
Machine Learning, 7, 45-83 (1991)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning to Perceive and Act by Trial and Error

STEVEN D. WHITEHEAD (WHITE@CS.ROCHESTER.EDU)
Department of Computer Science, University of Rochester, Rochester, New York 14627

DANA H. BALLARD (DANA@CS.ROCHESTER.EDU)
Department of Computer Science, University of Rochester, Rochester, New York 14627

Editor: Richard Sutton

Abstract. This article considers adaptive control architectures that integrate active sensory-motor systems with
decision systems based on reinforcement learning. One unavoidable consequence of active perception is that the
agent's internal representation often confotmds external world states. We call this phoenomenon perceptual alias-
ing and show that it destabilizes existing reinforcement learning algorithms with respect to the optimal decision
policy. We then describe a new decision system that overcomes these difficulties for a restricted class of decision
problems. The system incorporates a perceptual subcycle within the overall decision cycle and uses a modified
learning algorithm to suppress the effects of perceptual aliasing. The result is a control architecture that learns
not only how to solve a task but also where to focus its visual attention in order to collect necessary sensory
information.

Keywords. Reinforcement learning, deictic representations, sensory-motor integration, hidden state, non-Markov
decision problems

1. Introduct ion

Recently there has been a resurgence of interest in intelligent control architectures that
are based on reinforcement learning methods (RLM) (Barto et al . , 1990a; Clocksin & Moore,
1988; Holland, 1986; Miller et al., 1990; Sutton, 1988; Watkins, 1989; Whitehead & Ballard,
1989a; Wilson, 1987). These architectures are appealing because they are both situated
and adaptive. Unlike tradit ional plan-based controllers, RLM systems do not make deci-
sions by appealing to a t ime consuming search through a space of possible plans. Instead,
they maintain a policy function that maps situations directly into actions. Decision making
reduces to computing the instantaneous value of the policy function and can be performed
in constant t ime-- for example, a policy function can be implemented using a table, CMAC,
or neural net (all of which can be evaluated in constant time).

The immediacy of decision making puts RLM systems in close relationship with other
reactive systems (Agre & Chapman, 1987; Brooks, 1986; Georgeff & Lansky, 1987; Firby,
1987; Drummond, 1989; Nilsson, 1989; Schoppers, 1987). However, RLM systems
distinguish themselves from these and most reactive systems in that they are adaptive. The
vast majori ty of reactive systems do not learn. Instead, their decision knowledge is hand
coded into them by their designers, either explicitly (e.g., Agre, 1988; Brooks, 1986;
Georgeff & Lansky, 1987; Firby, 1987) or through hand-coded world models which even-
tually get compiled into a set of reactive rules (e.g., Blythe & Mitchell , 1989; Fikes et

46 S.D WHITEHEAD AND D.H. BALLARD

al., 1972; Laird et al., 1986; Schoppers, 1989). RLM systems do not rely on hand-coded
decision knowledge. They learn their control strategies by trial and error, by interacting
with the world and receiving feedback in the form of rewards. This adaptability relieves
the burden of providing complete domain knowledge a priori since it is acquired with ex-
perience. It also allows the system to adapt to changing circumstances and learn new tasks.

Although RLM systems are promising, to date they have only been applied to relatively
simple tasks, such as pole balancing (Barto et al., 1983; Sutton, 1984), simplified naviga-
tion (Barto & Sutton, 1981; Booker, 1982; Sutton, 1990a; Watkins, 1989; Wilson, 1987),
and easy manipulation games (Anderson, 1989; Whitehead & Ballard, 1989a). Before these
systems can be scaled to larger, more complex control problems a number of issues must
be addressed. These include developing techniques for improving the learning rate, develop-
ing space-efficient implementations of policy and value functions, and incorporating more
realistic models of perception and action. Progress on the first two of these issues looks
promising (for faster learning see Franklin, 1988; Mahadevan & Connell, 1990; Sutton,
1990b; Whitehead & Ballard, 1989b; for efficient implementations see Girosi & Poggio,
1989; Hormel, 1989). This article deals with the third issue, adopting more realistic models
of the agent's sensory-motor system.

The vast majority of work in AI has not dealt realistically with perception, and research
in reinforcement learning is no exception. A common simplifying assumption is that a
decoupled (often implicit) sensory system automatically provides an embedded decision
system with an internal representation that completely describes the state of the external
world. This representation frequently takes the form of a set of propositions that describe
the relationships between, and the features of, all the objects in the domain. Unfommately,
even for simple toy domains such representations lead to large internal state spaces and
unrealistic assumptions about the capabilities of the sensory system. For example, in a
classical blocks-world domain containing n blocks, the size of the state space using a tradi-
tional representation is O(n!) (Ginsberg, 1989). For n = 20 the state space has over forty
billion (42,949,672,940) states. Most of the information that distinguishes states in the in-
ternal representation is irrelevant to the immediate task faced by the agent and only in-
terferes with decision making (and learning) by clogging the system with irrelevant detail.
Furthermore, an overly descriptive representation places undue pressure on the sensory
system to maintain its fidelity.

Agre and Chapman have recognized this problem and suggest deictic representations,
as a more feasible approach based on active sensory-motor systems (Agre & Chapman,
1987; Agre, 1988; Chapman, 1989). The central premise underlying a deictic representa-
tion is that the agent need not name and describe every object in the domain, but instead
should register information only about objects that are relevant to the task at hand. That
is, at any moment the agent's internal representation should register only the features of
a few key objects and ignore the rest. Also, those objects should be indexed according
to the intrinsic features and properties that make them significant. This approach has three
important implications: 1) it leads to compact, task-dependent representations that reflect
the complexity of the task instead of the complexity of the domain (which could be ar-
bitrary); 2) it leads to systems that actively control their sensory apparatus since they must
tract relevant objects and change their focus of attention as objects come into and fade from
significance (Ballard, 1989); and 3) it leads to architectures with feasible sensory-motor

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 47

subsystems since perception and action are reduced to a process of finding, tracking, and
responding to only a few key objects at a time. In the case of a blocks-world task, the agent
might focus on two or three key blocks at a time and be oblivious to the rest (Chapman,
1989).

In this article, we describe our experiences with architectures that incorporate both deictic
representations (for feasible perception) and reinforcement learning methods (for adaptive
control). In particular, we show that integrating deictic representations (and active percep-
tion in general) and reinforcement learning into a single control architecture is non-trivial
because the use of deictic representations results in internal states that confuse states in
the external world. We term this phenomenon perceptual aliasing and show that it can
severely interfere with the decision system's ability to learn an adequate control policy.
What makes learning in this context difficult is that, in addition to learning the overt ac-
tions needed to solve a problem, the agent must also discover how to configure its sensory
system (i.e., focus its attention) in order to accurately represent the state of the world with
respect to the task. If the agent attends to the few key objects relevant to the task, then
its internal state accurately represents the world. If, however, the agent does not attend
to those key objects, then the internal state may say nothing useful about the world. A
dilemma arises: in order for the agent to learn to solve a task, it must accurately represent
the world with respect to the task; but, in order for the agent to learn an accurate represen-
tation, it must know how to solve the task.

We approach these issues by focusing on a restricted class of decision problems which
we callproblem-solving tasks. In a problem-solving task, the agent is repeatedly presented
with instances of the task (a series of trials). In each trial, the agent is presented with an
instance of the problem to be solved (i.e., an initial state). The agent's objective is to ex-
ecute a sequence of actions that drives the world into a desirable goal state. When the goal
is achieved the agent receives a positive reward and the trail ends. I f after a predetermined
number of steps the agent fails to solve the problem, it gives up and goes on to the next trial.

A new decision system that learns problem-solving tasks has been developed. The deci-
sion system embeds a perceptual cycle within the overall decision cycle and uses a modified
learning algorithm to eliminate the undesired effects of perceptual aliasing. What makes
the decision system unique is that, while learning the overt control strategy needed to solve
the task, it simultaneously learns a perceptual control strategy and a task-dependent represen-
tation of the world. The system learns incrementally. That is, it first learns to solve and
represent very simple instances of the task. The solutions to those instances provide it with
enough knowledge to learn to represent and solve slightly more difficult problems. This
boot-strapping process repeats itself indefinitely until the agent has learned to represent
and solve all instances of the task. The new design does not require any special ordering
of problem instances because the learning algorithm is stable (i.e., an inability to solve
hard problems does not disrupt the agent's knowledge for solving easy problems) and the
agent eventually gives up on problems it deems too hard (Blum & Blum, 1975).

The remainder of the article is organized as follows. Section 2 presents the background
material needed for discussing the integration of deictic representations and reinforcement
learning. In particular, a formal model of the agent and its environment is presented, the
principles of deictic sensory-motor systems are elaborated, and the essentials of reinforce-
ment learning are reviewed. Perceptual aliasing and its impact on learning are discussed

48 S.D WHITEHEAD AND D.H. BALLARD

in Section 3. In particular, we introduce the notion of inconsistent internal states and show
how they destabilize reinforcement learning algorithms with respect to the optimal policy.
In Section 4, the new decision system is described. An example of the new system is given
in Section 5, where we describe a program that learns to solve a simple block manipula-
tion task. A discussion of the system's limitations and future prospects can be found in
Section 6, and the conclusions are drawn in Section 7.

2. Foundations

2.1. Embedded learning systems

Before going into the details of deictic representations, reinforcement learning, and perceptual
aliasing, it is useful to formalize concepts such as "the world" "the agent; ' "the sensory-
motor system," and "the decision system." For this purpose we begin by adopting a formal
model for describing embedded learning systems. The model, shown in Figure 1, extends
a model proposed by Kaelbling (1989) by explicitly representing the dynamic relationship
between external world states and the agent's internal representation.

2.1.1. The external w o r m

The world is modeled as a discrete time, discrete state, Markov decision process (Bellman,
1957; Ross, 1983; Bertsekas, 1987) and is described by the tuple (SE, AE, %V, 61), where
Se is the set of world states, and As is the set of physical actions that can be executed by
the agent. Time is modeled by the discrete sequence, t = 0, 1, 2 and a clock tick
occurs whenever a physical action is executed. %V is a state transition function that maps
the current state and an action into the next world state (i.e., %V : SE × A~ ~ Se) . In
general, transitions can be probabilistic so that ~vV (s, a) may return a sample state from
a probability distribution over SE. The probabilities that govern the transition function de-
pend only upon the current state and the action and are denoted by Px.y (a) , where

Px,y(a) = P r (X V (x , a) = y) . (1)

61 is the reward function and maps world states into real valued rewards (i.e., 61 : Se -~
9~). As with 'W, 6t is probabilistic and can be described by a reward distribution function
Prwd(X, r), where

Prwg(X, r) = Pr(61(x) = r). (2)

Rewards associate value to individual states and are used by the agent to improve perfor-
mance. Positive rewards indicate that the world is in a desirable state and negative rewards
indicate undesirable states.l'2

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 49

SE

i

The world

The sensory-motor
system

sl~ B I IAI
The decision system

_ _ |

The agent

Symbol

W
R
P
I
M

B

Function Name Mapping

r~.,~tio. SE × AE ~ SE
R~w~d SE ---> R

Perceptual SEX C --->S I
Co~ig~o~ AI X C - -) C
Motor

Behavioral

AI X C ---)AE
(SI x -->AI

Pmbabili~ti¢ Adaptive

Yes No

Yes No

No No

No No

No No

Yea Yes

Figure 1. A formal model for an agent with an embedded learning subsystem and an active sensory-motor sub-
system. The table summarizes the functions implemented by each of the model's modules.

2.1.2. The agent's task

Roughly, the aim of the agent is to maximize the reward it receives over time. The agent

does not want to merely maximize its immediate reward in the current state: it wants to

maximize the cumulative reward it receives over some period of time in the future. Several

5 0 S.D WHITEHEAD AND D.H. BALLARD

measures of cumulative reward can be used. We will assume that the agent tries to max-
imize a total discounted sum of the reward it receives over time. This sum will be called
the return and for t ime t is defined as

rt = ~ "~n-lFt+n (3)
n=l

where rt is the reward received at t ime t, and 3, is a discount factor between 0 and 1.
The agent 's overt behavior can be characterized by a policy function r e , which maps

states into actions (TrE : SE ~ Ae). I f the world is in state s and the agent follows the
policy 7re indefmitely, then the agent 's expected return is denoted by V~e(s). V~e is called
the value function for policy 7re, and V~e(s) is called the utility of state s. Formally, V~e(s)
is defined as

V~E(s) = E[R(s, r e , 1) + . . . ' y n - l R (s , 7rE, n) + ...1 (4)

where R(s, 7re, n) is the random variable denoting the reward received at time t + n, given
that at t ime t the system is in state s and follows r e for n-steps? If a decision is defined
as the act of choosing to execute an action in a given state, and is denoted by the state-
action pair (s, a), then a function that associates a value with each possible decision can
be defined. This function, called the action-value function, is denoted as Q~e for policy
r e and is defined as the expectation of the return the system will receive given that it ex-
ecutes action a in state s and follows policy r e thereafter. That is,

Q~e(s, a) = E[(R(S(s, a)) + "yV~e(~dT(s , a))]. (5)

For stationary Markov decision processes it can be shown (Bellman, 1957; Ross, 1983)
that an optimal policy, denoted 7r~:

1. is determinist ic
2. uniformly maximizes the value function over all s ta tes-- that is, for all s E SE,

V~(s) = max(V~(s)) (6)
~r

3. corresponds to the set of decisions that for each state maximizes the action-value
funct ion-- that is, for all s ~ SE,

Try(s) = a such that Q~(s, a) = max(Q~(s , b)). (7)
bEA E

The agent's objective is to learn and implement an optimal decision policy.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 51

2.1.3. Problem-solving tasks

In this article, attention is focused on a restricted class of Markov decision problems, which
we term problem-solving tasks. In a problem-solving task, the following restrictions apply:

• The world is completely deterministic (i.e., ~ and (R are deterministic functions).
• The reward function is uniformly zero for all states except a set of distinguished goal

states in which the agent receives a fixed positive reward.
• The task is organized into a series of trials, where each trial begins when the agent is

presented with a new instance of the problem and ends when either a goal state is achieved
or a time limit expires.

• After each trial, the agent's return is reset so that the return associated with each trial
depends only upon the time it takes the agent to solve the immediate problem instance.

Although they represent a restricted class of Markov decision problems, problem-solving
tasks (or problems similar to them) are fairly common in the reinforcement learning/adap-
tive control literature (Anderson, 1989; Barto et al., 1983; Sutton, 1990a; Whitehead, 1989;
Yee et al., 1990). Problem-solving tasks are the focus here for two reasons: 1) they are
simple, yet sufficient to demonstrate the difficulties caused by perceptual aliasing; and 2)
the new learning algorithm described below exploits the reliability of deterministic worlds
to deal with perceptual aliasing. 4 The fact that the agent can quit and go on to a new in-
stance of the task if it fails to solve a problem after a sufficiently long period of time is
an important feature of our task definition. It allows the agent to indirectly filter difficult
instances (and avoid the long searches associated with them) and focus on solving simpler
instances first. The agent learns to solve difficult instances through an incremental bootstrap-
ping process that is more efficient than when quitting is not allowed.

2.L4. The agent

Our model of the agent has two major subsystems: a sensory-motor subsystem and a deci-
sion subsystem. The sensory-motor subsystem implements three functions: 1) a perceptual
function (P; 2) an internal configuration function 5; and 3) a motor function BE. The pur-
pose of the sensory-motor subsystem is to ground internal perceptions and actions in the
real world. On the sensory side, the system translates the world state into the agent's inter-
nal representation. Since perception is active, this mapping is dynamic and dependent upon
the configuration of the sensory-motor apparatus. Formally, let SI be the finite set of possi-
ble internal states, and C be the (possibly infinite) set of sensory-motor configurations.
Then, the relationship between external world states and the agent's internal representa-
tion is modeled by the perceptual function (P, which maps world states SE and sensory-
motor configurations C onto internal representations Sl (i.e., (P : SE × C ~ SI). On the
motor side, the agent has a fmite set of internal motor commands, AI, that affect the model
in two ways: they can either change the state of the external world (by being translated
into external actions, AE), or they can change the configuration of the sensory-motor sub-
system. Internal commands that change the state of the external world are called overt actions

52 S.D WHITEHEAD AND D.H. BALLARD

and are denoted by the set Ao, whereas commands that change just the configuration of
the sensory-motor system are called perceptual actions and denoted by the set Ap. As with
perception, the configuration of the sensory-motor system relativizes the effects of internal
commands. This dependence is modeled by the functions 9E and 5, which map internal
commands and sensory-motor configurations into actions in the external world and into
new sensory-motor configurations, respectively (that is, ~ : At × C ~ AE and 9 : AI
x C ~ C) .

The other component in the agent's architecture is the decision subsystem. This sub-
system is like a homunculus that sits inside the agent's head and controls its actions. On
the sensory side, the decision subsystem has access only to the agent's internal representa-
tion, not to the state of the external world. Similarly, on the motor side, the decision sub-
system generates internal action commands that are interpreted by the sensory-motor system.
Formally, the decision subsystem implements a behavior function ~ that maps sequences
of internal states and rewards (S l x 9~)* into internal actions, Az.

In the vast majority of reinforcement learning systems, the sensory-motor subsystem and
the dynamic relationship it maintains between the world and the agent's internal represen-
tation is not modeled explicitly. Instead, the decision system is coupled directly to the world
and has complete knowledge of the world state. In contrast, the decision problem facing
our decision subsystem is not the same as the general problem facing the agent. In general,
the decision subsystem's objective is to learn a control policy that takes as inputs the agent's
internal representation and generates internal action commands, which when translated cor-
respond to optimal actions in the world. The decision subsystem has the additional task
of controlling the agent's sensory-motor system, which it must exploit to gain knowledge
about the external world.

2.2. Reinforcement learning

The task faced by the agent is representative of learning problems that have previously
been studied in reinforcement learning: that is, given the current state, a set of possible
actions, and previous trial and error experience, choose the best next action. As will be
seen in the next section, classical reinforcement learning algorithms cannot be directly
applied to problems in which the decision system's access to the world is modulated by
a limited (albeit dynamic) sensory-motor system. Nevertheless, a brief review of reinforce-
ment learning is in order since our eventual design is based directly on those classical ap-
proaches. For this subsection we will temporarily ignore the sensory-motor interface and
neglect the distinction between the world (SE, Ae) and the decision system's view of it (SI,
,41). In our experiments we have focused on a representative learning algorithm known as
Q-learning, and our brief review follows the development in Watkins (1989). However, our
analysis applies virtually all reinforcement learning algorithms that use temporal difference
methods to solve the temporal credit assignment problem (Sutton, 1988). A more thorough
treatment of Q-learning can be found in Watkins (1989), and reviews of reinforcement learn-
ing in general can be found in Barto et al., (1990b); and Williams, (1987).

In Q-learning the agent maintains an action-value function of its own. For time t this
function is denoted Qt. The agent's action-value function is intended to estimate the action-
value function of the optimal policy (i.e., Q = Q ~ and, hopefully, llmt~ ~at = O~r~).

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 53

Given Q, the agent's policy, denoted a- t for time t, is determined by analogy with Equa-
tion 7. For all s E Se,

7rt(s) = a such that Qt(s, a) = max(Qt(s, b)). (8)
bEA E

That is, for a given state s, the policy function simply selects the action that, according
to Qt, maximizes the expected return.

In Q-learning, the action-value function is estimated by keeping track of actual returns
received after making a decision. Recall from Equation 3 that the return at time t is defined
a s

r t = ~ "[n- lr t+ n (9)
n = l

Because 3' < 1, ,yn will approach zero as n becomes large, and because rewards are assum-
ed to be bounded, for each value of -y there will be some number of time-steps n after
which the remaining part of the actual return will be negligible. Hence, the agent may
calculate an acceptable estimate of the actual return after n time-steps. To obtain an even
better estimate, the agent may correct for the terms that are discarded by adding in (ap-
propriately discounted) the return the system expects to receive starting from time
t + n. Watldns (1989) refers to this type of estimate as the corrected n-step truncated return
and defines it as

r} ~) = ~ "yk- lr t+ k + "ynVt(Xt+n) (10)
k= l

where Vt(xt+n) is the agent's estimate of the return it expects to receive starting from state
xt+~. Vt estimates the optimal value function based upon the agent's current action-value
function and is given by

Vt(x) = Qt(x, 7~t(x)) (11)

Given r} n), the action-value function can be updated using the following n-step Q-
learning rule:

Q,+n(xt, at) = Qt(x,, a,) + o~(r}"~ - Qt(xt, at)). (12)

Here r~) - Qt(xt, at) is an estimate of the error in Qt that is based on watching the reward
received over the next n - 1 steps, and c~ is a constant that affects the learning rate. Ac-
tually, Equation 12 defines a family of learning rules, one for each n. For large n, the agent
waits for the future to unfold before updating Qt and does not heavily rely on Vt(xt+n).
Conversely, for small n, the agent updates Qt after a short delay and relies heavily on
Vt(xt+n) to accurately predict future reward. 5

54 S.D WHITEHEAD AND D.H. BALLARD

For the remainder of the article, when it is convenient and when there is no possibility
of confusion, the explicit time subscripts will be dropped from Q, ~r, and V. Under these
circumstances, it is important to remember that these functions are estimates maintained
by the agent that change over time and with experience.

Figure 2 outlines a simple but representative decision/learning cycle for a decision system
based on 1-step-Q-learning. The first step in the cycle is to select the next action for execu-
tion. With probability p, the system selects the action specified by its control policy 7r(x);
otherwise, it chooses an action at random. The action is then executed and the subsequent
state and reward are noted. Once the effects of the action are known, the error in the action-
value function for the current decision is computed and used to update Q. Finally, a-(x)
and V(x) are updated to reflect changes in Q. The reason the decision system does not always
select the action specified by its policy is that the action-value of a decision is only updated
when that decision is executed. Occasionally, selecting a random action ensures that each
decision will be evaluated periodically. Because the action-value of a decision is updated
after a 1-step delay, 1-step-Q-learning is particularly simple. Nevertheless, the learning rule
is effective. Watldns has shown that under standard assumptions for Markov decision proc-
esses, decision systems based on 1-step-Q-learning, using an appropriate exploration strategy
and an appropriately decreasing learning rate, are guaranteed to learn an optimal decision
policy (Watldns, 1989). Even though the algorithm in Figure 2 will learn the optimal policy
(~" ~ r/r,) for any problem solving task, the control algorithm will not perform optimal-
ly since with probability 1--p the system chooses a random action. This inconvenience
can be improved upon by adopting a slightly more complex procedure for controlling ex-
ploration (Barto et al., 1990).

E x a m p l e decision cycle for 1-s tep Q- learn ing:

1) Generate a random number q between 0.0 and 1.0
2) If (q < p)

then action ~-- 7r(x), where 7r is the policy function and x is the current state
else action ~ R(AE) , where R 0 is a random selection function.

3) Execute action, let x~,~ be the resulting state and r be the reward received.
4) Compute the 1-step error:

error *- [r + 7V(x ,~)] - Q(x, action)
5) Update the action-value of the selected decision:

Q(x, action) ~-- Q(x, action) q- aerror
6) Update the decision policy (for state x):

7r(x) -- a such that Q(x, a) ~- maxb~AE [Q(x, b)]
7) Update the evaluation function (for state x):

V(x) ~- Q(x, 7r(x))
8) Update the current state: x +- x~e~
9) Go to 1.

Figure 2. The steps in the decision cycle of a system based on 1-step Q-learning.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 55

2.3. Deictic representations

Although the above formal model of the sensory-motor system admits a variety of designs,
our research has been motivated directly by the work of Agre and Chapman on deictic
representations 6 (Agre & Chapman, 1987; Agre, 1988; Chapman, 1989). This subsection
discusses the essential ideas behind deictic representations and describes the deictic sensory-
motor system we used in a program that learns a simple block manipulation task.

A central concept underlying deictic representations is the marker, around which nearly
all perception and action revolve. 7 Markers are best thought of as pointers implemented
by the sensory-motor system: ideally, a marker points at an object in the world and registers
features of that object in the internal representationY We will describe a marker as bound
to an object if the marker is pointing to it. A marker can be bound to only one object
at a time, and it is assumed that the sensory-motor system maintains the marker's binding
at all times. Changing a marker's binding is accomplished by executing explicit actions
specifically targeted for that marker. These actions index target objects in the world accord-
ing to specific features that distinguish them from other objects. For example, a system
might have a marker M1 and an associated action Move-Ml-to-Red, which is used to index
and mark red objects. In this case, executing Move-Ml-tO-Red causes the sensory-motor
system to search the world for a red object and bind M1 to it. I f a red object cannot be
found, the action fails and M~s binding remains unchanged. If multiple red objects exist,
the sensory-motor system chooses the first one it comes to.

With respect to our formal model (Section 2.1.4), the configuration of the agent's sensory-
motor system is defined by its marker bindings since knowledge of those bindings, along
with knowledge of the world state, is sufficient to determine the values of the bits in the
agent's internal representation.

In a deictic representation the agent's sensory inputs fall into three general categories:
peripheral aspects, local aspects, and relational aspects. Peripheral aspects register general,
spatially non-specific information about the world, such as the presence or absence of cer-
tain colors, shapes, and motions. Both local aspects and relational aspects register proper-
ties of marked objects. Local aspects register intrinsic, local features of a marked object,
such as its shape, color, and texture. Relational aspects register relational properties be-
tween marked objects, such as relative shape, relative color, and relative position. The
moment-by-moment values of these three sets of inputs define the agent's internal
representation.

A key feature of deictic representations is that there are only a limited number of markers,
say less than ten (the system described below has two markers). The small number of markers
and the limited number of features associated with each marker keep both the internal
representation and the number of possible actions much smaller than is possible with con-
ventional representations. If an object in the world is not marked, then it is invisible to
the system (except for the effects it registers in the periphery). The emphasis is on keeping
the internal representation small and task-specific. Also, because the sensory-motor system
is active, the system can dynamically track the objects that are relevant and change its focus
of attention (marker bindings) as these objects come into and fade from significance.

Markers also play an important role in motor control since overt actions are predominately
specified with respect to them. In this case, a marker's binding acts to establish the reference

56 S.D WHITEHEAD AND D.H. BALLARD

frame in which an action is performed. For example, the overt action Place-at-M1 might
cause the agent to place an object it is holding at the location currently pointed to by marker
M1. We distinguish two types of markers: overt markers and perceptual markers. A marker
is overt if it has an action associated with it that affects the state of the external world.
Otherwise, it is a perceptual marker. Overt markers are used for establishing reference
frames for actions in the world, while perceptual markers are used for collecting addi-
tional information about the current state. Actions associated with overt markers are called
overt actions and actions associated with perceptual markers are called perceptual actions. 9

As an example, Figure 3 lists the specifications for the deictic sensory-motor system used
by a program (to be described later) that learns to solve a simple block manipulation task.
The system has two markers: an action marker and an attention marker. The action marker
is used for both perception and action, while the attention marker is used only for percep-
tion. Each marker has a set of local aspects associated with it; these report the color and
shape of the marked object, the number of blocks stacked above the marked object, whether
or not the marked object is sitting on the table, and whether or not the marked object is
being held by the robot. The system has two relational aspects--one for recording vertical
alignment between the two markers and one for recording horizontal aligmnent. Peripheral
aspects include inputs for detecting the presence of colors in the scene (red, green, and
blue) and for detecting whether the robot is currently holding an object.

The internal motor commands available to the decision subsystem are shown on the right
in Figure 3. In this example, all overt actions are made with respect to the action marker.
The two primary overt actions are for grasping and placing objects. For grasping, the ac-
tion grasp-object-at-action-marker causes the robot to pick up the object marked by the
action marker. The action works if the robot's hand is empty and the marked object has
a clear top. Similarly for placing, the action place-object-at-action-frame causes the system
to place a block it is holding on top of the object pointed to by the action marker. This
action works if the robot is holding a block and the target object has a clear top. Other
overt actions include commands for moving the action marker. Although these may appear
to be perceptual actions, they are overt actions in the strictest sense because they affect
the robot's ability to perform other overt actions.

The attention marker is a perceptual marker and has a repertoire of perceptual actions
that are used exclusively for gathering additional sensory information. As will be seen in
Section 4, the attention marker plays an important role in allowing the system to disam-
biguate world states.

All told the sensory-motor system has a 20-bit input vector (See Figure 3, left): 4 bits
of peripheral aspects, 14 bits of local aspects, 2 bits of relational aspects; and 14 actions:
8 overt and 6 perceptual.

Notice that the internal state space defined by the sensory inputs is small compared to
the state space that could result if every object in the domain were represented. The prin-
cipal advantage is that this reduction leads to more feasible perception and simpler deci-
sion tasks. The principal disadvantage is that it limits the complexity of the problems that
can be solved by the agent. For example, if during the course of a problem, a decision
depends upon features of three separate blocks, then an agent with the above sensory-motor
system will not be capable of solving the problem because it cannot simultaneously repre-
sent features of more than two blocks. Of course, the sensory-motor system could be

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 57

Sensory Inputs: Internal Action Commands:

Peripheral l
aspects

Local
aspects

Relational (
aspects

~ l u red-in-scene
een-in-scene
e-in-scene

ject-in-hand

~ } action-frame-color: (00 - red, 01 - green, 10 - blue)
_~ ~tion-frame-shape: (0 - block, 1 - table)

} action-frame-stack-height (00 - 0, 01 - 1, ...)
...J tction-frame-table-below
~ ~tion-frame-in-hand

} atm-frame-color: (00 - red, 01 - green, 10 - blue)
ttm-frame-shape: (0 - block, 1 - table)

atm-frame-stack-height (00 - 0, 01 - 1, ...)
~tm-frame-table-below
attn-frame-in-hand
frames-vertically-aligned-p
frames-horizontally- aligned-p

Action Frame Commands:

grasp-object-at-action-frame,
place-object-at-action-frame,
move-action-frame-to-red,
move-action-frame-to-green,
move-action-frame-to-blue,
move-action-fr ame-to-stack-top,
move-action-frame-to-stack-bottom,
move-action-frame-to-table

Attention Frame Commands:

move-atm-frame-to-red,
move-arm -frame -to-green,
move-atm-frame-to-blue,
move-atm-frame-to-stack-top,
move-atm-fr ame-to-stack-bottom,
move-atm-frame-to-table

Figure 3. The specification for a deictic sensory-motor system containing two markers. The system has a 20-bit
input vector, 8 overt actions, and 6 perceptual actions. The values registered in the input vector and the effects
of internal action commands depend upon the binding between markers in the sensory-motor system and objects
in the external world.

expanded to allow the system to register features of three blocks (for example, by adding
an additional marker) , but in general new problems can always be defined that are beyond
the scope of the current system. Our contention is that many of the problems we are in-
terested in solving (or learning to solve) only involve keeping track of a few objects at
a t ime (for example, see (Chapman, 1989)).

Also, notice that individual objects in the world are referenced not by arbitrarily assigned
names, but by the features that make them relevant. For example, the action Move-action-
marker-to-stack-top would cause the action marker to move upwards from its current posi-
tion until it reaches the block at the top of the stack. What makes this top block significant
is not any absolute name like "BLOCK-43" ' but the relationship it holds with the rest of
the world. Namely, this block is at the top of a stack and affords (Gibson, 1979) being
removed and placed on the table (possibly to get at another more important block). The
variety of features and propert ies that can be used as indices also delimits the types of
problems that an agent can solve.

Finally, notice that physical action in the world (e.g., picking and placing blocks) occurs
relative to the reference frame defined by the action marker. This is consistent with the
view that objects in the world fill roles according to their features and that the control
strategy learned by the decision system is specified in terms of those abstract roles.

58 S.D WHITEHEAD AND D.H. BALLARD

3. Perceptual aliasing

The straightforward integration of deictic representations and reinforcement learning leads
to undesirable interactions that prevent the decision subsystem from learning an optimal
control strategy. These interactions arise because the mapping between world states and
the agent's internal representation is many-to-many. That is, a state s E SE in the world,
depending upon the configuration of the sensory-motor subsystem, may map to several in-
ternal states; conversely, a single internal state, s' ~ SI, may represent multiple world states.
We call this overlapping between the world and the agent's internal representation percep-
tual aliasing. Figure 4 illustrates perceptual aliasing in a simple blocks-world domain, where
we have adopted the deictic sensory-motor system defmed in Figure 3. Figure 4a shows
two different world states (top) that generate the same internal representation simply because
the markers are focused on parts of the world that are similar. In the figure, the (+) represents
the action-frame marker and the (*) represents the attention-frame marker. Similarly, Figure
4b shows that a single world state (block configuration) can produce multiple internal
representations, depending upon the placement of the markers.

Perceptual aliasing has a devastating impact on the decision subsystem's ability to learn
an adequate control policy because it causes the system to confound world states that it
must necessarily distinguish in order to solve the task. The easiest way to illustrate the
problem is to consider the effect of perceptual aliasing in a simple problem-solving task.
Consider the task whose transition diagram is shown in Figure 5a. In this task, the world
has eight states, Se = {so, sl, s2 s6, g}, and there are two overt actions, AE = {at,
ar}. The goal of the task is to enter state g, whereupon the agent receives a fixed reward,
6~(g) = 5000. Non-goal states yield zero reward, fft(sk) = 0 for k = 0 to 6.

At this point, there are two decision problems that must be distinguished: the decision
problem faced by the agent and the decision problem faced by the embedded decision sub-
system. The problem faced by the agent is the original problem-solving task defined by
the world. The problem faced by the decision subsystem corresponds to the original prob-
lem as transformed by the sensory-motor interface. We call these the actual (or external)
problem and the perceived (or internal) problem, respectively.

For problem-solving tasks, the optimal value function, denoted I~e,, is an exponentially
decreasing function of the distance to the goal. That is, l~e(s) = 6~(g)3, (d(s)-l), where 3'
< 1, 6/(g) is the reward the agent receives upon entering the goal state, and d(s) is the
distance (number of steps) from state s to the goal. The optimal policy, 7r~, corresponds
to choosing the action that minimizes the distance to the goal. When faced with an in-
stance of the problem, the optimal solution trajectory corresponds to performing a gra-
dient ascent of l~e. For the actual problem-solving task given above, the optimal policy
corresponds to moving right (ar) at every opportunity (i.e., for all s fi SE, ~-~(s) = ar),
and the optimal solution to a given trial corresponds to a trajectory where l~e(xt) is
monotonically increasing in time. This result is illustrated in Figure 6a, which plots l~e(xt)
versus time for a trial that begins in state So at time t = 0 and follows the optimal trajectory
t o g a t t i m e t = 7.

If the agent's sensory-motor subsystem is transparent and gives the decision subsystem
direct access to the actual decision problem (i.e., SI = SE and AI = AE), then the deci-
sion subsystem could learn the actual task directly. In general, however, the decision problem

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 59

a)

World state I: [J ~ World state 2: [J q

* and ÷ On Blue b l o c k ~ / a n d + on Blue block

Intemalrepresentaliaa:

b)

World state:

/ / / / / / / / / / / / / / / / / / /

* and ÷ on Blue block

Intemal rep 1: / / ~ * on Green block, Blue block

111101010110101011011 I
Internal rep 2:

]111010101100111010011

Figure 4. Generally the mapping between external world states and the agent's internal representation is many
to many. a) shows how two different external states can generate the same internal representations and b) shows
how one external state may have more than one internal representation. In the figure, the (+) represents the action-
frame marker and the (*) represents the attention-frame marker.

seen by the embedded decision subsystem, the perceived problem, depends upon the map-
ping defined by the sensory-motor subsystem. For the task shown in Figure 5a, consider
an agent with a sensory-motor subsystem that implements a mapping between the world
and the agent's representation that is fixed, one-to-one, and onto except for states sz and
sa, which get mapped to the same internal state s~,5. That is, let SI = {s~, st, s'2,5, s~, s,~,
sd, g ' } , where except for s' 2,5, s] (and g') represents world state sj (and g). Also let AI
= {a/, a~}, where a/and a~ map to at and ar, respectively. The transition diagram describ-
ing the perceived decision problem is shown in Figure 5b. Note that this decision problem
is not Markovian since the effects of actions are not independent of the past but depend
upon the hidden, unperceived state of the actual, underlying decision problem. For example,

60

a)

S.D WHITEHEAD AND D.H. BALLARD

ar v ar v ar v a r v a¢ v a r v a r

b)

at'

a,' a,'

at' at' , ~

a/'

Figure 5. Transition diagrams for a simple problem-solving task: a) the diagram for the actual decision problem,
b) the diagram for the perceived decision problem when interpreted through a sensory-motor system with percep-
tual aliasing.

of the actual, underlying decision problem. For example, the optimal trajectory from sd
' ' s ' s ' s~, g ' and contains s~,5 twice--once when to g' is the sequence So, sl, 2,5, s~, s~, 2,5,

the world is in state s2 and once when it is in state s 5. However, the embedded decision
system will never see the sequence sd, s[, s' s~, g'. 2,5,

This system does not have a stable decision policy. I f the policy for the decision system
is initialized to the optimal policy and the control rule is fixed so that the system follows
the optimal policy with probability p = 0.99 and chooses a random action otherwise, and
if the decision system is run for many trials and allowed to estimate the value and action-
value functions (denoted VI and Qt, respectively) then we observe the following. First,
since the value and action-value functions are based on expected returns, for the state s~,5,
they take on values somewhere between the corresponding values for s2 and s5 in the ac-
tual decision problem. That is,

F*e(s2) _ Vi(s~,5) <_ F*e(s5), (13)

Q~(s2, ar) <- Qi(s~,5, ar) <- Q~(ss, ar), (14)

and

S t * S Q~(s2, at) < QI(2,5, al3 <- Qe(5, al). (15)

62 S.D WHITEHEAD AND D.H. BALLARD

overestimates the expected return at t = 2. Similarly, the second time s~, 5 is encountered,
when t = 5 and the world is in state Ss, Vl(s~,5) underestimates the expected return.

I f we relax our hold on the decision policy and allow the system to adapt, we find that
the optimal policy is unstable! Not only is the system unable to find the optimal policy,
it actually moves away from it. In general, it can be shown that the system will oscillate
among policies, never finding a stable one. The instability can be understood by consider-
ing the effect of the aberrational maximum on the policy. According to Equation 8 the system
locally adjusts its policy in order to maximize the expected return. Thus, in state s~ the
policy will be changed so that the system tends to take actions that move it back to s~,5
instead of forward to s~ (since Vl(s~,5) > Vt(s~)). The aberrational max imum acts as an
attractor for nearby states, such as s~, and causes them to change their local policy away
from optimal. An intuitive way to understand the problem is to consider a local homun-
culus that sits at s~ and can see the utilities of its neighbors. From his point of view, s~,5
looks desirable since once the system is in s~,5 it can execute ar, which often leads to sd
(one step from the goal). On the other hand, choosing the action which leads to s~ leaves
the system still three steps from the goal. From the homunculus ' point of view, going to
s~,s is on average better than going to s~. What the homunculus cannot perceive (because
of perceptual aliasing) is that going f rom s~ directly to s~,5 always returns the real world
to state s2, which cannot reach s~ directly. The problem is that the homunculus cannot
distinguish between s2 and ss, as they are both represented by s~,5, and he erroneously
assumes that the effects of actions only depend on the current perceived state (the Markov
assumption).

The aberrational max imum is also unstable because it is based on a running average
of the expected returns. If, because of policy changes, s 5 is rarely visited, the aberration
will disappear. Unfortunately, as soon as the policy changes back so that s5 begins to be
encountered more frequently, the aberration reappears. Thus, the system oscillates from
policy to policy, unable to converge on a stable one.

The trouble with perceptual aliasing is that it prevents the decision system from learning
accurate estimates of the utility and action-value functions by causing the system to average
different values from different world states. The internal state s~,5 can never accurately
represent both (or either) s2 and s5 since its value and action-value functions are based
on averages. Intuitively an internal state, s ' is a good representation if 1) every state it
represents in the actual world has the same utility and 2) there is one internal action that
when executed in s ' maps to the optimal action in the world. This intuition about a good
representation can be formalized by introducing the notion of a consistent decision and
a consistent state.

Let us begin by defining three sets that are useful for discussing relationships between
states and decisions in the actual and perceived decision problems. First define SRep(s ')
to be the set of world states that for one configuration or another of the sensory-motor
system map to the internal state s'. Formally, s ~ SRep(s ') if and only if there exists a sensory-
motor configuration c ~ C such that 6~(s, c) = s'.

Similarly, define DRep(d ') to be the set of actual decisions (state-action pairs in the ac-
tual decision problem) that for one configuration or another of the sensory-motor system
map to the internal decision d ' = (s', a ') . Formally, d = (s, a) E DRep(d ') if and only
if there exists c E C such that (P(s, c) = s ' and ~lZ(a', c) = a.

a) 5000

4000

3000

2000

1000 I I I I i i

1 2 3 4 5 6

Time (in steps)

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 61

b)
5000

4000

D 3000

[]

2000

tO00 i i i i i i

0 1 2 3 4 5 6

Time (in steps)

Figure 6 Plots of the utility versus time as the agent traverses from state s o at t = 0 to g at t = 7 (for 3' =
0.8): a) the utility for the actual decision problem, I"*E; b) the utility estimated by the decision subsystem for
the perceived decision problem, V 1.

Second, the value funct ion for the perceived problem, I/i, no longer monotonica l ly in-
creases as the system traverses the opt imal trajectory. This anomaly is shown graphical ly
in Figure 6b, which plots Vt(xt) as a funct ion of t ime as the system follows the opt imal
trajectory f rom s6 to g' . The figure shows that a local m a x i m u m occurs at t = 2 when
the system first encounters s~,5. We call this event an aberrational max imum since it does
not reflect the true expected re turn of the actual decis ion problem. In reality, the world
is in state s2 and the t rue expected re turn is l~e(s2) (= 2048 for 3' = 0.8), but, because
of perceptual aliasing, the decision system cannot dist inguish s2 and s5 and, consequently,

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 63

Finally, define Con(s, s ~) to be the set of sensory-motor configurations that map the world
state s into the internal state s'. Formally, c ~ Con(s, s') if and only if (P(s, c) = s '.

Now, an internal decision d ' = (s', a ') is defined to be consistent with respect to the
actual task if and only if every decision it represents in the actual decision problem has
the same optimal action-value. That is,

d ' is consistent iff 3k~ Vd~ Onep(a') [Q~(d) = k]. (16)

Similarly, an internal state s ' is defined to be consistent with respect to the actual deci-
sion problem if the state has one decision, the optimal decision, that 1) is consistent and
2) for every world state represented by s ' maps to the optimal decision in the actual deci-
sion problem. That is, s ' is consistent if and only if there exists d ' = (s', a ') such that
d ' is consistent and

V~SRe~,(~') V~ Co,,<~,~') [~ (a ' , c) = 7r~(s))].

Given these definitions of consistency, internal states can be labeled as either consistent
or inconsistent. Inconsistent states give rise to aberrational maxima and interfere with learn-
ing, whereas consistent states serve as true representations of the actual world state. In
the example task given above, the decision d ' s ' = (2,5, a ') is inconsistent since the cor-
responding decisions in the actual problem differ (i.e., Q~(s2, ar) = 2048 and Q~(ss, ar)

s S t = 4000). Similarly, s2.5 is inconsistent since the optimal decision (d = (2,5, ar)) is
inconsistent--the optimal action-values for s2 and s5 differ, even though the optimal ac-
tion is the same.

The negative effects of perceptual aliasing need not arise only in systems with limited
perception. It can also arise when assigning credit to the internal structures of a decision
system. For instance in an example similar to the one described above, Grefenstette (1988)
showed how strength averaging in the rules of a classifier system, using the bucket brigade
algorithm (Holland et al., 1986) for credit assignment, prevents the system from learning
an optimal control strategy. In this case, rules that match multiple world states (allowed
to improve generalization) exhibit a kind of perceptual aliasing and as a result are vulnerable
to inconsistencies and inaccurate return estimates.

4. Dealing with perceptual aliasing

Perceptual aliasing can be a blessing or a curse. I f the mapping between the external world
and the internal representation is chosen correctly, a potentially huge state space (with all
its irrelevant variation) collapses onto a small simple internal state space. Ideally, this pro-
jection will group world situations that are the same with respect to the task at hand. But,
if the mapping is not chosen carefully, inconsistencies will arise and prevent the system
from learning an adequate control strategy. The main result of our study is a first attempt
at a decision system, based on reinforcement learning, that can cope with perceptual alias-
ing. The new decision system is designed specifically to be embedded within an agent with
an active sensory-motor system and to actively control perception to overcome the negative

64 S.D WHITEHEAD AND D.H. BALLARD

effects of perceptual aliasing. The decision system learns not only the correct overt actions
needed to solve a problem, but also how to control its sensory subsystem in order to focus
on those objects in the world that are relevant to the task.

The design is based on three observations/assumptions:

1. In active perception a world state can be represented by multiple internal states, one
of which is usually consistent. That is, in any given state, if the agent looks around
enough it will eventually attend to those objects that are relevant to the task, and the
internal state associated with that sensory configuration will be consistent. Our algorithm
depends on the existence of one consistent internal state for each world state.

2. Inconsistent states disrupt the decision system's ability to learn by promising erroneously
large expected returns. If we can detect inconsistent states and actively lower their action-
value estimates, we can minimize their negative effects.

3. If the world is deterministic, then inconsistent states will (because of averaging)
periodically overestimate the utility of the actual world state, whereas the incidence
of overestimation in consistent states can be made to diminish with time. Therefore,
inconsistent states can be detected by monitoring the sign of the estimation error in
the updating rule, Equation 12.

4.1. The overt cycle

The algorithm used by the new decision system is outlined in Figure 7. The decision sub-
system recognizes two classes of internal action commands (AD: overt actions and percep-
tual actions, denoted Ao and Ap, respectively. Overt actions change the state of the
external world whereas perceptual actions change the mapping between world and the
internal states. 10

The main decision cycle is the overt cycle, which concerns itself with choosing overt
actions in an attempt to maximize return. Embedded within the overt cycle is a perceptual
cycle. After each overt action, the system executes a series of perceptual actions (the percep-
tual cycle) in an attempt to assess the true state of the external world. The objective of
the perceptual cycle is to find an internal state that is a consistent representation of the
current world state. Upon completion, the perceptual cycle returns a list, St, of the inter-
nal states encountered during the perceptual cycle. Each state corresponds to a different
view (representation) of the current external world. The utility of the current world state,
V~xt), is estimated as the maximum utility of the individual internal states, maxs~st(Vx(s)).
As will be described below, our algorithm for adjusting the utility estimates of internal
states severely lowers the utility estimates of inconsistent states. Consequently, utility
estimates for world states tend to be based on the utilities of consistent states and not biased
by the apparitional maxima associated with inconsistent states.

Once V~xt) has been estimated, the action-value estimates Qz, for the previous overt
action are updated (as described below). The overt cycle then continues by selecting an
overt action to execute. With probability p (e.g., p = 0.9), the system chooses the action
consistent with its policy; the rest of the time it chooses an action at random. When following
policy, the action is chosen by searching among active internal states, St, for the decision

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 65

O v e r t Cyc le :

1) Execute P e r c e p t u a l C y c l e and generate St, a set of internal
representations for the current world state.

2) Es t imate the utility of the current world state, st: VE(s t) "-- m a x , es,[V1(8)].
3) Execute U p d a t e - O v e r t - Q - E s t i m a t e s based on VE(st), r~, oact~-i and liont-1;

where rt is the reward received at t ime t, oactt-1 is the last overt action executed,
and l iont-1 is the internal s tate selected to represent the previous world s tate (see below).

4) Choose the next overt action to execute:
Wi th probability p follow policy:

oaet ~-- a~ such tha t qs~es,[Ql(S~r, a~) = max(s,a)~St×A o [Ql(S, a)]]
Otherwise choose randomly: oact +- R (A o)

5) Select the Lion: L ion ~-- (SL, oact) such tha t QI(SL, oact) = m a x s e s t [Q i (s , oaet)].
6) Execute oact to obtain a new world state and go to 1).

U p d a t e - O v e r t - Q - E s t i m a t e s :

1) Es t imate the error in the lion's action-value: error ~-- (rt + 7VE(st)) - Q i (L i o n t - 1) .
2) Update the action-value of the Lion:

I f (error < 0) then the lion is suspected of being inconsistent, so suppress it: Q i (L i o n t - 1) ~ 0.0
Else update it using the s tandard 1-step Q-learning rule: Q i (L i o n t - 1) +- Q i (L i o n t - 1) + c~error.

3) Update non-lion internal states:
For each s E St-1 and s # s ta t e (L ion t -1) do:

Q i (s, oact t -1) +- Q i(s, oact t -1) + a ' error - - where ~ ' < a.

P e r c e p t u a l Cyc le :

1) Initialize St: St *-- {so}, where sc is the current internal s tate.
2) Do n times: (in our implementat ion n = 4)

i) select the next perceptual action:
with probability p~ : pact ~-- a such tha t Qi(sc , a) = maXbeAp[Qt(sc , b)],
otherwise: pact +- R(Ap) .

ii) execute pact to obtain a new internal s ta te s ~.
iii) update the action-value est imate for the decision (se, pact):

Oz(sc,paet) *- O~(so,pact) + ~(v1(s') - O~(sc,pact).
iv) add s ' to St: St = St U {s'}
v) update s~: s , *-- d .

3) Return St.

Figure 7. An outline of the steps executed by the new decision system designed specifically to overcome the dif-
ficulties caused by perceptual aliasing.

with the largest action-value. That is, after collecting St, the system has IStl × IAo] deci-
sions it must consider, one for each possible action in each possible representation of the
current state. We denote this set by O t. The system's policy is to choose the decision, d~
= (s~, a~), called the policy decision, such that

Ql(STr, a~) = max [Ql(S, a)]. (17)
(s,a)~St×A 0

Once an overt action is chosen, it is executed and the overt cycle begins anew. Figure 8
shows a cartoon of the new decision system in action. The large nodes represent world

66 S.D WHITEHEAD AND D.H. BALLARD

Perceptual actions

f World states - - ~

Overt action

Internal states

Consistent internal states

Figure 8. A sketch of the new decision system in action. The large (super) graph depicts the overt cycle, where
large nodes correspond to world states and arcs correspond to overt actions. The subgrapbs embedded within
each large node depict perceptual cycles, with nodes corresponding to internal representations of the current world
state and arcs corresponding to perceptual actions.

states, and the arcs between them overt actions. Embedded within each large node is a
subgraph representing the perceptual cycle. The nodes in this graph correspond to represen-
tations seen by the decision system, and the arcs between them correspond to perceptual

actions.

4.2. Learning a new action-value function

Standard Q-learning algorithms estimate the action-value of a decision as the return the
system expects to receive given that it makes that decision and follows its policy thereafter
(cf. Equation 5). However, for inconsistent decisions this definition leads to artificially
high action-values (aberrational maxima). We have developed a modified learning algorithm
that is based on Q-learning but incorporates a competitive component. This component
tends to suppress the action-values of inconsistent decisions while allowing action-values
for consistent decisions to take on their nominal values. Since action-values for policy deci-
sions are now based on predictions from consistent decisions, they more accurately estimate

the true values of the actual decisions.
The learning algorithm is based on identifying one decision among Dt that takes the

"lion's share" of the responsibility (credit or blame) for the outcome of the next overt ac-
tion. We identify this decision as the Lion. If aL is the next overt action to be executed
by the system, then the lion is defined as the maximal decision among O t that is consis-

tent with the action aL. That is,

Lion = (sL, aL) such that QI(sL, aL) = max(Ql(S , aL)). (18)
s~St

When the system is following its policy, the lion is just the policy decision, Lion = dr.

L E A R N I N G TO PERCEIVE A N D ACT BY T R I A L AND ERROR 67

The idea underlying the use of a lion is that in every situation the lion should be a con-
sistent decision; whenever it is not, the inconsistency in the decision should be detected
and its action-value should be suppressed. That is, we would like the decision system to
learn a new action-value function in which the action-values of consistent decisions take
on their actual values, and the action-values of inconsistent decisions are zero:

Qidealts a) = (Ql*(S, a) if (s, a) is consistent
l k ,

0 otherwise. (19)

Inconsistent lions are detected and suppressed as follows. I f at time t, the action-value
of the lion, QI(SL, aL) is greater than the estimated return obtained after one step, rt +
"YVl(St+l) , then the lion is suspected of being inconsistent and the action-value associated
with it is suppressed (e.g., reset to 0.0). Actively reducing the action-values of lions that
are suspected of being inconsistent gives other (possibly consistent) decisions an oppor-
tunity to become lions. I f the lion does not overestimate the return, it is updated using
the standard 1-step Q-leaming rule. To prevent inconsistent decisions from climbing back
into contention, the estimates for non-lion decisions in D t are updated at a much lower
learning rate and only in proportion to the error in the lion's estimate. The observation
that allows this algorithm to work is that inconsistent decisions will eventually (at one time
or another) overestimate their action-values and, thus, will eventually be suppressed. On
the other hand, it can be shown that a consistent lion is stable (i.e., it will not overestimate
its action-value) if every state between the lion's state and the goal also has a consistent
policy decision. Thus, inconsistent decisions are unstable with respect to lionhood while
consistent decisions eventually become stable. The steps for updating action-values are shown
in Figure 7 under the Update-Overt-Q-Estimates heading.

4.3. The perceptual subcycle

The steps in the perceptual cycle are sketched in Figure 7 under the Perceptual Cycle
heading. The objective of the perceptual cycle is to accumulate a set of internal representa-
tions of the external world, one of which has a consistent policy decision. This goal is
achieved by executing a series of perceptual actions. In our current implementation, each
perceptual cycle executes a fixed number (n = 4) of perceptual actions. This number has
proven adequate for our experiments, but it is easy to imagine variable length perceptual
cycles in which the cycle either terminates as soon as a consistent internal state is found
or increases when inconsistent states are encountered. 11 The algorithm for selecting ac-
tions within the perceptual cycle is similar to the algorithm for choosing overt actions in
the overt cycle. With probabilityp' (e.g., p ' = 0.9), the system follows its policy, otherwise
it selects at random. When following policy, the action selected is the perceptual action
ap such that QI(S, ap) = maxbeae(Qi(s, b)), where s is the system's current internal state.
That is, the policy calls for perceptual actions that lead to internal states with maximal
expected returns.

68 S.D WHITEHEAD AND D.H. BALLARD

The rules for updating action-values for perceptual actions are those for standard 1-step
Q-learning, as shown in Figure 7 within the Perceptual Cycle procedure. These updating
rules lead to action-values that average the utilities of the states that result from executing
a perceptual action. Since consistent states tend to have higher utilities than inconsistent
states (whose action-values are suppressed), the effect is to choose perceptual actions that
lead to consistent internal states.

The lion algorithm's response to variation in the return estimates is extreme. The utility
of a state that exhibits the slightest variation in return is suppressed. A similar, but somewhat
less extreme approach has been used by Grefenstette in a classifier system called SAMUEL
(Grefenstette, 1988; Grefenstette, 1989; Grefenstette et al., 1990). In SAMUEL, the variance
in a rule's return is estimated as well as its mean, and the strength of the rule is determined
based on the difference between estimates for its mean and its variance. Using this variance-
subtraction formula, consistent rules tend to be favored over inconsistent ones whose returns
vary.

While Grefenstette had success using variance-subtraction in a simple missile evasion
task, it performed poorly when we applied it to a simple block stacking task (cf. Section
5). Our initial attempt to deal with perceptual aliasing in the block stacking task was to
use exactly variance-subtraction. Only later did we develop the lion algorithm. There are
at least two reasons why variance subtraction did not work for us. First, it is difficult to
obtain accurate, unbiased estimates of the return variance since the world states associated
with a given internal state are not encountered equally often. This is especially true once
the system begins to converge on a policy. As a result, even a decision that is wildly incon-
sistent may have a small variance estimate and may not be suppressed. Also, variance sub-
traction does not guarantee that consistent decisions will eventually dominate--subtracting
(even an accurate) variance estimate from the mean may not reduce the action-value of
a decision enough to permit a competitor to dominate. As a result, inconsistent decisions
may continue to participate in action-value/utility estimation and create aberrational maxima.

The particular circumstances that allow variance-subtraction to succeed in the missile
evasion task studied by Grefenstette are difficult to obtain from the available literature
(Grefenstette, 1988; Grefenstette, 1989; Grefenstette et al., 1990; Ramsey et al., 1990).
However, this issue is certainly worthy of further investigation as are other algorithms for
detecting and coping with inconsistent decisions.

5. An example

To test our ideas, we implemented a system that learns a simple block manipulation task.
In this task, the agent is presented with a pile of blocks on a conveyor belt. The agent
can manipulate the pile by picking and placing blocks. When the agent arranges the blocks
in certain goal configurations, it receives a fixed reward of 5000 units. Otherwise, it receives
no reward. When the agent solves the puzzle, the pile immediately disappears and a new
pile comes down the belt. I f the agent fails to solve the puzzle after a fixed number of
steps, nquit , the pile falls off the end of the conveyor and a new pile appears at the front.
A pile can have any number of blocks in it and can be arranged in arbitrary stacks. A

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 69

block can be any one of three colors: red, green, or blue. We make the standard assump-
tions that a block can be picked up only if its top is clear and that a block can be placed
only at locations with clear tops.

We have implemented a program that learns to solve a simple version of the block
manipulation game. The program uses the deictic sensory-motor system described in Figure
3, and the decision system described above. The objective of the program is to demonstrate
the feasibility of the lion algorithm and no special effort has been taken to optimize
performance.

The particular task we studied rewards the agent whenever it picks up a green block.
That is, goal configurations consist of those states in which the robot is holding a green
block. We chose to study this task because it is very simple, but adequate to demonstrate
the difficulties caused by perceptual aliasing. These problems can be seen in Figure 9,
which shows a typical sequence of world states the agent might traverse in solving one
instance of the problem. The trick to this task is for the agent to learn to focus on the
green block. That is, depending upon the placement of the attention frame, world states
1,3,4,5, and 6 may have inconsistent internal representations. If the attention frame is fixed
on the green block, then the internal states are consistent; if the attention frame is fixed
on any other block, then the internal representations of the states are inconsistent. For ex-
ample, in state 6, if the attention frame is fixed on the blue block, then state 6 cannot be
distinguished from other world states that are identical except with additional blocks above
the green block. The system overcomes this ambiguity by learning to direct its attention
frame to the green block, which provides sufficient extra information (the height of the
green stack) needed to disambiguate the situation.

o"

rh
R R ~

G B÷

@,
tR

G+

o""""" o

IS] IS] E]
rslm r71 Bq

e e " " ' " " e " " " " " e S'B--;''"
Figure 9. A sequence of world states in a typical solution path for the block manipulation task. Depending upon
the placement of the attention frame, states 1, 3, 4, 5, and 6 may be represented ambiguously. The (+) shows
the course of the action frame. Not shown are the states of the perceptual subcycle, where the attention frame moves.

70 S.D WHITEHEAD AND D.H. BALLARD

A series of experimental runs were performed to obtain qualitative data on the new deci-
sion system's performance. In each run, the robot was sequentially presented with 1000
instances of the task (i.e., 1000 trials). Each instance consisted of a randomly configured
pile of 4 blocks, with the pile always containing exactly one green block. Randomly select-
ing problem instances guaranteed that the system would get a good mix of easy and dif-
ficult problems. An easy problem, for instance, is one in which all three blocks are uniformly
placed on the table. In this case, the robot need merely fixate and grasp the green block.
Conversely, a more difficult problem is one in which the green block is at the base of a
stack containing 3 blocks. In this case, the robot must unstack each block until it clears
the green one. If in any trial the robot fails to solve the problem after nquit overt actions,
it decides that the instance is too difficult and moves on to the next trial.

Performance results for a typical experimental run are shown in Figure 10. The graph
shows the number of overt actions taken by the agent for each of the 1000 instances of
the task it encounters during a typical run. Initially, the agent fails on almost every trial
(i.e., it takes 30 steps and quits). It does, however, manage to solve a few instances. These
early successes are invariably easy problems, requiring only one or two correction actions
to solve. After about 100 trials, the agent begins to solve more and more instances including
more difficult problems. Eventually, the agent learns to solve even the most difficult in-
stances and rarely fails (e.g., < 5% failure after 1000 trials).

The agent's performance on a given trial depends strongly on the difficulty of the trial
instance; consequently, Figure 10 appears very noisy. A clearer picture of the agent's per-
formance is obtained by averaging results over multiple experimental runs. Figure 11 plots
the average over 200 runs of the number of overt actions taken per trial. Plots for the optimal

30

-~ 20

o .

(D
lO

0 200 400 600 800 1000

T r i a l

Figure 10. A plot of the number of steps per trial as a function of the instances seen by the agent for a typical
experimental run. Noisiness is due to the wide variety of tasks being solved.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 71

20

• c

m
Q . O

6 ~ lO

. . - . " - . ~ . . . ' " . '- .- ." " ..

~ LRaiT~o(20:ns)

I ~ _ - - m

| | | i |

0 200 400 600 800 1000

T r i a l

Figure//. A plot of the average number of steps per trial as a function of the instances seen by the agent. The
average is taken over 200 runs and provides a smoother picture of the agent's learning curve. The agent's steady
state performance is approximately 125 % optimal. Also shown is the average number of steps taken by an agent
acting randomly.

number of steps (average of 200 runs) and for an agent behaving randomly are also shown.
The figure clearly shows that the agent's initial performance is poor--near the maximum
of 30 steps per trial--but improves considerably during the first few hundred trials. The
agent's performance settles just under 12 steps per trial (about 125 % optimal).

The agent's performance fails to converge to optimal for two reasons. First, with proba-
bility 1--p (p = 0.9), the decision subsystem chooses its overt action randomly, reflecting
a simplification in our decision algorithm that can be eliminated by incorporating a slightly
more complex procedure for controlling exploration (Barto et al., 1990b). Second, the deci-
sion subsystem is not guaranteed in every case to find a consistent lion (even if it exists)
since in our implementation the perceptual subcycle only executes 4 perceptual actions
and chooses the lion from the set of at most five unique internal states. Further, perceptual
actions are also occasionally (p ' = 0.9) selected randomly. As a result, residual inconsis-
tent lions occasionally arise and interfere with the agent's performance.

Figures 10 and 11 show that the agent learns to solve the task, but they say nothing about
which instances the agent learns to solve first or the order in which the agent learns its
task-dependent representation. To get a glimpse of the order in which the instances of the
task are learned, each problem instance was classified into one of four categories: easy,
intermediate, difficult, and very difficult. Easy problems correspond to instances in which
the green block is clear and the agent need only pick it up. Intermediate problems include

72 S.D WHITEHEAD AND D.H. BALLARD

instances where the green block is covered by one block; difficult problems, two blocks;
and very difficult problems, three blocks. Plots of the average trial times and average suc-
cess rate for each of these four classes of problems are shown in Figure 12 and Figure
13, respectively. Both figures show that the agent first learns to solve easy tasks reliably,
and then learns more and more difficult ones. In Figure 12, the agent shows improvement
on easy tasks immediately; it shows improvement on intermediate tasks after 10-20 trials;
on difficult tasks after 50-60 trials; and on the most difficult tasks after 70-80 trials (see
Figure 12b). A similar trend is seen in Figure 13, which also shows that the agent eventu-
ally learns to reliably solve all but the most difficult tasks and then only fails about 10%
of the time. 12

To determine the order in which the agent learns a consistent representation, statistics
were collected to measure the amount of overestimation that occurs during learning. As
before, world states were classified into four categories according to their distance to the
goal: easy, intermediate, difficult, and most difficult. For each class, the fraction of times
(over 200 experimental runs) the lion overestimated (and was suppressed) was maintained
as a function of the number of trials seen. These percentages are plotted in Figure 14. As
expected, the agent initially overestimates a high fraction of the time. This fraction is espe-
cially high because a single overestimation can cause a chain of subsequent overestima-
tions; and lacking knowledge on how to control perception, the agent frequently fails to
choose a consistent lion. With experience, however, the agent eventually learns to select
consistent internal states, and the amount of overestimation decreases.

We expected the agent to learn consistent lions for easy states first and then to boot-strap
its way to consistency for more and more distal states. To some extent this expectation is
verified in Figure 14, which shows that the amount of overestimation decreases first for
easy states and decreases later for more difficult states. Early on, the fractions for in-
termediate, difficult, and most difficult problems are rarely solved, and when they are,
they tend to be inefficient. For example, when solving an intermediate problem, it is com-
mon for the agent to stack an extra block on the green pile, try other unhelpful actions
within that configuration for a while, unstack the block, and go on to solve the problem.
Thus, the agent sees mixes of intermediate, difficult, and most difficult states. Initially,
therefore, all trials end up visiting about the same fraction of consistent states. This ran-
dom searching is much less prevalent in easy tasks whose solutions involve only one or
two correct actions. Eventually, as the agent learns to solve easy problems (after 80-100
trials), intermediate states become increasingly consistent and the agent visits harder states
less frequently on its way to the goal. The inconsistency in intermediate states tends to
decrease while the consistency of more difficult states remains unchanged.

Figure 14 also shows that after 1000 trials the agent continues to overestimate a substantial
fraction of the time. This fraction is fairly low for easy states (-~ 5 %) but unexpectedly high
for the most difficult states (= 45%). There are three reasons for this high rate of over-
estimation. First, as previously mentioned, our implementation is not guaranteed to always
find a consistent internal state, even if one exists. This explains the small fraction of steady
state overestimation that occurs even for easy states. Second, a single overestimation (and
suppression) tends to cause a chain reaction of overestimations in earlier "set-up" states
(even for consistent states). Thus, the high fraction of overestimation in more distal (dif-
ficult) states is explained by the fact that occasional overestimations in easy states propagate

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 73

a) 30

Easy
4= Intermediate

ult

o- 2

O)

< o

20

10

I I I I /

200 400 600 800 1000

Trial

b)

20

10 ~

I I

100 200
T r i a l

Figure 12. Plots of the average number of steps per trial for each of the four classes of problem instances: i)
easy (no unstacking); ii) intermediate (1 to unstack); iii) difficult (2 to unstack); and iv) most difficult (3 to unstack).
a) shows a complete plot ranging from 0 to 1000 trials; b) shows a focused plot ranging from 0 to 200 trials.
The plots show that the agent learns to solve easier tasks first.

back to these states and destroy consistencies there. Third, when overestimations occur
they tend to temporarily break the agent's decision policy. Often the agent will waste a
great deal of time in an inconsistent confused loop until it gives up or manages to luck

74 S.D WHITEHEAD AND D.H. BALLARD

a)
0 . 9 9

0 . 7 9

~ e ~ 0 . 4 0 '

0 . 2 0 •

0 . 0 0 -

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

T r i a l

b)

:3 t:: ~2

Q
E t~
0

LL v

0 . 9 9 -

0 . 7 9 •

0 . 5 9 •

0.40 •

0 . 2 0 -

0 . 0 0 " i i

1 0 0 2 0 0

T r i a l s

Figure 13. Success rates for each of the four classes of problem instances versus the number of trials seen by
the agent, a) shows a complete plot ranging from 0 to 1000 trials; b) shows a focused plot ranging from 0 to
200 trials. The plots show that the agent learns to solve easier tasks first and eventually learns to solve all in-
stances fairly reliably.

into a state from which it can solve the problem. As a result, these statistics are misleading
in that they tend to report more overestimations than there are inconsistent internal states.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 75

0.99 1
ta Easy

--~ I~ '~ " Difficult

0.79 --I~k • Intermediate

"= 0.40

o. o t
0.00 ~

0 200 400 600 800 1000

T r i a l

Figure 14. The fraction of overestimations encountered over 200 runs for each of the four classes of world states.
The plot shows that consistent representations are learned for easy states first, followed by consistent representa-
tions for more difficult states, and that the agent continues to perform in the face of residual inconsistencies and
overestimation.

The robustness of the agent's performance in the face of persistent overestimations led
us to consider tasks with more than four blocks. Another set of experiments were per-
formed in which the problem instances ranged from easy (0 blocks to unstack) to most
difficult (3 blocks to unstack). In these experiments, however, additional outlying blocks
were added to the pile. The number of outliers was randomly chosen between 0 and 20.
Outliers interfere with the system's abili ty to learn the most difficult instances because the
agent's sensory motor system cannot distinguish between stacks containing four or more
blocks. Therefore, the agent has no way of distinguishing (under any sensory-motor con-
figuration) states where it has to unstack three blocks from states where it has to unstack
4,5,6, or more blocks. These states do not have consistent internal representations. Results
from the experiments are shown in Figure 15. They are comparable to the results from
our earl ier experiments, except with slightly longer average solution times and a slightly
lower success rate (especially for the most difficult instances). Nevertheless, even in the
face of inconsistencies the agent is capable of learning a robust decision policy.

6. Discussion: Limitations and future prospects

In this section current limitations of the architecture and the lion algorithm are discussed.
Where possible, we also outline approaches that may be useful in overcoming these limita-
tions. As yet, none of the suggestions outlined have been implemented or tested; therefore,
the discussion is necessari ly speculative.

7 6 S .D W H I T E H E A D A N D D.H. BALLARD

a)
3 o

l O

o 1
o

c)

O.9 -

g 0.7

> m o~
' ~ o 0 . 4 .

o

a >

0 . 0

E~y b)
I Intermediate

1 ~ II Difficult 0.9

.= i t
~ o . .
~ c
® 2

o 0.4

m >

,..- o o.2

• i - , - t • = , | o O

200 400 600 800 1000 " '

Tr ia l

__L_"

• , • , • i , i - =

200 400 600 800 1000

Tr ia l

I • i - i - i • I

200 400 600 800 1000

T r i a l

Figure 15. Performance plots for experiments that include piles of up to 20 outlying blocks, a) The average solu-
tion time for each class of problem, b) the success rate for each class of problem, c) the fraction of overestima-
tions observed for each class of state. The plots are comparable to those in our original experiments and show
that the agent can learn even in environments which it cannot consistently represent.

6.1. Deterministic tasks

One of the mos t impor tant assumpt ions made in our m o d e l is that the external wor ld is
determinist ic . The l ion a lgor i thm depends upon the world be ing determinis t ic to differen-

tiate consistent representat ions f rom inconsis tent ones. That is, internal states whose op-

t imal returns have non-zero var iance (detected by overest imat ion) are inconsistent and are
suppressed. I f the wor ld were al lowed to be non-de te rminis t ic (i.e., stochastic), then the

opt imal returns o f consis tent internal states would also have a non-zero var iance and the

l ion a lgor i thm would weed them out as well.
At the momen t , we do not know how to deal in general wi th stochastic worlds (e.g.,

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 77

when the world is modeled by a Markov decision process.) However, we believe that minor
modifications to the lion algorithm can lead to systems that can cope with two restricted
(but useful) classes of non-determinism.

Quasi-Deterministic Transitions: Imagine a world which is more or less deterministic
except that occasionally, due to unperceivable circumstances, a random perturbation oc-
curs. This perturbation might cause the world to make an "unexpected" transition (e.g.,
the stack of blocks tips over), or cause the agent to receive an anomalous reward (e.g.,
a food pellet gets wedged into the injection mechanism). The current lion algorithm is ex-
tremely sensitive to such "failures" and would suppress even consistent lions (good inter-
nal representations) upon encountering even one failure. This suppression can have a
catastrophic impact on the stability of the optimal policy because it can lead to a chain
reaction in which a whole series of consistent lions gets suppressed. Thus, one untimely
failure can completely destroy an otherwise perfect policy. One way to overcome this limita-
tion is to allow lions to occasionally overestimate, thereby allowing occasional failures
without severely impacting the stability of the optimal policy. Inconsistent lions would still
tend to be suppressed since they act as attractors and cause the agent to repeatedly visit
(and overestimate) them.

Minor Payoff Variation: Another source of non-determinism might be caused by slight
variations in the reward function. For example, upon successfully traversing a maze, a (ar-
tificial) rat might receive food pellets that vary slightly in size (and reward value). The
current lion algorithm is sensitive to this noise and would have trouble learning the task.
One approach to this problem is to permit a certain amount of overestimation. That is,
instead of suppressing a lion whenever it overestimates its return (i.e., error × 0), we sup-
press it only if it overestimates by too much (e.g., error × threshold).

Another alternative is to suppress the lion only partially. That is, instead of resetting
overestimating lions to zero, the action-value is reset to some fraction (say 95%) of the
lower estimate. In this case, in the face of noisy returns, consistent states would tend to
take on values near their average (i.e., roughly their true consistent values), while incon-
sistent states would tend to take on values around a fraction (95 %) of their lowest values.

6.2. Non-blocked tasks

Instances in a problem-solving task are presented in blocks of trials. Once the agent solves
a problem instance, the trial ends and a new instance begins. Defining tasks in terms of
trials and distinguished goal states provides the learning algorithm with the foothold it needs
to learn i tsfirst problem (and consistent internal states), which is used in turn to boot-strap
to more and more difficult instances. At the moment, it is not clear if the current algorithm
will work for less structured tasks that continue indefinitely instead of ending once the
agent receives a reward.

6.3. Adequate perception

Limited Sensors: Another major assumption made by the lion algorithm is that each world
state is consistently represented by at least one internal state. This assumption becomes

78 S.D WHITEHEAD AND D.H. BALLARD

problematic for tasks that require a large amount of information to uniquely describe the
absolute state of the world with respect to the task. The difficulty can be seen by consider-
ing the fruitcake (or block copying) problem described by Ginsberg (1989). In the fruit-
cake problem, the agent's goal is to arrange a stack of lettered blocks so that the stack
spells out the work "fruitcake". Chapman has shown that a system with a deictic sensory-
motor system (which uses 4 markers) can be built to solve the problem. But, our current
system, even if equipped with the additional 4 markers is unable to learn this problem
because it cannot unambiguously encode the state of the world with just four markers.
If each marker reports only the letter and position of the block it marks, then placing the
agent's markers on any four blocks in the stack spelling fruitcake does not provide enough
information for the agent to know that it has correctly spelled "fruitcake" At best it can
know that four letters are in their correct position. Adding additional markers, one for
each letter in the word, would help but is not satisfactory because Chapman has shown
that a system with four markers is sufficient.

Loops: A similar problem arises for tasks whose strategies require the agent to repeatedly
execute a loop a large number of times. For example, in the block manipulation task we
studied, the agent could learn to solve only instances where 4 or fewer blocks were above
the green block (although many more blocks could be in the pile), because its sensory
system had only 2 bits to encode the stack height.

One approach to this problem is to consider grouping sets of decisions into macro deci-
sions (or schemas) that capture the fundamental cycles in the policy and treat them as unit
actions.

Memoryless tasks: Another closely related assumption made by the architecture is that
the agent's local environment completely encodes the state of the task. That is, if equipped
with a sufficiently complex sensory system, the agent can consistently represent the world
by sensing its local environment. This assumption prohibits the agent from learning tasks
that require short-term memory. During the course of a task the agent may receive a signal
that determines a decision to be made in the future. If the agent has no way to remember
the value of the signal, it will not be able to make the correct decision when the time comes.
For example, a bus driver, upon hearing the "exit bell," must remember the signal long
enough to reach the next bus stop.

It would be interesting to consider architectures that incorporate mechanisms for memory
and recall. Presumably, memories could be stored and recalled based on the indexical aspects
that make them significant (i.e., like perception).

6.4. Faster learning

In this article, we have chosen simplicity over speed. However, the rate at which these
systems learn is an important research issue deserving further attention. Four approaches
to improving the learning rate are given below. It would be interesting to see how well
they can be integrated into our existing architecture.

Generalizing Function Approximators: Our current experimental system uses a table
to implement the action-value function and therefore is incapable of generalizing over states
(although generalization occurs implicitly through the use of a deictic sensory-motor system).

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 79

One way to speed up learning is to use more sophisticated function approximation tech-
niques that are capable of generalization (e.g., CMACs (Albus, 1975; Albus, 1981), neural
networks (Anderson, 1986), rule based classifiers (Holland, 1975; Holland et al., 1986),
and clustering algorithms (Mahadevan & Connell, 1990)).

Explanation-based generalization: A related approach to generalization has recently
been suggested by Yee et al. (1990) and involves using explanation based generalization
(EBG) to learn useful concepts based on the system's ability to explain expectation failures.
This approach requires that the agent possess a formal model of the world, which it uses
to form explanations and to perform regression. The technique allows credit to be assigned
not only to states that immediately precede a particular reward event, but also, through
a generalized explanation of the causal sequence, to states that are functionally equivalent.
Gordan and Grefenstette (1990) have also considered combining EBL and reinforcement
learning techniques.

Forward modeling: A third approach to improving the learning rate is for the agent
to learn a forward model of the world and simultaneously use that model to perform men-
tal experiments. This approach has recently been shown to significantly improve the learn-
ing rate for simple (standard) reinforcement learning tasks (Sutton, 1990a; Sutton, 1990b;
Whitehead & Ballard, 1989b; Whitehead, 1989). It would be interesting to see how well
these ideas can be applied to architectures with active sensory-motor systems.

Supervision: Finally, to obtain very fast learning, it will ultimately become necessary
to learn from a teacher (Whitehead & Ballard, 1991). As a first step in this direction, it
would be useful to study the stability of systems that first receive immediate feedback (e.g.,
hot/cold information) from an external teacher and eventually learn to solve the task without
intervention. Although this approach is viable for standard reinforcement learning
algorithms, it appears to be problematic for the lion algorithm since removing the teacher's
rewards would cause the system to overestimate its returns. Thus, the current lion algorithm
would unlearn (via suppression) everything it gained by the teacher. The modified lion
algorithm that resets overestimating lions to 95 % of the lower value should overcome this
problem and be amenable to instruction.

7. Conclusions

In this article, we have considered the interactions that arise in adaptive control architec-
tures that integrate active sensory-motor systems (specifically deictic representations) with
decision systems based on reinforcement learning. We found the integration non-trivial
because active sensory-motor systems naturally lead to internal states that are inconsistent.
Inconsistent states wreak havoc on the decision system's ability to learn by introducing ap-
paritional maxima in the value function and destabilizing the learning algorithm with respect
to the optimal policy. A solution to this problem, based on actively detecting and suppress-
ing inconsistent states, was proposed. The result is a system that learns to focus its atten-
tion on the relevant aspects of the domain as well as control its overt behavior. The new
algorithm was demonstrated in a system that learns a simple block manipulation task that
is beyond the scope of previous reinforcement learning systems. Although our systems are
still very primitive, we find the results encouraging and hope that continued effort will
yield systems capable of more sophisticated behavior.

80 S.D WHITEHEAD AND D.H. BALLARD

Acknowledgments

We are especially thankful to Josh Tenenberg for his insightful discussions during the form-
ative stages of this work. We also gratefully acknowledge Phil Agre, Chuck Anderson,
Andrew Barto, Chris Brown, Steve Bradtke, Bulent Murtezaoglu, Ray Rimey, Rich Sut-
ton, Paul Viola, and Lambert Wixson for their technical feedback, and thank Kathy Ivey
for thoroughly proofreading a draft version of this paper. We also thank the anonymous
reviewers for their feedback. The comments of one reviewer, in particular, were especially
detailed and helpful.

Notes

1. In principle, the world could include the agent in its description. However, for the simple tasks we are con-
cerned with, it suffices to view the world simply as a model of the agent's local external environment.

2. In this article we have included the reward function as part of the world model. This is consistent with the
definition of a Markov decision process and conveniently separates the agent from the task it is trying to
learn. In terms of a physical realization, the reward function could be implemented in a reward center of
the agent's nervous system. In this case, the agent encodes a priori knowledge about the task since the reward
center knows when to generate a reward. In such a configuration, however, the reward center would tend
to be relatively simple, and rewards would be few and far between. For example, in a problem-solving
task, the reward center might generate a non-zero reward only when the agent achieves the goal, but not
otherwise. Or, alternatively, the reward center might act as a go-between, generating a reward only upon
receiving specific stimulation from an external source (e.g., a teacher).

3. Our definition of F~r e varies slightly from the definition commonly found in dynamic programming texts.
This variation is an artifact of our decision to associate rewards with states instead of associating them with
the choice of an action in a state.

4. Even though problem-solving tasks, as we've defined them, can be studied without introducing the extra
notation associated with Markov Decision Problems, we have adopted the more general framework because
1) it is commonly used to model sequential decision processes both in machine learning and elsewhere, 2)
it adds perspective to the class of tasks we are studying, and 3) it serves as a goal, in that we hope eventually
to extend our results to this more general class of problems.

5. In general, it is possible to use updating rules based on a weighted sum of n-step returns. Sutton (1988)
takes this approach in his Theory of Temporal Differences (TD) Methods. Two advantages of TD-methods
are 1) Qt(xt, at) is updated after each step (and thus retains the advantages of both small and large n) and
2) TD-methods have efficient implementations since, by choosing the weights just right, the estimation error
can be based on the differences between the predictions of temporally adjacent states.

6. deic.tie \ dik-tik, da-'k-; dff-ik- \ adj[Gk deiktikos, fr. deiktos, verbal of deiknynai to show] : showing
or pointing out directly (the words this, that, and those have a - function) (from Webster's New Collegiate
Dictionary, ninth edition)

7. The term marker originated in Ullman's work on visual routines (Ullman, 1984).
8. In this discussion, we finesse the issue of exactly what an "object" is and assume an object can be defined

by its local features, such as its shape and color.
9. Agre and Chapman do not distinguish markers as overt or perceptual in their systems. The two classes are

introduced here because the learning algorithm described below depends on being able to distinguish be-
tween actions that change the world and actions that simply change the agent's perception of it.

10. As a side effect, overt actions may also change the perceptual configuration, but perceptual actions are not
allowed to affect the world state. In the deictic sensory-motor system described in Figure 3, the action-
frame has only overt actions, and the attention-frame has only perceptual actions.

11. Actually, it may be possible to eliminate the distinction between the overt cycle and the perceptual cycle
and integrate them into a single cycle in which the action (either overt or perceptual) with the highest utility
is chosen. We are currently experimenting with such an algorithm.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 81

12. Increasing nquit slightly, say to 40, almost always gives the agent the extra time it needs to solve even the
most difficult problems.

References

Agre, P. E. (1988). The dynamic structure of everyday life. PhD thesis, MIT Artificial Intelligence Laboratory,
Cambridge, MA.

Agre, P. E., & Chapman, D. 0987). Pengi: An implementation of a theory of activity. Proceedings of the Sixth
National Conference on Artificial Intelligence (pp. 268-272). Los Altos, CA: Morgan Kaufmann.

Albus, J. S. (1975). A new approach to manipulator control: Cerebellar model articulation controller (CMAC).
Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control, 10, 25-61.

Albus, J. S. (1981). Brains, behavior, and robotics. Peterborough, NH: BYTE Books.
Anderson, C. W. (1986). Learning and problem solving with multilayer connectionist systems. PhD thesis, University

of Massachusetts, Amherst, MA.
Anderson, C. W. (1989). Towers of hanoi with connectionist networks: Learning new features. Proceedings of

the Sixth International Conference on Machine Learning (pp. 345-350). San Mateo, CA: Morgan Kaufmann.
Ballard, D. H. (1989). Reference frames for animate vision. Proceedings of the Eleventh International Joint Con-

ference on Artificial Intelligence (pp. 1635-1641). Los Altos, CA: Morgan Kaufmann.
Barto, A. B., & Sutton, R. S. (1981). Landmark learning: An illustration of associative search. Biological Cybernetics,

42, 1-8.
Barto, A. B., Sutton, R. S., & Watkins, C. (1990a). Sequential decision problems and neural networks. In D.

S. Touretzky (Ed.), Advances in neural information processing systems 2. San Mateo, CA: Morgan Kaufmann.
Barto, A. B., Sutton, R. S., & Watldns, C. J. C. (1990b). Learning and sequential decision making. In M. Gabrial

& J. W. Moore (Eds.), Learning and computational neuroscience. Cambridge, MA: MIT Press. (Also COINS
Tech Report 89-95, Dept. of Computer and Information Sciences, University of Massachusetts, Amherst, MA
01003).

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuron-like elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 834-846.

Bellman, R. E. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.
Bertsekas, D. P. 0987). Dynamic programming: Deterministic and stochastic models. Englewood Cliffs, NJ:

Prentice-Hall.
Blum, L., & Blum, M. (1975). Toward a mathematical theory of inductive inference. Information and Control,

28, 125-155.
Blythe, J., & Mitchell, T. M. (1989). On becoming reactive. Proceedings of the Sixth International Conference

on Machine Learning (pp. 255-259). San Mateo, CA: Morgan Kaufmann.
Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment. PhD thesis, University of

Michigan.
Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEEJournal of Robotics andAutoma-

tion, 2, 14-22.
Chapman, D. (1989). Penguins can make cake. AI Magazine, 10, 45-50.
Clocksin, W. F., & Moore, A. W. (1988). Some experiments in adaptive state-space robotics. (Technical report).

University of Cambridge, Computer Laboratory.
Drummond, M. (1989). Situated control rules. Proceedings of the Rochester Planning Workshop (pp. 18-34).

(Technical Report 284). University of Rochester, Department of Computer Science.
Fikes, R. E., Hart, P. E., & Nilsson, N.J. (1972). Learning and executing generalized robot plans. Artificial

Intelligence, 3, 251-288.
Firby, R. J. (1987). An investigation into reactive planning in complex domains. Proceedings of the Sixth National

Conference on Artificial Intelligence (pp. 202-206). Los Altos, CA: Morgan Kaufmann.
Franklin, J. A. (1988). Refinement of robot motor skills through reinforcement learning. Proceedings of the 27th

IEEE Conference on Decision and Control. Austin, TX.
Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. Proceedings of the Sixth National

Conference on Artificial Intelligence (pp. 677-682.). Los Altos, CA: Morgan Kaufmann.

82 S.D WHITEHEAD AND D.H. BALLARD

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.
Ginsberg, M. L. (1989). Universal planning: An (almost) universally bad idea. A/Magazine, 10, 41-44.
Girosi, E, & Poggio, T. (1989). Networks and the best approximation property (AI Memo No. 1164). Massachusetts

Institute of Technology, Artificial Intelligence Laboratory.
Gordon, D. G., & Grefenstette, J. J. (1990). Explanations of empirically derived reactive plans. Proceedings of

the Seventh International Conference on Machine Learning (pp. 198-203). San Mateo, CA: Morgan Kaufmann.
Grefenstette, J. J., Ramsey, C., & Schultz, A. (1990). Learning sequential decision rules using simulation and

competition. Machine Learning, 5, 355-382.
Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algorithms. Machine Learning,

3, 225-245.
Grefenstette, J. J. (1989). Incremental learning of control strategies with genetic algorithms. Proceedings of the

Sixth International Workshop on Machine Learning (pp. 340-344). San Mateo, CA: Morgan Kaufmann.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.
Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning algorithms applied to

parallel rule-based systems. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:
An artificial intelligence approach (Volume 11). San Mateo, CA: Morgan Kaufmann.

Holland, J. H., Holyoak, K. E , Nisbett, R. E., & Thagard, P. R. (1986). Induction: processes of inference,
learning, and discovery. Cambridge, MA: MIT Press.

Hormel, M. (1989). A self-organizing associative memory system for control applications. In D. S. Touretzky
(Ed.), Advances in neural information processing systems 1. San Mateo, CA: Morgan Kaufmann.

Kaelbling, L. P. (1989). A formal framework for learning in embedded systems. Proceedings of the Sixth Interna-
tional Workshop on Machine Learning (pp. 350-353). San Mateo, CA: Morgan Kaufmann.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in soar: The anatomy of a general learning
mechanism. Machine Learning, 1, 11-46

Mahadevan, S., & Connell, J. (1990). Automatic programming of behavior-based robots using reinforcement learning
(Research Report RC 16359). IBM T. J. Watson Research Center.

Miller, W. T., Sutton, R. S., & Werbos, P. J. (1990). Neural networks for control. Cambridge, MA: MIT Press.
Nilsson, N. J. (1989). Action networks. Proceedings of the Rochester Planning Workshop (Technical Report 284)

(pp. 36-68). University of Rochester, Department of Computer Science.
Ramsey, C., Schultz, A., & Grefenstette, J. (1990). Simulation-assisted learning by competition: Effects of noise

differences between training model and target environment. Proceedings of the Seventh International Conference
on Machine Learning (pp. 211-215). San Mateo, CA: Morgan Kaufmann.

Ross, S. (1983). Introduction to stochastic dynamic programming. New York, NY: Academic Press.
Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable domains. Proceedings of Ninth In-

ternational Joint Conference on Artificial Intelligence (pp. 1039-1046). Los Altos, CA: Morgan Kaufmann.
Schoppers, M. J. (1989). Representation and automatic synthesis of reaction plans. PhD thesis, Dept. of Com-

puter Science, University of Illinois at Urbana-Champaign.
Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. PhD thesis, University of Massachusetts

at Amherst.
Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning, 3, 9-44.
Sutton, R. S. (1990a). First results with DYNA, an integrated architecture for learning, planning, and reacting.

Proceedings of the AAAI Spring Symposium on Planning in Uncertain, Unpredictable, or Changing Environments.
Sutton, R. S. (1990b). Integrating architectures for learning, planning and reacting based on approximating dynamic

programming. Proceedings of the Seventh International Conference on Machine Learning (pp. 216-224). San
Mateo, CA: Morgan Kaufmann.

Ullman, S. (1984). Visual routines. Cognition, 18, 97-159. (Also in: Visual cognition, S. Pinker (Ed.), 1985).
Watkins, C. (1989). Learning from delayed rewards. PhD thesis, Cambridge University.
Whitehead, S. D. (1989). Scaling in reinforcement learning (Technical Report TR 304). University of Rochester,

Department of Computer Science.
Whitehead, S. D., & Ballard, D. H. (1989a). Reactive behavior, learning, and anticipation. Proceedings of the

NASA Conference on Space Telerobotics (pp. 333-344). Pasadena, CA: Jet Propulsions Laboratory.
Whitehead, S. D., & Ballard, D. H. (1989b). A role for anticipation in reactive systems that learn. Proceedings

of the Sixth International Workshop on Machine Learning (pp. 354-357). San Mateo, CA: Morgan Kaufmann.

LEARNING TO PERCEIVE AND ACT BY TRIAL AND ERROR 83

Whitehead, S. D., & Ballard, D. H. (1991). A study of cooperative mechanisms for faster reinforcement learning
(Technical Report TR 365). Rochester, NY: University of Rochester, Department of Computer Science.

Williams, R. J. (1987). Reinforcement-learning connectionist systems (Technical Report NU-CCS-87-3). Boston,
MA: Northeastern University, College of Computer Science.

Wilson, S. W. (1987). Classifier systems and the animate problem. Machine Learning, 2, 199-228.
Yee, R. C., Saxena, S., Utgoff, E E., & Barto, A. G. (1990). Explaining temporal-differences to create useful

concepts for evaluating states. Proceedings of Ninth National Conference on Artificial Intelligence (pp. 882-888).
Cambridge, MA: MIT Press.

