, b) the success rate for each class of problem, c) the fraction of overestima- 
tions observed for each class of state. The plots are comparable to those in our original experiments and show 
that the agent can learn even in environments which it cannot consistently represent. 

6.1. Deterministic tasks 

One  of  the mos t  impor tant  assumpt ions  made  in our  m o d e l  is that the external  wor ld  is 
determinist ic .  The  l ion a lgor i thm depends  upon the world  be ing  determinis t ic  to differen- 

tiate consistent  representat ions f rom inconsis tent  ones.  That  is, internal  states whose  op-  

t imal  returns have non-zero  var iance  (detected by overest imat ion)  are inconsistent  and are  
suppressed.  I f  the wor ld  were  al lowed to be  non-de te rminis t ic  (i.e.,  stochastic),  then the 

opt imal  returns o f  consis tent  internal  states would  also have a non-zero  var iance  and the 

l ion a lgor i thm would  weed  them out  as well.  
At  the momen t ,  we do  not  know how to deal  in general  wi th  stochastic worlds (e.g.,  
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when the world is modeled by a Markov decision process.) However, we believe that minor 
modifications to the lion algorithm can lead to systems that can cope with two restricted 
(but useful) classes of non-determinism. 

Quasi-Deterministic Transitions: Imagine a world which is more or less deterministic 
except that occasionally, due to unperceivable circumstances, a random perturbation oc- 
curs. This perturbation might cause the world to make an "unexpected" transition (e.g., 
the stack of blocks tips over), or cause the agent to receive an anomalous reward (e.g., 
a food pellet gets wedged into the injection mechanism). The current lion algorithm is ex- 
tremely sensitive to such "failures" and would suppress even consistent lions (good inter- 
nal representations) upon encountering even one failure. This suppression can have a 
catastrophic impact on the stability of the optimal policy because it can lead to a chain 
reaction in which a whole series of consistent lions gets suppressed. Thus, one untimely 
failure can completely destroy an otherwise perfect policy. One way to overcome this limita- 
tion is to allow lions to occasionally overestimate, thereby allowing occasional failures 
without severely impacting the stability of the optimal policy. Inconsistent lions would still 
tend to be suppressed since they act as attractors and cause the agent to repeatedly visit 
(and overestimate) them. 

Minor Payoff Variation: Another source of non-determinism might be caused by slight 
variations in the reward function. For example, upon successfully traversing a maze, a (ar- 
tificial) rat might receive food pellets that vary slightly in size (and reward value). The 
current lion algorithm is sensitive to this noise and would have trouble learning the task. 
One approach to this problem is to permit a certain amount of overestimation. That is, 
instead of suppressing a lion whenever it overestimates its return (i.e., error × 0), we sup- 
press it only if it overestimates by too much (e.g., error × threshold). 

Another alternative is to suppress the lion only partially. That is, instead of resetting 
overestimating lions to zero, the action-value is reset to some fraction (say 95%) of the 
lower estimate. In this case, in the face of noisy returns, consistent states would tend to 
take on values near their average (i.e., roughly their true consistent values), while incon- 
sistent states would tend to take on values around a fraction (95 %) of their lowest values. 

6.2. Non-blocked tasks 

Instances in a problem-solving task are presented in blocks of trials. Once the agent solves 
a problem instance, the trial ends and a new instance begins. Defining tasks in terms of 
trials and distinguished goal states provides the learning algorithm with the foothold it needs 
to learn i tsfirst problem (and consistent internal states), which is used in turn to boot-strap 
to more and more difficult instances. At the moment, it is not clear if the current algorithm 
will work for less structured tasks that continue indefinitely instead of ending once the 
agent receives a reward. 

6.3. Adequate perception 

Limited Sensors: Another major assumption made by the lion algorithm is that each world 
state is consistently represented by at least one internal state. This assumption becomes 
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problematic for tasks that require a large amount of information to uniquely describe the 
absolute state of the world with respect to the task. The difficulty can be seen by consider- 
ing the fruitcake (or block copying) problem described by Ginsberg (1989). In the fruit- 
cake problem, the agent's goal is to arrange a stack of lettered blocks so that the stack 
spells out the work "fruitcake". Chapman has shown that a system with a deictic sensory- 
motor system (which uses 4 markers) can be built  to solve the problem. But, our current 
system, even if equipped with the additional 4 markers is unable to learn this problem 
because it cannot unambiguously encode the state of the world with just four markers. 
If  each marker reports only the letter and position of the block it marks, then placing the 
agent's markers on any four blocks in the stack spelling fruitcake does not provide enough 
information for the agent to know that it has correctly spelled "fruitcake" At best it can 
know that four letters are in their correct position. Adding additional markers, one for 
each letter in the word, would help but is not satisfactory because Chapman has shown 
that a system with four markers is sufficient. 

Loops: A similar problem arises for tasks whose strategies require the agent to repeatedly 
execute a loop a large number of times. For example, in the block manipulation task we 
studied, the agent could learn to solve only instances where 4 or fewer blocks were above 
the green block (although many more blocks could be in the pile), because its sensory 
system had only 2 bits to encode the stack height. 

One approach to this problem is to consider grouping sets of decisions into macro deci- 
sions (or schemas) that capture the fundamental cycles in the policy and treat them as unit 
actions. 

Memoryless tasks: Another closely related assumption made by the architecture is that 
the agent's local environment completely encodes the state of the task. That is, if equipped 
with a sufficiently complex sensory system, the agent can consistently represent the world 
by sensing its local environment. This assumption prohibits the agent from learning tasks 
that require short-term memory. During the course of a task the agent may receive a signal 
that determines a decision to be made in the future. If  the agent has no way to remember 
the value of the signal, it will not be able to make the correct decision when the time comes. 
For example, a bus driver, upon hearing the "exit bell," must remember the signal long 
enough to reach the next bus stop. 

It would be interesting to consider architectures that incorporate mechanisms for memory 
and recall. Presumably, memories could be stored and recalled based on the indexical aspects 
that make them significant (i.e., like perception). 

6.4. Faster learning 

In this article, we have chosen simplicity over speed. However, the rate at which these 
systems learn is an important research issue deserving further attention. Four approaches 
to improving the learning rate are given below. It would be interesting to see how well 
they can be integrated into our existing architecture. 

Generalizing Function Approximators: Our current experimental system uses a table 
to implement the action-value function and therefore is incapable of generalizing over states 
(although generalization occurs implicitly through the use of a deictic sensory-motor system). 
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One way to speed up learning is to use more sophisticated function approximation tech- 
niques that are capable of generalization (e.g., CMACs (Albus, 1975; Albus, 1981), neural 
networks (Anderson, 1986), rule based classifiers (Holland, 1975; Holland et al., 1986), 
and clustering algorithms (Mahadevan & Connell, 1990)). 

Explanation-based generalization: A related approach to generalization has recently 
been suggested by Yee et al. (1990) and involves using explanation based generalization 
(EBG) to learn useful concepts based on the system's ability to explain expectation failures. 
This approach requires that the agent possess a formal model of the world, which it uses 
to form explanations and to perform regression. The technique allows credit to be assigned 
not only to states that immediately precede a particular reward event, but also, through 
a generalized explanation of the causal sequence, to states that are functionally equivalent. 
Gordan and Grefenstette (1990) have also considered combining EBL and reinforcement 
learning techniques. 

Forward modeling: A third approach to improving the learning rate is for the agent 
to learn a forward model of the world and simultaneously use that model to perform men- 
tal experiments. This approach has recently been shown to significantly improve the learn- 
ing rate for simple (standard) reinforcement learning tasks (Sutton, 1990a; Sutton, 1990b; 
Whitehead & Ballard, 1989b; Whitehead, 1989). It would be interesting to see how well 
these ideas can be applied to architectures with active sensory-motor systems. 

Supervision: Finally, to obtain very fast learning, it will ultimately become necessary 
to learn from a teacher (Whitehead & Ballard, 1991). As a first step in this direction, it 
would be useful to study the stability of systems that first receive immediate feedback (e.g., 
hot/cold information) from an external teacher and eventually learn to solve the task without 
intervention. Although this approach is viable for standard reinforcement learning 
algorithms, it appears to be problematic for the lion algorithm since removing the teacher's 
rewards would cause the system to overestimate its returns. Thus, the current lion algorithm 
would unlearn (via suppression) everything it gained by the teacher. The modified lion 
algorithm that resets overestimating lions to 95 % of the lower value should overcome this 
problem and be amenable to instruction. 

7. Conclusions 

In this article, we have considered the interactions that arise in adaptive control architec- 
tures that integrate active sensory-motor systems (specifically deictic representations) with 
decision systems based on reinforcement learning. We found the integration non-trivial 
because active sensory-motor systems naturally lead to internal states that are inconsistent. 
Inconsistent states wreak havoc on the decision system's ability to learn by introducing ap- 
paritional maxima in the value function and destabilizing the learning algorithm with respect 
to the optimal policy. A solution to this problem, based on actively detecting and suppress- 
ing inconsistent states, was proposed. The result is a system that learns to focus its atten- 
tion on the relevant aspects of the domain as well as control its overt behavior. The new 
algorithm was demonstrated in a system that learns a simple block manipulation task that 
is beyond the scope of previous reinforcement learning systems. Although our systems are 
still very primitive, we find the results encouraging and hope that continued effort will 
yield systems capable of more sophisticated behavior. 
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Notes 

1. In principle, the world could include the agent in its description. However, for the simple tasks we are con- 
cerned with, it suffices to view the world simply as a model of the agent's local external environment. 

2. In this article we have included the reward function as part of the world model. This is consistent with the 
definition of a Markov decision process and conveniently separates the agent from the task it is trying to 
learn. In terms of a physical realization, the reward function could be implemented in a reward center of 
the agent's nervous system. In this case, the agent encodes a priori knowledge about the task since the reward 
center knows when to generate a reward. In such a configuration, however, the reward center would tend 
to be relatively simple, and rewards would be few and far between. For example, in a problem-solving 
task, the reward center might generate a non-zero reward only when the agent achieves the goal, but not 
otherwise. Or, alternatively, the reward center might act as a go-between, generating a reward only upon 
receiving specific stimulation from an external source (e.g., a teacher). 

3. Our definition of F~r e varies slightly from the definition commonly found in dynamic programming texts. 
This variation is an artifact of our decision to associate rewards with states instead of associating them with 
the choice of an action in a state. 

4. Even though problem-solving tasks, as we've defined them, can be studied without introducing the extra 
notation associated with Markov Decision Problems, we have adopted the more general framework because 
1) it is commonly used to model sequential decision processes both in machine learning and elsewhere, 2) 
it adds perspective to the class of tasks we are studying, and 3) it serves as a goal, in that we hope eventually 
to extend our results to this more general class of problems. 

5. In general, it is possible to use updating rules based on a weighted sum of n-step returns. Sutton (1988) 
takes this approach in his Theory of Temporal Differences (TD) Methods. Two advantages of TD-methods 
are 1) Qt(xt, at) is updated after each step (and thus retains the advantages of both small and large n) and 
2) TD-methods have efficient implementations since, by choosing the weights just right, the estimation error 
can be based on the differences between the predictions of temporally adjacent states. 

6. deic.tie \ dik-tik, da-'k-; dff-ik- \ adj[Gk deiktikos, fr. deiktos, verbal of deiknynai to show ] : showing 
or pointing out directly (the words this, that, and those have a - function) (from Webster's New Collegiate 
Dictionary, ninth edition) 

7. The term marker originated in Ullman's work on visual routines (Ullman, 1984). 
8. In this discussion, we finesse the issue of exactly what an "object" is and assume an object can be defined 

by its local features, such as its shape and color. 
9. Agre and Chapman do not distinguish markers as overt or perceptual in their systems. The two classes are 

introduced here because the learning algorithm described below depends on being able to distinguish be- 
tween actions that change the world and actions that simply change the agent's perception of it. 

10. As a side effect, overt actions may also change the perceptual configuration, but perceptual actions are not 
allowed to affect the world state. In the deictic sensory-motor system described in Figure 3, the action- 
frame has only overt actions, and the attention-frame has only perceptual actions. 

11. Actually, it may be possible to eliminate the distinction between the overt cycle and the perceptual cycle 
and integrate them into a single cycle in which the action (either overt or perceptual) with the highest utility 
is chosen. We are currently experimenting with such an algorithm. 
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12. Increasing nquit slightly, say to 40, almost always gives the agent the extra time it needs to solve even the 
most difficult problems. 
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