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Abstract. In this article we present an algorithm that learns to predict non-deterministically generated strings. 
The problem of learning to predict non-deterministically generated strings was raised by Dietterich and Michalski 
(1986). While their objective was to give heuristic techniques that could be used to rapidly and effectively learn 
to predict a somewhat limited class of strings, our objective is to give an algorithm which, though impractical, 
is capable of learning to predict a very general class. Our algorithm is meant to provide a general framework 
within which heuristic techniques can be effectively employed. 
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1. Introduction 

In order  to illustrate what we mean by learning non-determinist ically generated strings we 
consider the case of  language acquisition. Let us begin by first considering the classic, 
and much simpler, case of  learning determinist ically generated languages. Imagine that 
we are learning the grammar  of  a language in the following way. We order  the countably 
infinite set of  all strings of  words, that is, all potential sentences, and put them to a native 
speaker with complete knowledge of the language, one at a time. For each potential sentence, 
the native tells us whether it is a grammatical sentence in the language. We use these answers 
to form a hypothesis as to what the grammar  of  the language is and thus to predict  the 
native's answers concerning not-yet-asked potential sentences. We say that the language 
has been learned i f  given the answers to a sufficient number  of  questions, we forever after 
successfully predict  the native's answers, i .e. ,  we can distinguish grammatical  sentences 
from non-grammatical  sentences. It is well  known (Blum & Blum, 1975; Gold,  1967) that 
there are algorithms which successfully learn any language provided that some (any) bound 
on the computational resources (i.e.,  time) required for determining "grammaticalness"  
in the language is known in advance. 

Let us now extend this notion of learning to the case of  non-determinist ical ly generated 
languages. Suppose that the native doesn't  have complete knowledge of his language so 
that he doesn' t  know the answer to every question. Let us suppose further that he is proud 
and rather than admit that he doesn' t  know an answer he guesses (say, by surreptit iously 
tossing a coin). We wish to use his answers to learn what he knows about the language. 

Let  us call the native's knowledge (yes, no, don't  know) regarding a part icular  query, the 
"computed response" and let us call the answer (yes, no) he gives us, the "actual response." 
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Then we wish to use the native's actual responses to previous queries in order to predict 
his computed resonse to a non-yet-asked query. (Strictly speaking, then, the "non- 
deterministically generated language" which we wish to learn is the language known by 
the native rather than the actual language of his people.) 

The difficulty, of course, lies in the fact that a guess "looks" exactly like an honest answer. 
Nevertheless, we will give an algorithm which can successfully learn any native's knowledge 
provided that the native's guesses are indeed random and that, as in the deterministic case, 
some bound on the computational resources required to compute grammaticalness (yes, 
no, or don't know) in the language known by the native is known in advance. 

To further motivate the discussion let us consider another example. Suppose we wish 
to determine under what circumstances some physical event takes place. Let us assume 
that there is some natural ordering of a countably infinite set of experiments which can 
be run to test for the event. From the results of these experiments we form hypotheses 
as to the circumstances under which the event takes place. Now suppose that the situation 
is complicated by the fact that it is possible that in some of the experiments the parameters 
which we control do not determine the outcome, i.e., that there is a "hidden variable" 
which is independent of the controlled parameters and that the results of these experiments 
depend on this hidden variable. I f  it is further assumed that the hidden variable is two- 
valued and each value occurs with probability 1/2, it is not difficult to see that the learning 
problem here is isomorphic to that of the language example and that therefore our algorithm 
works equally well for either example. 

The outline of the article is as follows: After formalizing the notion of non-deterministically 
generated strings, we define the concept of "learning" non-deterministically generated strings 
by extending the classical definitions of learning-in-the-limit (Gold, 1967) and learning 
with probability 1 (Osherson, Stob, & Weinstein, 1985; Wexler & Culicover, 1985). Our 
definition extends learning to non-computable strings. 

We briefly review aspects of the theory of program-length-complexity (Chaitin, 1975; 
Kolmogoroff, 1965; Solomonoff, 1964) in order to introduce a version of information- 
compression which distinguishes structure from randomness in binary strings. This com- 
pression method facilitates the construction of an algorithm which solves the learning prob- 
lem illustrated above. 

Finally, we work the algorithm on some artificial examples in order to illustrate some 
significant features of the "logic of discovery" which are reflected by the algorithm. 

2. Formalizing the problem 

Unless otherwise stated all strings in this article are binary. We will use the following nota- 
tion. Let S be a finite or infinite string. Then I sl is the length of s, Sn is the n th bit of 
S and S n is the initial segment of S with length n. For two strings, S and T, S _ T means 
that S is an intial segment of T. 

Let us consider a generalization of the examples given above. Imagine that the computed 
response (yes, no, don't know) to a query (potential sentence, experiment) might depend 
on all the previous actual responses (including guesses). Then we can formalize the com- 
puted response as a computable function f which maps each finite binary string (i.e., the 
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previous actual responses) to an element of  the set {0, 1, c} (where c stands for "coin" 
and represents the "don't know" case discussed above). We call such an f a non-deterministic 
bit generator (NDBG). Observe that the illustrations in the introduction are both special 
cases of  NDBGs in which f depends only on the length of the given string but not on its 
bits. The results of this paper obtain for the general case in which f depends on any or 
all previous bits (responses). 

Another special case of  an NDBG is one in which f maps each string to either 0 or 1 
(but not c). We call such an f a deterministic bit generator (DBG). A DBG f generates 
a sequence F defined by the equations F1 = f(4~) and Fn+ 1 = f(Fn). F represents the in- 
finite sequence of  responses determined by f. 

For example, let fo be a DBG such that 

J ' - 0  if Ixl + 1 is composite 
fo(x) \l  if Ixl + 1 is prime 

Then the associated sequence F0 is the characteristic string of  the primes. 
In general, however, an NDBG might generate an uncountable number of different se- 

quences depending on how the non-determinism is resolved. Let D be a binary string which 
we call a decision string which is used to resolve the non-determinism of f in the following 
way: we generate the sequence F~, F2, • • • until the first c is reached. Then c is replaced 
with D~. We continue generating the sequence in this way, each time replacing the i th c 
with D i until the IDI + 1 a c is reached (that is, until D is all used up) and then stop. 
Thus for each decision string D, the NDBG f generates some (finite or infinite) sequence. 
Let us call this sequence F(D) and refer to F as the sequence-function associated with the 
NDBG f. 

Let us consider some examples of  NDBGs and their associated sequence functions. 

1. Let f~ be an NDBG such that 

S 1 i f  Isl ~- 3 (moO 4) 
fl(S) 

c otherwise 

Then the associated sequence-function F~ is such that 

F~(ala2a3a4asa6. • .) = a~aEa31a4asa61 . . . .  

That is, f~ generates strings in which every fourth bit is 1 and all the other bits are deter- 
mined by coin-toss. 

2. Let f2 be an NDBG such that 

f2(x) 
if Ixl is even 
if Ixl is odd and the last bit of  x is 0 
if Ixl is odd and the last bit of  x is 1 
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Then the associated sequence-function F2 is such that 

F2(ala2.. .an) = a l a l a 2 a 2  . . .  a n a  n. 

3. Finally, let P be some computable predicate and let g: N ~ N be some computable 
function, and let fa(x) be some NDBG such that 

f3(x) = (P( lXlc  + 1) 
if POx] + 1) can be computed within g(]xl) steps 

otherwise 

Then the associated sequence F3 is such that F3(D) is the characteristic string of  P with 
P(n) replaced by D i if n is the i th number for which P(n) fails to be computed in g(n) 
steps or less. 

Now let us consider some of  the properties of  a sequence-function F: 

i. A partial function on the finite binary strings is a function which is defined on a subset 
o f  the finite binary strings. A function which is defined for all finite binary strings 
is said to be total. For any total NDBG f, the associated sequence function F is total. 

ii. A function g from finite strings to (finite or infinite) strings is a process if (1) 
[D '  > D and g(D) is finite and g (D ' )  is defined] ~ g (D ' )  > g(D) and (2) 
[D '  > D and g(D) is infinite] = g(D ') = g(D). Any sequence function F is a process. 
Observe that if a process is defined for finite strings then it is implicitly defined for 
infinite strings since for any infinite D, f(D) = lim n ~ oo f(Dn). Note that lim n ~ oo 
f(D n) must be infinite. 

iii. A total function g is injective if g(D ') ___ g(D) = D '  _> D. A total function g is strictly 
injective if for every D, g(D • 1) _ g(D) • 1 and g(D"  0) _> g(D) • 0. Any sequence 
function F is strictly injective. 

iv. A partial function g is partially computable if there is a program (Turing machine) 
M such that for all x, either M(x) and g(x) are undefined or M(x) = g(x). g is com- 
putable if it is both partially computable and total. I f  the NDBG f is computable then 
the associated sequence function F is computable. 

These properties are the only ones which we need. Formally, then, we say that F is 
a sequence function if it is a computable, strictly injective process. 

Obviously each NDBG f has a unique associated sequence-function F. For the converse, 
let F be a sequence-function and say that a string S is generated by F if for some D, S 
_< F(D). Let Do be the shortest D such that S _< F(D). By the strict injectivity of  F, Do 
is uniquely defined. Then F is associated with any NDBG f such that 

0 
f(S) = 1 

c 

if F(Do) - S "  0 
if F(Do) - S "  1 
if F(Do) = S 
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We say that any such NDBG f is associated with E Observe that F does not determine 
f(S) for strings S which are not generated by F. 

3. Learning 

In this section we review the formal definition of learning-in-the-limit (Blum & Blum, 1975; 
Gold, 1967) and extend this definition to a version of probabilistic learning which is ap- 
plicable to NDBGs. 

To make matters simple, let us imagine a two-person game in which one player is called 
the "learner" and the other is called the "native" The native provides the learner with 
the first n bits of a binary string and the learner then uses some algorithm to form a hypothesis 
regarding how these n bits were computed and accordingly guesses what the next bit will 
be. The native then provides the learner with the next bit of the string, thus confirming 
or contradicting the learner's guess. The learner then uses his algorithm to predict the next 
bit and the game continues. If  from some stage on, the learner's predictions are always 
correct we say that the learner has learned to predict the native's string. More formally, 
identifying the learner with the algorithm A which he uses to make his predictions, we have: 

Definition. An algorithm A is said to learn to predict the infinite string S if for all suffi- 
ciently large n, A(S n) ----- S n +  1 

Of course, any algorithm will learn some string. What makes some learning algo dthms 
more useful than others is their ability to learn many strings. 

Definition. An algorithm A is said to learn to predict the set of infinite strings/3 if A learns 
to predict every S fi /3. I f  there is an algorithm which learns to predict/3, then/3 is said 
to be learnable. 

An important concept in the theory of learning is that of "g-boundedness" which we 
define now informally. I f  g: N ~ N is a computable function, then a string is said to be 
g-bounded if  its initial segments of length n can be computed in at most g(n) steps. We 
say that the sequence-function F is g-bounded if, given any infinite D, the initial segments 
of F(D) of length n can be computed in g(n) steps. We say that an NDBG is g-bounded 
if the associated sequence-function is g-bounded. (This definition is informal because for- 
mally g-boundedness is a function of the method of computation being used. Later we will 
give the formal definition.) 

One classic example of a learnable set of strings is the set of g-bounded strings for some 
g. The algorithm which learns it first orders all DBGs and then, given some initial seg- 
ment of S, searches through them in order until it finds a DBG which generates that seg- 
ment within the allotted number of steps and predicts accordingly. Since any DBG which 
does not generate S will eventually fail for some initial segment, this algorithm will even- 
tually settle on a DBG which does generate S. Once it does so, all its predictions will be 
correct. (Note that the bound g is necessary in order that the search through the programs 
not get trapped in a non-halting program.) 
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Observe that due to the enumerative character of this algorithm its run-time renders it 
useless for practical purposes. Nevertheless, this algorithm is enormously helpful as a 
framework within which heuristic techniques can be employed. 

Let us now extend our learning game so that the native might sometimes be tossing a 
coin. The learner is given a string and uses it to form a hypothesis as to how the string 
has been generated and thus to predict whether the next bit will definitely be 1, definitely 
be 0, or will be determined by coin-toss. The native then computes whether the next bit 
is 0 or 1 or is to be determined by coin-toss (where the computation might depend on 
his previous responses but does not depend on the learner's predictions). Then, tossing 
a coin if necessary, he gives the learner the next bit without revealing if it was produced 
deterministically or by coin-toss. The learner then applies his algorithm to attempt to predict 
the next bit and the game continues. Note that unlike the standard case of learning, here 
we do not expect the learner to predict the next bit (since we cannot expect him to predict 
the outcome of a coin-toss) but rather to predict whether it is determined computationally 
and if so what it will be. Thus we have: 

Definition. If  F is the sequence-function associated with the NDBG f, and D is an infinite 
decision string, then we say that the algorithm A learns f with D if for all sufficiently large 
n, A(Fn(D)) = f(Fn(D)). 

Now, of course, some algorithm might learn some NDBG with some decision strings 
but not with others. We say that a set of infinite strings 3£ is of measure 1 if with probabil- 
ity 1 a string produced by coin tossing is in 3£. Then we have 

Definition. An algorithm A learns the NDBG f with probability 1 if for some set 3£ of 
measure 1, A learns f with all D E 3£. 

Finally, we have: 

Definition. An algorithm A learns the set of NDBGs 9Z with probability 1 if for each f 
E 9~, A learns f with probability 1. 

Our main result is that for any computable g there is an algorithm which learns the set 
of g-bounded NDBGs with probability 1. 

4. Compression 

To lay the groundwork for the algorithm we need to first understand why the learning prob- 
lem for NDBGs is much harder than the learning problem for DBGs. 

Suppose, for example, that in some "learner-native game" the learner knows in advance 
that the native is using a g-bounded DBG to generate the string and suppose further that 
the native is generating the string 1 1 1 1 1 . . .  Since any DBG which generates anything 
other than 1 1 1 1 1 . . .  will ultimately be contradicted by the native, the algorithm which 
searches all relevant DBGs exhaustively will eventually settle on the right one. 
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This is not the case where the native is not restricted to DBGs. The string 1 1 1 1 1 
• . .  might be generated deterministically, or some or all of the bits might be generated 
by (some rather fortuitous) coin-tossing. Thus the method of exhaustive search will fail 
because NDBGs other than the one actually being used might never be falsified by the 
native. For example, if the learner always predicted that the next bit will be determined 
by coin-toss no sequence of bits provided by the native can ever force him to change his 
theory. 

The solution to this difficulty lies in the fact that with probability 1 a coin-tossing se- 
quence is " random" i.e., patternless. Therefore, any pattern present in a long string is 
probably "programmed in" rather than a result of fortuitous coin-tossing. We will show 
that any pattern which persists as more bits are generated is, with probability approaching 
1, not accidental. Moreover, any deterministic features of an NDBG which is generating 
a string will become apparent in the form of patterns in that string. Thus an algorithm 
which distinguishes pattern from randomness will, with probability 1, eventually always 
predict correctly. 

We draw upon the theory of program-length complexity to give a formalization of "pat- 
tern" which is appropriate for solving our problem• The program-length complexity of 
a string S was originally defined by Kolmogoroff (1965), Solomonoff (1964) and Chaitin 
(1975) as the length of the shortest description of S, where by a "description" of S we mean 
an input to a universal Turing machine which results in S as output. We will use a variant 
of the original definition described in Koppel and Atlan (in press). 

We begin by defining a universal Turing machine. 

Definition. Let U be a Turing machine with two input tapes. U is said to be universal if 
for every partially computable process F (and for no other functions) there is an input z 
such that for every w, U(z, w) = F(w). 

(This definition is slightly different than the standard one in which the word "function" 
appears in place of "process." For a simple construction of this non-standard variety see 
Schnorr (1973).) 

We call the first input to a universal Turing machine a "program" and we call the second 
input the "data." If  U(z, x) = F(x) for all x we say that z computes F and we call z an 
F-program. Note that for every partially computable process F, there are infinitely many 
F-programs. 

We say that z is a total program if it is an F-program for a total process F. 

Definition. The complexity of a finite string S relative to U is 

H(S) = min{Izl + Ixl i U(z, x) _ S and z is total}. 

H(S) is the length of the shortest description of S in terms of a total program and data 
to that program. (In other contexts, we require also that z be "self-delimiting" but since 
this requirement is irrelevant here we dispense with it for the sake of simplicity.) 

Earlier versions of program-length complexity (Chaitin, 1975; Koimogoroff, 1965; 
Solomonoff, 1964) were defined in terms of a single input. The distinction between program 
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and data which we apply in the definition reflects the distinction between structure and 
randomness in a string and is thus useful for predicting non-deterministically generated 
strings. 

For an infmite string x, let x~ be the shortest prefix of  x such that F(x~) _> Fn(x). That 
is, xn F is just long enough such that F(x~) is at least n bits long. 

The critical concept is the following: 

Definition. F is a compression process for the infinite string y if there exist x and c such 
that F(x) = y and for all n, IXnFI ___ H(y n) + C. 

That is, F is a compression process for y if F together with appropriate input constitute 
a minimal (or nearly minimal) description ofy. Roughly, the idea is that F uses any patterns 
in y to reconstruct it from as small an x as possible. Whether a process is a compression 
process for some string does not depend on the choice of  U which is used to define H 
(Koppel & Atlan, in press). 

The concept of compression programs can be used to give a neat definition of randomness. 

Definition. Let I(x) = x for all strings x. An infinite string y is random if I is a compres- 
sion process for y. 

Since [x~[ --- n, x is random if and only if there exists c such that for all n, H(x n) _> 
n - c. This is a variant of  the definitions of randomness given in Levin (1973) and Schnorr 
(1973). 

Theorem 1. I fF  is a sequence-function and x is random then F is a compression process 
for F(x). 

Proof We will show that if F is not a compression process for F(x) then for all c there 
exists n such that H(x n) < n - c which contradicts the randomness of x. Let F(x) = y. 
I f  F is not a compression process for F(x) then for all c there exists n and strings z(n) 
and w(n) such that U(z(n), w(n)) > yn and z(n) is total and Iz(n) l  + Iw(n) l  < IXnVl --  c. 

For any finite string y let F ' (y )  = the longest v such that F(v) < y. (Think of  F '  as 
a sort of  inverse of  E)  Since F is strictly injective, F '  is a computable function. Let zr, 
be a program which computes the composition of the function computed by z with the 
function F'. Then there is a constant c '  such that for any total program z, ZF, is a total 
programs such that IzF,I --- Izl + c '  and for any string w, U(ZF,, W) = F ' (U(z ,  w)). Then 
for all n, U(z(n)F,, w(n)) _ Xn F and therefore for all n, H(xn F) -- Iz(n)F,I + Iw(n)[ < Iz(n)l 
+ Iw(n)l + c'. But  since for any c we can choose n such that Iz(n)l + Iw(n)l -< x .  F - 
(c + c ' )  it follows that for any c there exists n such that H(x~) < IXnFI --  c which con- 
tradicts the randomness of x. 

Since it has been shown (Koppel & Arian, in press; Levin, 1973) that with probability 
1 a sequence generated by coin-tossing is random it follows that 

Theorem 2. I f  F is a sequence-function and D is an infinite binary sequence generated 
by coin-tossing, then with probability 1, F is a compression process for F(D). 
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This theorem has direct bearing on our problem. It tells us that if we are receving bits 
of an infinite string S, which is being generated by some NDBG f, then with probability 
1 the sequence-function F associated with f is a compression process for S. 

Of course, there are many different compression processes for any given S, so that the 
fact that F is a compression process for S does not uniquely define E Nevertheless, the 
following theorem tells us that for purposes of prediction, all compression programs are 
equivalent in the limit. 

Convergence Theorem. I f  F1 and F2 (associated with the NDBGs fl and f2, respectively) 
are both injective compression processes for the infinite string y, then for all sufficiently 
large n, fl(y n) = f2(yn). 

The Convergence Theorem is proved in Koppel & Atlan (in press). 

Let us sum up what we have so far. From Theorem 1 we know that if an NDBG f is 
used together with a random decision string D to generate a string S then the sequence- 
function F associated with f is an injective compression process for S (= F(D)). Moreover, 
from the Convergence Theorem all injective compression processes eventually yield the 
same predictions. Therefore, if we can find any compression process for S we can learn 
to predict it. 

5. The algorithm 

In this section we show how to find a compression process for a given string. First we 
formally define what it means to "find a compression process." 

Definition. An algorithm B which maps finite binary strings to programs is said to find 
a compression process for the infinite string y if for all sufficiently large n, B(y n) = z 
where z computes a compression process for y. 

We will give an algorithm which, given any string S = F(D) (where F is a g-bounded 
sequence-function and D is a random infinite string), finds a compression process for S. 
First we need to formally define "g-bounded." 

Definition. Let g: N ~ N be any computable function. We say that a program z is g-bounded 
in U if for any infinite string x, the computation of U(z, x) results in at least n bits of 
output within g(n) steps of computation. We say that the sequence-function F is g-bounded 
in U if there is some F-program z such that z is g-bounded in U. We say that an NDBG 
is g-bounded in U if the associated sequence-function is g-bounded. 

Borrowing loosely from Bennett (1988), we have: 

Definition. A string S is g-shallow in U if there is a g-bounded strictly injective compres- 
sion process for S. 
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Theorem 4. Let g: N ~ N be some computable function. Then there exists an algorithm 
which finds a strictly injective compression process for any string which is g-shallow in U. 

Main Theorem. Let g: N ~ N be some computable function. There exists an algorithm 
which learns to predict with probability 1 any NDBG which is g-bounded in U. 

Proof of Main Theorem from Theorem 4. Let B be an algorithm which maps strings to 
programs such that it fmds a strictly injective compression process for any g-shallow string. 
Let S be some finite string and let B(S) be the program z. Now let the algorithm A be 
as follows. Given B(S) = z, compute U(z, x) on all strings x in lexicographic order until 
the first string, say xo, is found such that U(z, Xo) > S and U(z, Xo) can be computed 
in less than g(IsI) steps. Then let 

A(S) = ~ 0 i f U ( z ,  Xo) -> S - 0  
1 i f  U(z,  xo) -> S -  1 
c if U(z, xo) = S 

Observe that if  B(S) computes a sequence-function, say H, and h is an NDBG associated 
with H, then A(S) = h(S). 

Now let f be some g-bounded NDBG with associated sequence-function F and let D 
be some random string. Then, by Theorem 1, F is a g-bounded strictly injective compres- 
sion process for F(D) so that F(D) is g-shallow. Then for all sufficiently large i, B(Fi(D)) 
computes a strictly injective compression process, say F ', for F(D). Let f '  be any NDBG 
associated with F'. Then for all sufficiently large i, A(Fi(D)) = f'(Fi(D)). But by the Con- 
vergence Theorem, for all sufficiently large i, f '(Fi(D)) = f(Fi(D)). Thus for any random 
D, A learns to predict F(D),  i.e., A learns to predict f with probability 1. QED 

Finally, to prove Theorem 4 we simply give the algorithm. 
We begin by defining weakened versions of g-boundedness and strict injectivity for which 

programs can be easily checked. 

Definition. The program z is g-bounded until n i f  for all i < n and all infinite strings x, 
U(z, x) prints i bits of output within g(i) steps. 

Definition. The program z is strictly injective until n if  for all x, U n ( z ,  x ° 0 )  = 

(U(z, x) • 0) n and Un(z, x " 1) = (U(z, x) " 1) n 

The first step in the algorithm is to compute 

Hg(S) = min {Izl ÷ Ixl I O(z, x) ~ S and z is g-bounded until IsI}. 

This computation can be carried out (inefficiently) by exhaustively searching through 
all pairs (z, x) in order of  increasing I zl ÷ I xl unti  a pair is found such that U(z, x) _> 
S and U(z, x) can be computed in at most g(ISI) steps. 
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Next, let At(S) be the shortest program z such that 

1. z is g-bounded until IS[, and 
2. z is strictly injective until IS], and 
3. there exists x such that 

(i) U(z, x) >_ S, and 
(ii) for a l l n  _< [SI, Iz] + ]xZl _ Hg(S n) + c 

For any c, Ac(S) can be computed by exhaustively searching through all pairs (z, x) 
satisfying Iz] + Ix] _< Hg(S) + c in order of increasing ]z] until a satisfactory pair is 
found. Checking each pair requires at most g([SI) steps. 

Now compute A~(S) for c = 0, 1, 2, . . .  until a value of c, say c*, is found such that 
At(S) is non-empty. Finally, let A(S) = A¢.(S). 

Claim: if y is a g-shallow infinite string then for all sufficiently large n, A(y n) is a 
strictly injective compression process for y. 

Proof of Claim: For any strictly injective compression process for y, F, there is some 
unique x such that F(x) = y and some smallest c, call it c(F), such that for all i, ]x~l 
---~ ng (y  i) + C. There is some particular g-bounded strictly injective compression process 
for y, F', such that for any g-bounded strictly injective compression process for y, c(F ' )  
_ c(F). 

Since F '  is g-bounded and strictly injective it follows that for all n, there is some smallest 
F '  -program z such that z satisfies conditions (1) and (2) in the definition of Ac0~,)(y n) and 
by the definition ofc(F  '), z satisfies (3) as well. Moreover, any string shorter than z which 
is not an F 'program must, by the minimality of  c(F '), fail to satisfy the second part of 
condition (3) for some n. Also, any string shorter than z which is not g-bounded or not 
strictly injective must eventually Nil to satisfy conditions (1) and (2), respectively. Therefore, 
for all sufficiently large n, Ac0~,~(yn) = z. From the minimality of c(F ') it also follows 
that for all sufficiently large n, Ac(y n) is empty for all c < c(F ' ) .  But then for all suffi- 
ciently large n, A(y n) = Ac~,~(y n) = z which satisfies the requirements of the theorem. 

6. Examples 

We consider here two of the examples mentioned in Section 2 in order to clarify the above 
discussion and to illustrate some points about learning in general. 

Example 1. Recall that fl is the NDBG such that 

5 1  if Isl --- 3 (mod 4) 
fl(S) (c otherwise 

The associated sequence-function FI is such that F~(a~aza3a4asa6...) = a~a2a31a4asa6 1 . . . .  
That is, fl generates strings in which every fourth bit is 1 and all the other bits are deter- 
mined by coin-toss. Now let y be generated by f~ with some random coin-tossing sequence 
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which happens to begin with 38 consecutive l's. Thus y begins with 50 consecutive l's. 
We will apply our algorithm to this string. 

For heuristic purposes we will narrow our attention in advance to just five programs, 
the lengths of  which we assign arbitrarily. Assume that each of these programs is g-bounded. 

Let P be a program of  length 1 which prints the data. Then Ix~] = n. 
Let N be a program of length 8 which prints an infinite sequence of l's without regard 

to the data. Then I xn l = 0. 
Let M be a program of  size 16 which computes the process F1 described above. Then 

IXnMI = 3n/4.  
Let R be a program of length 20 which prints 50 l's and then prints the data. Then 

Ix.RI = max(o, n - 50). 
Let K be a program of  length 25 which prints 48 l's and then behaves like M. Then 

IXnKI = max(O, 3(n - 48)/4). 
In Table 1 we indicate for each n the value of  Izl + Ix l where z ranges over the above- 

mentioned programs. For each n, the smallest of  these values is Hg(yn). The figures in 
parentheses are Izl + IxZl - n g ( y n ) .  

In order to compute B(y k) find the column for which the largest number in parentheses 
for the rows n = 1 . . . . .  k is smallest. That number is c * and the program which is 
associated with that column is B(yk). 

Table 1. Finding a compression program for the string y generated by F1. 

n IPl + Ix~l INI + Ix.NI IMI + IxMI ]RI + Ix~l IKI + IxnKI c* B(y n) 

1 2 (0) 8 (6) 17 (15) 20 (18) 25 (23) 0 P 
2 3 (0) 8 (5) 18 (16) 20 (17) 25 (22) 0 P 

7 8 (0) 8 (0) 22 (14) 20 (12) 25 (17) 0 P 
8 9 (1) 8 (0) 22 (14) 20 (12) 25 (17) 1 P 

13 14 (6) 8 (0) 27 (19) 20 (12) 25 (17) 6 P 
14 15 (7) 8 (0) 27 (19) 20 (12) 25 (17) 6 N 

50 51 (43) 8 (0) 54 (46) 20 (12) 27 (19) 6 N 
51 52 (31) - 55 (34) 21 (0) 28 (7) 18 R 

79 80 (31) - 76 (27) 49 (0) 49 (0) 18 R 
80 81 (32) 76 (27) 50 (1) 49 (0) 18 R 

151 152 (49) 130 (27) 121 (18) 103 (0) 18 R 
152 153 (50) 130 (27) 122 (19) 103 (0) 19 R 

171 172 (54) - 145 (27) 141 (23) 118 (0) 23 R 
172 173 (55) - 145 (27) 142 (24) 118 (0) 23 K 
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Several points should be noted. First, note that structure in a string is discovered in stages. 
For n _ 13, B(y a) = P which means that having observed up 13 bits of  y, B regards 

it as a random string. 
For 14 _< n _< 50, B(y n) = N which means that having observed from 14 to 50 bits 

of  y, B assumes that y is a string consisting solely of  l's. 
For 51 _< n _< 171, B(y") = R which means that having discovered that y does not con- 

sist solely o f  l's, B regards y as being random after the initial 50 l's. 
Finally, for n - 172, B(y n) = K which means that B settles on the idea that after 48 

l's, y is random except that every fourth bit is a 1. 
Second, note that B changes its hypotheses for one of two reasons. The obvious one 

is illustrated at n = 51 where the program N is dropped as a description of  y because 
N is contradicted by the 51 st bit of y being 0. The less obvious reason is illustrated at n 
= 14 and n = 172 where structure which was not previously apparent (in the sense that 
the associated program was not economical) becomes apparent and therefore one program 
is replaced by a more deterministic one. 

Finally, note that the program K which B finally settles on does not compute the sequence- 
function F~ which was actually used in generating y. Call the sequence-function computed 
by the program K, F ', and let f '  be an NDBG associated with F '. Then the critical point 
here is that for all sufficiently large n, f,(yn) = f~(y,). 

Example 2. In order to further illustrate the first two points above we offer one more il- 
lustration of the algorithm B. Recall that f0 is the DBG such that 

f l  i f lS I  + l i s p r i m e  
f0(S) 

0 otherwise 

fo generates only a single string, namely the characteristic string of  the primes, y = 
0 1 1 0 1 0 1 0 . . .We will apply our algorithm to this string. 

Again for heuristic purposes, let us restrict our attention to a narrow list of programs 
with arbitrarily assigned lengths. Assume that all these programs are g-bounded. 

Let P be as in the first example. 
Let E be a program of  length 20 which maps ala2a3. • • to alla20a30a40... That is E 

ensures that all even bits (after 2) are 0 but otherwise prints the data. Then Ix~l = n/2. 
Let T be a program of length 30 which ensures that all even bits (above 2) and all multiple- 

of-three bits (above 3) are 0 and otherwise prints the data. Then 

IxSI  = Ln/3/ if n -- 3 or 4 (mod 6) 

L rn/3~ otherwise 

Finally, let PM be a program of length 100 which prints the characteristic string of  the 
primes regardless of  the data. Then [xPM I = 0. 

Table 2 indicates B(y n) for n = 1, 2 . . . . .  
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Table 2. Finding a compression program for y generated by Fo- 

n IPl + IxVl IEI + IxnEI ITI + Ix~l IPMI + Ix~VMI C* B(y n) 

1 2 (0) 21 (19) 31 (29) 100 (98) 0 P 
2 3 (0) 21 (18) 31 (28) 100 (97) 0 P 

73 74 (19) 57 (2) 55 (0) 100 (45) 19 P 
74 75 (20) 57 (2) 55 (0) 1130 (45) 19 E 

218 219 (119) 129 (29) 103 (3) 100 (0) 29 E 
219 220 (120) 130 (30) 103 (3) 100 (0) 29 T 

504 505 (405) 272 (172) 198 (98) 100 (0) 98 T 
505 506 (406) 273 (173) 199 (99) 100 (0) 98 PM 

In this example we see clearly how the algori thm B progressively finds more structure, 
proceeding from P to E to T to PM. As it does, the predict ion algori thm A makes more  
precise predictions.  For  some small n, A predicts incorrectly that the bi t  succeeding yn 
will be determined by coin-toss, while for all n > 504, A predicts fo(y n) perfectly.  

7.  C o n c l u s i o n  

The algori thm A can in principle learn to predict  an extremely large class of  non- 
determinist ically generated sequences. Nevertheless,  we do not suggest our algori thm as 
a realistic model  of  natural learning. This is because any ordering of  programs assigns 
almost all interesting programs numbers so large that an exhaustive search for such pro- 
grams requires a prohibit ive amount of  time. Therefore  this sort of  algori thm must be 
used in conjunction with heuristic techniques such as those suggested in Dietterich & 
Michalski  (1986). 

Nevertheless this algori thm reflects several very interesting features of  natural learning 
and of  the " log ic  of  d i scove ry . "  

Hypotheses are checked in order o f  economy. Observe that descriptions of  a string in 
terms of  a program z and data x are checked in order of  Izl + Ixl, i .e.,  in order of  simplicity 
o f  the description. The effectiveness of  the algori thm illustrates the operat ional  value of  
Ockham's  razor.  

Hypotheses which, upon the receipt o f  new information, cease to be economical are 
rejected even i f  they are not falsified by the new information. The algorithm B might, upon 
receiving another bit of  a string, choose to reject its previously hypothesized program 
even i f  the previous program has not been falsified. That is, it can happen that B(S) -- 
z and there exists x such that U(z, x) -> S • 1 and nevertheless B(S • 1) ;~ z. This occurs 
when the hypothesized program z is no longer economical  as part of  a description. See 
Example  1 for n = 172. 



NON-DETERMINISTICALLY GENERATED STRINGS 99 

Bounds on computat ional  p o wer  are bounds on the ability to detect structure. The 
parameter  g is suggestive of  a measure  of  intel l igence;  the greater is g, the greater  is the 
capacity of  the learner  to detect  subtle structure and  predict  more  precisely. 

A more  general  vers ion of  non-de terminis t ic  bi t -generator  considered by Levin  (see 
Solomonoff  (1978)) is that for which  f assigns to strings probabil i t ies  of the next bit  being,  
say, 1 without  restricting these probabil i t ies  to the set {0, 1, 1/2} as we have. It appears 
clear that the k ind of  learn ing- in- the- l imi t  discussed here is not  possible  for that general  
case due to the failure o f  the strong convergence theorem necessary for such learning.  

However, we leave the reader  with the following open  problem:  

Problem: Is l ea rn ing  poss ib le  where  the defini t ion of  N D B G  is as in  this art icle but  the 
native 's  coin  is biased (and the bias is known to the learner)? 
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