
Machine Learning, 7, 85-99 (1991)
© 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning to Predict Non-Deterministically Generated
Strings

MOSHE KOPPEL
Department of Math and Computer Science, Bar-llan University, 52 900 Ramat-Gan, Israel

Editor: David Haussler

Abstract. In this article we present an algorithm that learns to predict non-deterministically generated strings.
The problem of learning to predict non-deterministically generated strings was raised by Dietterich and Michalski
(1986). While their objective was to give heuristic techniques that could be used to rapidly and effectively learn
to predict a somewhat limited class of strings, our objective is to give an algorithm which, though impractical,
is capable of learning to predict a very general class. Our algorithm is meant to provide a general framework
within which heuristic techniques can be effectively employed.

Keywords. Prediction, Kolmogorov complexity, minimum description length, learning in the limit

1. Introduction

In order to illustrate what we mean by learning non-determinist ically generated strings we
consider the case of language acquisition. Let us begin by first considering the classic,
and much simpler, case of learning determinist ically generated languages. Imagine that
we are learning the grammar of a language in the following way. We order the countably
infinite set of all strings of words, that is, all potential sentences, and put them to a native
speaker with complete knowledge of the language, one at a time. For each potential sentence,
the native tells us whether it is a grammatical sentence in the language. We use these answers
to form a hypothesis as to what the grammar of the language is and thus to predict the
native's answers concerning not-yet-asked potential sentences. We say that the language
has been learned i f given the answers to a sufficient number of questions, we forever after
successfully predict the native's answers, i .e. , we can distinguish grammatical sentences
from non-grammatical sentences. It is well known (Blum & Blum, 1975; Gold, 1967) that
there are algorithms which successfully learn any language provided that some (any) bound
on the computational resources (i.e., time) required for determining "grammaticalness"
in the language is known in advance.

Let us now extend this notion of learning to the case of non-determinist ical ly generated
languages. Suppose that the native doesn't have complete knowledge of his language so
that he doesn' t know the answer to every question. Let us suppose further that he is proud
and rather than admit that he doesn' t know an answer he guesses (say, by surreptit iously
tossing a coin). We wish to use his answers to learn what he knows about the language.

Let us call the native's knowledge (yes, no, don't know) regarding a part icular query, the
"computed response" and let us call the answer (yes, no) he gives us, the "actual response."

86 M. KOPPEL

Then we wish to use the native's actual responses to previous queries in order to predict
his computed resonse to a non-yet-asked query. (Strictly speaking, then, the "non-
deterministically generated language" which we wish to learn is the language known by
the native rather than the actual language of his people.)

The difficulty, of course, lies in the fact that a guess "looks" exactly like an honest answer.
Nevertheless, we will give an algorithm which can successfully learn any native's knowledge
provided that the native's guesses are indeed random and that, as in the deterministic case,
some bound on the computational resources required to compute grammaticalness (yes,
no, or don't know) in the language known by the native is known in advance.

To further motivate the discussion let us consider another example. Suppose we wish
to determine under what circumstances some physical event takes place. Let us assume
that there is some natural ordering of a countably infinite set of experiments which can
be run to test for the event. From the results of these experiments we form hypotheses
as to the circumstances under which the event takes place. Now suppose that the situation
is complicated by the fact that it is possible that in some of the experiments the parameters
which we control do not determine the outcome, i.e., that there is a "hidden variable"
which is independent of the controlled parameters and that the results of these experiments
depend on this hidden variable. I f it is further assumed that the hidden variable is two-
valued and each value occurs with probability 1/2, it is not difficult to see that the learning
problem here is isomorphic to that of the language example and that therefore our algorithm
works equally well for either example.

The outline of the article is as follows: After formalizing the notion of non-deterministically
generated strings, we define the concept of "learning" non-deterministically generated strings
by extending the classical definitions of learning-in-the-limit (Gold, 1967) and learning
with probability 1 (Osherson, Stob, & Weinstein, 1985; Wexler & Culicover, 1985). Our
definition extends learning to non-computable strings.

We briefly review aspects of the theory of program-length-complexity (Chaitin, 1975;
Kolmogoroff, 1965; Solomonoff, 1964) in order to introduce a version of information-
compression which distinguishes structure from randomness in binary strings. This com-
pression method facilitates the construction of an algorithm which solves the learning prob-
lem illustrated above.

Finally, we work the algorithm on some artificial examples in order to illustrate some
significant features of the "logic of discovery" which are reflected by the algorithm.

2. Formalizing the problem

Unless otherwise stated all strings in this article are binary. We will use the following nota-
tion. Let S be a finite or infinite string. Then I sl is the length of s, Sn is the n th bit of
S and S n is the initial segment of S with length n. For two strings, S and T, S _ T means
that S is an intial segment of T.

Let us consider a generalization of the examples given above. Imagine that the computed
response (yes, no, don't know) to a query (potential sentence, experiment) might depend
on all the previous actual responses (including guesses). Then we can formalize the com-
puted response as a computable function f which maps each finite binary string (i.e., the

NON-DETERMINISTICALLY GENERATED STRINGS 87

previous actual responses) to an element of the set {0, 1, c} (where c stands for "coin"
and represents the "don't know" case discussed above). We call such an f a non-deterministic
bit generator (NDBG). Observe that the illustrations in the introduction are both special
cases of NDBGs in which f depends only on the length of the given string but not on its
bits. The results of this paper obtain for the general case in which f depends on any or
all previous bits (responses).

Another special case of an NDBG is one in which f maps each string to either 0 or 1
(but not c). We call such an f a deterministic bit generator (DBG). A DBG f generates
a sequence F defined by the equations F1 = f(4~) and Fn+ 1 = f(Fn). F represents the in-
finite sequence of responses determined by f.

For example, let fo be a DBG such that

J ' - 0 if Ixl + 1 is composite
fo(x) \l if Ixl + 1 is prime

Then the associated sequence F0 is the characteristic string of the primes.
In general, however, an NDBG might generate an uncountable number of different se-

quences depending on how the non-determinism is resolved. Let D be a binary string which
we call a decision string which is used to resolve the non-determinism of f in the following
way: we generate the sequence F~, F2, • • • until the first c is reached. Then c is replaced
with D~. We continue generating the sequence in this way, each time replacing the i th c
with D i until the IDI + 1 a c is reached (that is, until D is all used up) and then stop.
Thus for each decision string D, the NDBG f generates some (finite or infinite) sequence.
Let us call this sequence F(D) and refer to F as the sequence-function associated with the
NDBG f.

Let us consider some examples of NDBGs and their associated sequence functions.

1. Let f~ be an NDBG such that

S 1 i f Isl ~- 3 (moO 4)
fl(S)

c otherwise

Then the associated sequence-function F~ is such that

F~(ala2a3a4asa6. • .) = a~aEa31a4asa61

That is, f~ generates strings in which every fourth bit is 1 and all the other bits are deter-
mined by coin-toss.

2. Let f2 be an NDBG such that

f2(x)
if Ixl is even
if Ixl is odd and the last bit of x is 0
if Ixl is odd and the last bit of x is 1

8 8 M. K O P P E L

Then the associated sequence-function F2 is such that

F2(ala2.. .an) = a l a l a 2 a 2 . . . a n a n.

3. Finally, let P be some computable predicate and let g: N ~ N be some computable
function, and let fa(x) be some NDBG such that

f3(x) = (P(lXlc + 1)
if POx] + 1) can be computed within g(]xl) steps

otherwise

Then the associated sequence F3 is such that F3(D) is the characteristic string of P with
P(n) replaced by D i if n is the i th number for which P(n) fails to be computed in g(n)
steps or less.

Now let us consider some of the properties of a sequence-function F:

i. A partial function on the finite binary strings is a function which is defined on a subset
o f the finite binary strings. A function which is defined for all finite binary strings
is said to be total. For any total NDBG f, the associated sequence function F is total.

ii. A function g from finite strings to (finite or infinite) strings is a process if (1)
[D ' > D and g(D) is finite and g (D ') is defined] ~ g (D ') > g(D) and (2)
[D ' > D and g(D) is infinite] = g(D ') = g(D). Any sequence function F is a process.
Observe that if a process is defined for finite strings then it is implicitly defined for
infinite strings since for any infinite D, f(D) = lim n ~ oo f(Dn). Note that lim n ~ oo
f(D n) must be infinite.

iii. A total function g is injective if g(D ') ___ g(D) = D ' _> D. A total function g is strictly
injective if for every D, g(D • 1) _ g(D) • 1 and g(D" 0) _> g(D) • 0. Any sequence
function F is strictly injective.

iv. A partial function g is partially computable if there is a program (Turing machine)
M such that for all x, either M(x) and g(x) are undefined or M(x) = g(x). g is com-
putable if it is both partially computable and total. I f the NDBG f is computable then
the associated sequence function F is computable.

These properties are the only ones which we need. Formally, then, we say that F is
a sequence function if it is a computable, strictly injective process.

Obviously each NDBG f has a unique associated sequence-function F. For the converse,
let F be a sequence-function and say that a string S is generated by F if for some D, S
_< F(D). Let Do be the shortest D such that S _< F(D). By the strict injectivity of F, Do
is uniquely defined. Then F is associated with any NDBG f such that

0
f(S) = 1

c

if F(Do) - S " 0
if F(Do) - S " 1
if F(Do) = S

NON-DETERMINISTICALLY GENERATED STRINGS 89

We say that any such NDBG f is associated with E Observe that F does not determine
f(S) for strings S which are not generated by F.

3. Learning

In this section we review the formal definition of learning-in-the-limit (Blum & Blum, 1975;
Gold, 1967) and extend this definition to a version of probabilistic learning which is ap-
plicable to NDBGs.

To make matters simple, let us imagine a two-person game in which one player is called
the "learner" and the other is called the "native" The native provides the learner with
the first n bits of a binary string and the learner then uses some algorithm to form a hypothesis
regarding how these n bits were computed and accordingly guesses what the next bit will
be. The native then provides the learner with the next bit of the string, thus confirming
or contradicting the learner's guess. The learner then uses his algorithm to predict the next
bit and the game continues. If from some stage on, the learner's predictions are always
correct we say that the learner has learned to predict the native's string. More formally,
identifying the learner with the algorithm A which he uses to make his predictions, we have:

Definition. An algorithm A is said to learn to predict the infinite string S if for all suffi-
ciently large n, A(S n) ----- S n + 1

Of course, any algorithm will learn some string. What makes some learning algo dthms
more useful than others is their ability to learn many strings.

Definition. An algorithm A is said to learn to predict the set of infinite strings/3 if A learns
to predict every S fi /3. I f there is an algorithm which learns to predict/3, then/3 is said
to be learnable.

An important concept in the theory of learning is that of "g-boundedness" which we
define now informally. I f g: N ~ N is a computable function, then a string is said to be
g-bounded if its initial segments of length n can be computed in at most g(n) steps. We
say that the sequence-function F is g-bounded if, given any infinite D, the initial segments
of F(D) of length n can be computed in g(n) steps. We say that an NDBG is g-bounded
if the associated sequence-function is g-bounded. (This definition is informal because for-
mally g-boundedness is a function of the method of computation being used. Later we will
give the formal definition.)

One classic example of a learnable set of strings is the set of g-bounded strings for some
g. The algorithm which learns it first orders all DBGs and then, given some initial seg-
ment of S, searches through them in order until it finds a DBG which generates that seg-
ment within the allotted number of steps and predicts accordingly. Since any DBG which
does not generate S will eventually fail for some initial segment, this algorithm will even-
tually settle on a DBG which does generate S. Once it does so, all its predictions will be
correct. (Note that the bound g is necessary in order that the search through the programs
not get trapped in a non-halting program.)

90 M. KOPPEL

Observe that due to the enumerative character of this algorithm its run-time renders it
useless for practical purposes. Nevertheless, this algorithm is enormously helpful as a
framework within which heuristic techniques can be employed.

Let us now extend our learning game so that the native might sometimes be tossing a
coin. The learner is given a string and uses it to form a hypothesis as to how the string
has been generated and thus to predict whether the next bit will definitely be 1, definitely
be 0, or will be determined by coin-toss. The native then computes whether the next bit
is 0 or 1 or is to be determined by coin-toss (where the computation might depend on
his previous responses but does not depend on the learner's predictions). Then, tossing
a coin if necessary, he gives the learner the next bit without revealing if it was produced
deterministically or by coin-toss. The learner then applies his algorithm to attempt to predict
the next bit and the game continues. Note that unlike the standard case of learning, here
we do not expect the learner to predict the next bit (since we cannot expect him to predict
the outcome of a coin-toss) but rather to predict whether it is determined computationally
and if so what it will be. Thus we have:

Definition. If F is the sequence-function associated with the NDBG f, and D is an infinite
decision string, then we say that the algorithm A learns f with D if for all sufficiently large
n, A(Fn(D)) = f(Fn(D)).

Now, of course, some algorithm might learn some NDBG with some decision strings
but not with others. We say that a set of infinite strings 3£ is of measure 1 if with probabil-
ity 1 a string produced by coin tossing is in 3£. Then we have

Definition. An algorithm A learns the NDBG f with probability 1 if for some set 3£ of
measure 1, A learns f with all D E 3£.

Finally, we have:

Definition. An algorithm A learns the set of NDBGs 9Z with probability 1 if for each f
E 9~, A learns f with probability 1.

Our main result is that for any computable g there is an algorithm which learns the set
of g-bounded NDBGs with probability 1.

4. Compression

To lay the groundwork for the algorithm we need to first understand why the learning prob-
lem for NDBGs is much harder than the learning problem for DBGs.

Suppose, for example, that in some "learner-native game" the learner knows in advance
that the native is using a g-bounded DBG to generate the string and suppose further that
the native is generating the string 1 1 1 1 1 . . . Since any DBG which generates anything
other than 1 1 1 1 1 . . . will ultimately be contradicted by the native, the algorithm which
searches all relevant DBGs exhaustively will eventually settle on the right one.

NON-DETERMINISTICALLY GENERATED STRINGS 91

This is not the case where the native is not restricted to DBGs. The string 1 1 1 1 1
• . . might be generated deterministically, or some or all of the bits might be generated
by (some rather fortuitous) coin-tossing. Thus the method of exhaustive search will fail
because NDBGs other than the one actually being used might never be falsified by the
native. For example, if the learner always predicted that the next bit will be determined
by coin-toss no sequence of bits provided by the native can ever force him to change his
theory.

The solution to this difficulty lies in the fact that with probability 1 a coin-tossing se-
quence is " random" i.e., patternless. Therefore, any pattern present in a long string is
probably "programmed in" rather than a result of fortuitous coin-tossing. We will show
that any pattern which persists as more bits are generated is, with probability approaching
1, not accidental. Moreover, any deterministic features of an NDBG which is generating
a string will become apparent in the form of patterns in that string. Thus an algorithm
which distinguishes pattern from randomness will, with probability 1, eventually always
predict correctly.

We draw upon the theory of program-length complexity to give a formalization of "pat-
tern" which is appropriate for solving our problem• The program-length complexity of
a string S was originally defined by Kolmogoroff (1965), Solomonoff (1964) and Chaitin
(1975) as the length of the shortest description of S, where by a "description" of S we mean
an input to a universal Turing machine which results in S as output. We will use a variant
of the original definition described in Koppel and Atlan (in press).

We begin by defining a universal Turing machine.

Definition. Let U be a Turing machine with two input tapes. U is said to be universal if
for every partially computable process F (and for no other functions) there is an input z
such that for every w, U(z, w) = F(w).

(This definition is slightly different than the standard one in which the word "function"
appears in place of "process." For a simple construction of this non-standard variety see
Schnorr (1973).)

We call the first input to a universal Turing machine a "program" and we call the second
input the "data." If U(z, x) = F(x) for all x we say that z computes F and we call z an
F-program. Note that for every partially computable process F, there are infinitely many
F-programs.

We say that z is a total program if it is an F-program for a total process F.

Definition. The complexity of a finite string S relative to U is

H(S) = min{Izl + Ixl i U(z, x) _ S and z is total}.

H(S) is the length of the shortest description of S in terms of a total program and data
to that program. (In other contexts, we require also that z be "self-delimiting" but since
this requirement is irrelevant here we dispense with it for the sake of simplicity.)

Earlier versions of program-length complexity (Chaitin, 1975; Koimogoroff, 1965;
Solomonoff, 1964) were defined in terms of a single input. The distinction between program

92 M. KOPPEL

and data which we apply in the definition reflects the distinction between structure and
randomness in a string and is thus useful for predicting non-deterministically generated
strings.

For an infmite string x, let x~ be the shortest prefix of x such that F(x~) _> Fn(x). That
is, xn F is just long enough such that F(x~) is at least n bits long.

The critical concept is the following:

Definition. F is a compression process for the infinite string y if there exist x and c such
that F(x) = y and for all n, IXnFI ___ H(y n) + C.

That is, F is a compression process for y if F together with appropriate input constitute
a minimal (or nearly minimal) description ofy. Roughly, the idea is that F uses any patterns
in y to reconstruct it from as small an x as possible. Whether a process is a compression
process for some string does not depend on the choice of U which is used to define H
(Koppel & Atlan, in press).

The concept of compression programs can be used to give a neat definition of randomness.

Definition. Let I(x) = x for all strings x. An infinite string y is random if I is a compres-
sion process for y.

Since [x~[--- n, x is random if and only if there exists c such that for all n, H(x n) _>
n - c. This is a variant of the definitions of randomness given in Levin (1973) and Schnorr
(1973).

Theorem 1. I fF is a sequence-function and x is random then F is a compression process
for F(x).

Proof We will show that if F is not a compression process for F(x) then for all c there
exists n such that H(x n) < n - c which contradicts the randomness of x. Let F(x) = y.
I f F is not a compression process for F(x) then for all c there exists n and strings z(n)
and w(n) such that U(z(n), w(n)) > yn and z(n) is total and Iz(n) l + Iw(n) l < IXnVl -- c.

For any finite string y let F ' (y) = the longest v such that F(v) < y. (Think of F ' as
a sort of inverse of E) Since F is strictly injective, F ' is a computable function. Let zr,
be a program which computes the composition of the function computed by z with the
function F'. Then there is a constant c ' such that for any total program z, ZF, is a total
programs such that IzF,I --- Izl + c ' and for any string w, U(ZF,, W) = F ' (U(z , w)). Then
for all n, U(z(n)F,, w(n)) _ Xn F and therefore for all n, H(xn F) -- Iz(n)F,I + Iw(n)[< Iz(n)l
+ Iw(n)l + c'. But since for any c we can choose n such that Iz(n)l + Iw(n)l -< x . F -
(c + c ') it follows that for any c there exists n such that H(x~) < IXnFI -- c which con-
tradicts the randomness of x.

Since it has been shown (Koppel & Arian, in press; Levin, 1973) that with probability
1 a sequence generated by coin-tossing is random it follows that

Theorem 2. I f F is a sequence-function and D is an infinite binary sequence generated
by coin-tossing, then with probability 1, F is a compression process for F(D).

NON-DETERMINISTICALLY GENERATED STRINGS 93

This theorem has direct bearing on our problem. It tells us that if we are receving bits
of an infinite string S, which is being generated by some NDBG f, then with probability
1 the sequence-function F associated with f is a compression process for S.

Of course, there are many different compression processes for any given S, so that the
fact that F is a compression process for S does not uniquely define E Nevertheless, the
following theorem tells us that for purposes of prediction, all compression programs are
equivalent in the limit.

Convergence Theorem. I f F1 and F2 (associated with the NDBGs fl and f2, respectively)
are both injective compression processes for the infinite string y, then for all sufficiently
large n, fl(y n) = f2(yn).

The Convergence Theorem is proved in Koppel & Atlan (in press).

Let us sum up what we have so far. From Theorem 1 we know that if an NDBG f is
used together with a random decision string D to generate a string S then the sequence-
function F associated with f is an injective compression process for S (= F(D)). Moreover,
from the Convergence Theorem all injective compression processes eventually yield the
same predictions. Therefore, if we can find any compression process for S we can learn
to predict it.

5. The algorithm

In this section we show how to find a compression process for a given string. First we
formally define what it means to "find a compression process."

Definition. An algorithm B which maps finite binary strings to programs is said to find
a compression process for the infinite string y if for all sufficiently large n, B(y n) = z
where z computes a compression process for y.

We will give an algorithm which, given any string S = F(D) (where F is a g-bounded
sequence-function and D is a random infinite string), finds a compression process for S.
First we need to formally define "g-bounded."

Definition. Let g: N ~ N be any computable function. We say that a program z is g-bounded
in U if for any infinite string x, the computation of U(z, x) results in at least n bits of
output within g(n) steps of computation. We say that the sequence-function F is g-bounded
in U if there is some F-program z such that z is g-bounded in U. We say that an NDBG
is g-bounded in U if the associated sequence-function is g-bounded.

Borrowing loosely from Bennett (1988), we have:

Definition. A string S is g-shallow in U if there is a g-bounded strictly injective compres-
sion process for S.

94 M. KOPPEL

Theorem 4. Let g: N ~ N be some computable function. Then there exists an algorithm
which finds a strictly injective compression process for any string which is g-shallow in U.

Main Theorem. Let g: N ~ N be some computable function. There exists an algorithm
which learns to predict with probability 1 any NDBG which is g-bounded in U.

Proof of Main Theorem from Theorem 4. Let B be an algorithm which maps strings to
programs such that it fmds a strictly injective compression process for any g-shallow string.
Let S be some finite string and let B(S) be the program z. Now let the algorithm A be
as follows. Given B(S) = z, compute U(z, x) on all strings x in lexicographic order until
the first string, say xo, is found such that U(z, Xo) > S and U(z, Xo) can be computed
in less than g(IsI) steps. Then let

A(S) = ~ 0 i f U (z , Xo) -> S - 0
1 i f U(z, xo) -> S - 1
c if U(z, xo) = S

Observe that if B(S) computes a sequence-function, say H, and h is an NDBG associated
with H, then A(S) = h(S).

Now let f be some g-bounded NDBG with associated sequence-function F and let D
be some random string. Then, by Theorem 1, F is a g-bounded strictly injective compres-
sion process for F(D) so that F(D) is g-shallow. Then for all sufficiently large i, B(Fi(D))
computes a strictly injective compression process, say F ', for F(D). Let f ' be any NDBG
associated with F'. Then for all sufficiently large i, A(Fi(D)) = f'(Fi(D)). But by the Con-
vergence Theorem, for all sufficiently large i, f '(Fi(D)) = f(Fi(D)). Thus for any random
D, A learns to predict F(D), i.e., A learns to predict f with probability 1. QED

Finally, to prove Theorem 4 we simply give the algorithm.
We begin by defining weakened versions of g-boundedness and strict injectivity for which

programs can be easily checked.

Definition. The program z is g-bounded until n i f for all i < n and all infinite strings x,
U(z, x) prints i bits of output within g(i) steps.

Definition. The program z is strictly injective until n if for all x, U n (z , x ° 0) =

(U(z, x) • 0) n and Un(z, x " 1) = (U(z, x) " 1) n

The first step in the algorithm is to compute

Hg(S) = min {Izl ÷ Ixl I O(z, x) ~ S and z is g-bounded until IsI}.

This computation can be carried out (inefficiently) by exhaustively searching through
all pairs (z, x) in order of increasing I zl ÷ I xl unti a pair is found such that U(z, x) _>
S and U(z, x) can be computed in at most g(ISI) steps.

NON-DETERMINISTICALLY GENERATED STRINGS 95

Next, let At(S) be the shortest program z such that

1. z is g-bounded until IS[, and
2. z is strictly injective until IS], and
3. there exists x such that

(i) U(z, x) >_ S, and
(ii) for a l l n _< [SI, Iz] +]xZl _ Hg(S n) + c

For any c, Ac(S) can be computed by exhaustively searching through all pairs (z, x)
satisfying Iz] + Ix] _< Hg(S) + c in order of increasing]z] until a satisfactory pair is
found. Checking each pair requires at most g([SI) steps.

Now compute A~(S) for c = 0, 1, 2, . . . until a value of c, say c*, is found such that
At(S) is non-empty. Finally, let A(S) = A¢.(S).

Claim: if y is a g-shallow infinite string then for all sufficiently large n, A(y n) is a
strictly injective compression process for y.

Proof of Claim: For any strictly injective compression process for y, F, there is some
unique x such that F(x) = y and some smallest c, call it c(F), such that for all i,]x~l
---~ ng (y i) + C. There is some particular g-bounded strictly injective compression process
for y, F', such that for any g-bounded strictly injective compression process for y, c(F ')
_ c(F).

Since F ' is g-bounded and strictly injective it follows that for all n, there is some smallest
F ' -program z such that z satisfies conditions (1) and (2) in the definition of Ac0~,)(y n) and
by the definition ofc(F '), z satisfies (3) as well. Moreover, any string shorter than z which
is not an F 'program must, by the minimality of c(F '), fail to satisfy the second part of
condition (3) for some n. Also, any string shorter than z which is not g-bounded or not
strictly injective must eventually Nil to satisfy conditions (1) and (2), respectively. Therefore,
for all sufficiently large n, Ac0~,~(yn) = z. From the minimality of c(F ') it also follows
that for all sufficiently large n, Ac(y n) is empty for all c < c(F ') . But then for all suffi-
ciently large n, A(y n) = Ac~,~(y n) = z which satisfies the requirements of the theorem.

6. Examples

We consider here two of the examples mentioned in Section 2 in order to clarify the above
discussion and to illustrate some points about learning in general.

Example 1. Recall that fl is the NDBG such that

5 1 if Isl --- 3 (mod 4)
fl(S) (c otherwise

The associated sequence-function FI is such that F~(a~aza3a4asa6...) = a~a2a31a4asa6 1
That is, fl generates strings in which every fourth bit is 1 and all the other bits are deter-
mined by coin-toss. Now let y be generated by f~ with some random coin-tossing sequence

96 M. KOPPEL

which happens to begin with 38 consecutive l's. Thus y begins with 50 consecutive l's.
We will apply our algorithm to this string.

For heuristic purposes we will narrow our attention in advance to just five programs,
the lengths of which we assign arbitrarily. Assume that each of these programs is g-bounded.

Let P be a program of length 1 which prints the data. Then Ix~] = n.
Let N be a program of length 8 which prints an infinite sequence of l's without regard

to the data. Then I xn l = 0.
Let M be a program of size 16 which computes the process F1 described above. Then

IXnMI = 3n/4.
Let R be a program of length 20 which prints 50 l's and then prints the data. Then

Ix.RI = max(o, n - 50).
Let K be a program of length 25 which prints 48 l's and then behaves like M. Then

IXnKI = max(O, 3(n - 48)/4).
In Table 1 we indicate for each n the value of Izl + Ix l where z ranges over the above-

mentioned programs. For each n, the smallest of these values is Hg(yn). The figures in
parentheses are Izl + IxZl - n g (y n) .

In order to compute B(y k) find the column for which the largest number in parentheses
for the rows n = 1 k is smallest. That number is c * and the program which is
associated with that column is B(yk).

Table 1. Finding a compression program for the string y generated by F1.

n IPl + Ix~l INI + Ix.NI IMI + IxMI]RI + Ix~l IKI + IxnKI c* B(y n)

1 2 (0) 8 (6) 17 (15) 20 (18) 25 (23) 0 P
2 3 (0) 8 (5) 18 (16) 20 (17) 25 (22) 0 P

7 8 (0) 8 (0) 22 (14) 20 (12) 25 (17) 0 P
8 9 (1) 8 (0) 22 (14) 20 (12) 25 (17) 1 P

13 14 (6) 8 (0) 27 (19) 20 (12) 25 (17) 6 P
14 15 (7) 8 (0) 27 (19) 20 (12) 25 (17) 6 N

50 51 (43) 8 (0) 54 (46) 20 (12) 27 (19) 6 N
51 52 (31) - 55 (34) 21 (0) 28 (7) 18 R

79 80 (31) - 76 (27) 49 (0) 49 (0) 18 R
80 81 (32) 76 (27) 50 (1) 49 (0) 18 R

151 152 (49) 130 (27) 121 (18) 103 (0) 18 R
152 153 (50) 130 (27) 122 (19) 103 (0) 19 R

171 172 (54) - 145 (27) 141 (23) 118 (0) 23 R
172 173 (55) - 145 (27) 142 (24) 118 (0) 23 K

NON-DETERMINISTICALLY GENERATED STRINGS 97

Several points should be noted. First, note that structure in a string is discovered in stages.
For n _ 13, B(y a) = P which means that having observed up 13 bits of y, B regards

it as a random string.
For 14 _< n _< 50, B(y n) = N which means that having observed from 14 to 50 bits

of y, B assumes that y is a string consisting solely of l's.
For 51 _< n _< 171, B(y") = R which means that having discovered that y does not con-

sist solely o f l's, B regards y as being random after the initial 50 l's.
Finally, for n - 172, B(y n) = K which means that B settles on the idea that after 48

l's, y is random except that every fourth bit is a 1.
Second, note that B changes its hypotheses for one of two reasons. The obvious one

is illustrated at n = 51 where the program N is dropped as a description of y because
N is contradicted by the 51 st bit of y being 0. The less obvious reason is illustrated at n
= 14 and n = 172 where structure which was not previously apparent (in the sense that
the associated program was not economical) becomes apparent and therefore one program
is replaced by a more deterministic one.

Finally, note that the program K which B finally settles on does not compute the sequence-
function F~ which was actually used in generating y. Call the sequence-function computed
by the program K, F ', and let f ' be an NDBG associated with F '. Then the critical point
here is that for all sufficiently large n, f,(yn) = f~(y,).

Example 2. In order to further illustrate the first two points above we offer one more il-
lustration of the algorithm B. Recall that f0 is the DBG such that

f l i f lS I + l i s p r i m e
f0(S)

0 otherwise

fo generates only a single string, namely the characteristic string of the primes, y =
0 1 1 0 1 0 1 0 . . .We will apply our algorithm to this string.

Again for heuristic purposes, let us restrict our attention to a narrow list of programs
with arbitrarily assigned lengths. Assume that all these programs are g-bounded.

Let P be as in the first example.
Let E be a program of length 20 which maps ala2a3. • • to alla20a30a40... That is E

ensures that all even bits (after 2) are 0 but otherwise prints the data. Then Ix~l = n/2.
Let T be a program of length 30 which ensures that all even bits (above 2) and all multiple-

of-three bits (above 3) are 0 and otherwise prints the data. Then

IxSI = Ln/3/ if n -- 3 or 4 (mod 6)

L rn/3~ otherwise

Finally, let PM be a program of length 100 which prints the characteristic string of the
primes regardless of the data. Then [xPM I = 0.

Table 2 indicates B(y n) for n = 1, 2

98 M. KOPPEL

Table 2. Finding a compression program for y generated by Fo-

n IPl + IxVl IEI + IxnEI ITI + Ix~l IPMI + Ix~VMI C* B(y n)

1 2 (0) 21 (19) 31 (29) 100 (98) 0 P
2 3 (0) 21 (18) 31 (28) 100 (97) 0 P

73 74 (19) 57 (2) 55 (0) 100 (45) 19 P
74 75 (20) 57 (2) 55 (0) 1130 (45) 19 E

218 219 (119) 129 (29) 103 (3) 100 (0) 29 E
219 220 (120) 130 (30) 103 (3) 100 (0) 29 T

504 505 (405) 272 (172) 198 (98) 100 (0) 98 T
505 506 (406) 273 (173) 199 (99) 100 (0) 98 PM

In this example we see clearly how the algori thm B progressively finds more structure,
proceeding from P to E to T to PM. As it does, the predict ion algori thm A makes more
precise predictions. For some small n, A predicts incorrectly that the bi t succeeding yn
will be determined by coin-toss, while for all n > 504, A predicts fo(y n) perfectly.

7. C o n c l u s i o n

The algori thm A can in principle learn to predict an extremely large class of non-
determinist ically generated sequences. Nevertheless, we do not suggest our algori thm as
a realistic model of natural learning. This is because any ordering of programs assigns
almost all interesting programs numbers so large that an exhaustive search for such pro-
grams requires a prohibit ive amount of time. Therefore this sort of algori thm must be
used in conjunction with heuristic techniques such as those suggested in Dietterich &
Michalski (1986).

Nevertheless this algori thm reflects several very interesting features of natural learning
and of the " log ic of d i scove ry . "

Hypotheses are checked in order o f economy. Observe that descriptions of a string in
terms of a program z and data x are checked in order of Izl + Ixl, i .e., in order of simplicity
o f the description. The effectiveness of the algori thm illustrates the operat ional value of
Ockham's razor.

Hypotheses which, upon the receipt o f new information, cease to be economical are
rejected even i f they are not falsified by the new information. The algorithm B might, upon
receiving another bit of a string, choose to reject its previously hypothesized program
even i f the previous program has not been falsified. That is, it can happen that B(S) --
z and there exists x such that U(z, x) -> S • 1 and nevertheless B(S • 1) ;~ z. This occurs
when the hypothesized program z is no longer economical as part of a description. See
Example 1 for n = 172.

NON-DETERMINISTICALLY GENERATED STRINGS 99

Bounds on computat ional p o wer are bounds on the ability to detect structure. The
parameter g is suggestive of a measure of intel l igence; the greater is g, the greater is the
capacity of the learner to detect subtle structure and predict more precisely.

A more general vers ion of non-de terminis t ic bi t -generator considered by Levin (see
Solomonoff (1978)) is that for which f assigns to strings probabil i t ies of the next bit being,
say, 1 without restricting these probabil i t ies to the set {0, 1, 1/2} as we have. It appears
clear that the k ind of learn ing- in- the- l imi t discussed here is not possible for that general
case due to the failure o f the strong convergence theorem necessary for such learning.

However, we leave the reader with the following open problem:

Problem: Is l ea rn ing poss ib le where the defini t ion of N D B G is as in this art icle but the
native 's coin is biased (and the bias is known to the learner)?

References

Bennett, C. (1988). Logical depth and physical complexity. In R. Herken (Ed.), The universal Turing machine:
A half-century survey. Oxford University Press.

Blum, M., & Blum, L. (1975). Towards a mathematical theory of inductive inference. Inf. Cont,, 28, 125-153.
Chaitin, G.J. (1975). A theory of program size formally identical to information theory. JACM, 22, 329-340.
Dietterich, T., & Michalski, R. (1986). Learning to predict sequences. In R. Michalski, J. Carbonell, & T. Mit-

chell (Eds.), Machine learning: An artificial intelligence approach, Los Altos, CA: Morgan Kaufmann.
Gold, E.M. (1967). Language identification in the limit. Inf. Cont., 10, 447-474.
Kolmogoroff, A.N. (1965). Three approaches to the quantitative definition of information. Problems oflnfor-

mati. Transmission, 1, 1-7.
Koppel, M., & Arian, H. (in press). An almost machine-independent theory of program-length complexity,

sophistication, and induction. Information Sciences.
Levin, L.A. (1973). On the notion of a random sequence. Soviet Math. Dokl., 14, 1413-1416.
Osherson, D., Stob, M., & Weinstein, S. (1985). Systems that learn. Cambridge, MA: MIT Press.
Schnorr, C.P. (1973). Process complexity and effective random tests. J. Comp. Syst. Sci., 7, 376-384.
Solomonoff, R.J. (1964). A formal theory of inductive inference. Inf. Cont., 7, 1-22.
Solomonoff, R.J. (1978). Complexity-based inductive systems. 1EEE Trans. on Inf. Th., 24, 422-432.
Wexler, K. & Culicover, P. (1985). Formal principles of language acquisition. Cambridge, MA: MIT Press.

