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Abs t rac t .  Learning by observation involves automatic creation of categories that sum- 
marize experience. In this paper we present UNIMEM, an artificial intelligence system 
that learns by observation. UNIMEM is a robust program that can be run on many do- 
mains with real-world problem characteristics such as uncertainty, incompleteness, and 
large numbers of examples. We give an overview of the program that illustrates several 
key elements, including the automatic creation of non-disjoint concept hierarchies that 
are evaluated over time. We then describe several experiments that we have carried out 
with UNIMEM, including tests on different domains (universities, Congressional voting 
records, and terrorist events) and an examination of the effect of varying UNIMEM's 
parameters on the resulting concept hierarchies. Finally we discuss flmlre directions for 
our work with the program. 

1. I n t r o d u c t i o n  

Learn ing  f rom observa t ion  is a task t h a t  is i m p o r t a n t  in domains  where  
examples  are not  pre-classified, bu t  where  one still wishes to  de tec t  gen- 
eral  rules and  intel l igent ly  organize  examples .  In this  p a p e r  we discuss 
U N I M E M ,  a sy s t em tha t  learns f rom observa t ion  by not ic ing  regular i t ies  
among  examples  and  organiz ing  t h e m  into a genera l iza t ion  hierarchy.  We 
view U N I M E M  b o t h  as imp lemen t ing  an a lgo r i thm for concep t  fo rma t ion  
and  as a p r o t o t y p e  intel l igent  in fo rma t ion  sys t em t h a t  can  inco rpora t e  
large a m o u n t s  of d a t a  into m e m o r y  and  re t r ieve  ap p ro p r i a t e  i n fo rma t ion  
in response  to user  queries.  U N I M E M  is no t  i n t ended  to  be a psychological  
model  per Be, since it deals wi th  a task more  da ta - in tens ive  t h a n  people  
are likely to  pe r fo rm.  However ,  in developing the  p r o g r a m  we have  m a d e  
use of t echniques  der ived  by observ ing  h m n a n  behavior .  

Tile task  of U N I M E M  is to take a series of examples  (or instances) 
t h a t  are expressed  as col lect ions of fea tures  and  bui ld  up  a general iza-  
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tion hierarchy of concepts. For example, UNIMEM might use information 
about a collection of universities to inductively determine the concepts of 
Ivy League universities, European technical universities, and so forth, and 
determine which examples are described by which concepts. The point of 
creating such concept descriptions is that they allow a performance element 
using the output of the program to make inferences about new examples 
based on partial information. 

Successful learning from real-world input must deal with several con- 
straints. The key features that characterize the operation of UNIMEM 
are: 

• It learns by observation; it is not explicitly told how examples should 
be grouped into categories; 

• It is incremental; output must be available after processing each ex- 
ample; it cannot wait for all the input; 

• It must handle examples in large numbers (currently hundreds, even- 
tually more); 

• Its generalizations are pragmatic; they need not perfectly describe all 
the instances they cover. 1 

Although certain learning systems have dealt with tasks having some of 
these characteristics, little work has been concerned with all of them. How- 
ever, all seem to characterize human concept formation and all seem valu- 
able for learning in complex real-world domains. We constantly receive 
new examples and the world is not perfectly regular. 

The task of UNIMEM is basically that of conceptual clustering as pre- 
sented by Michalski and Stepp (1983) and Fisher and Langley (1985), but 
our work also draws upon research in learning from examples (e.g., Win- 
ston, 1975; Mitchell, 1982; Dietterich & Michalski, 1986). However, in a 
learning by observation setting, one must consider not just how to com- 
pare examples, but also decide which examples to compare. This decision 
largely determines the concepts that one creates. We make the assumption 
that similarities among natural occurring examples reflect meaningful reg- 
ularities in the world, an assumption that we discuss at length elsewhere 
(Lebowitz, 1986a). 

The name UNIMEM is derived from the phrase UNiversal MEMory 
model, which reflects our goal of generality. We would like the system to 
be easily applicable to new domains, at least those where a feature-based 
representation is adequate. Domains in which UNIMEM has been used 

1Pragmatic generalization is crucial in dealing with uncertain, incomplete, or incon- 
sistent data, where apparently equivalent situations may produce different results. 
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include: U.S. states, Congressional voting records, software evaluations, 
biological data, football plays, universities, terrorist events, census data, 
and financial data. In the following sections we provide an overview of 
the UNIMEM learning algorithm, along with an example of the system in 
operation, and then describe several experiments that we have performed 
with the program. These include both examining the system's behavior in 
several different domains and a study of the effects of varying UNIMEM's 
parmneters. We conclude with a discussion of several open research issues 
and the relation of our work to other research in machine learning. 

2. T h e  basic U N I M E M  a l g o r i t h m  

UNIMEM takes a series of examples in a domain and organizes them 
into a permanent long-term memory. 2 The key idea behind the system 
is Generalization-Based Memory (GBM):3 a hierarchy of concepts for de- 
scribing classes of objects. GBM is built up by generalizing from specific 
examples, which involves both searching memory for similar examples and 
abstracting out similarities. To illustrate the UNIMEM learning algorithm, 
we will use examples from the domain of university information. For this 
domain we collected descriptions of 224 universities. Information was taken 
from standard reference books and by surveying undergraduate students. 
In studying learning by observation, we feel that it, is important to collect 
as much information as possible and not prejudge whether any particular 
piece of information is likely to be useful in generalization. 

2.1 UNIMEM's representation of instances and concepts 

Input to UNIMEM is a series of examples, or instances, given to the 
program one at a time. An instance is described as a set of features that 
are essentially attribute/value pairs. 4 Each university has attributes such 
as 'percent of students receiving financial aid,' 'average math SAT score,' 

2UNIMEM runs in UCI LISP on a DECSystem/2060 and in Portable Standard LISP 
on an HP 9861 workstation and a DEC VAX-750. 

aGBM is also used by our other prototype intelligent information system, RE- 
SEARCHER, which reads, remembers, and generalizes from patent abstracts (Lebowitz, 
1983a, 1986b). The instances in RESEARCHER are more complex than those in 
UNIMEM, but it can handle fewer examples. The idea of GBM was originally developed 
for IPP, a program that read and learned from news stories about terrorism (Lebowitz 
1980, 1983b); see also Section 3.2 of this paper. 

4UNIMEM actually uses at tr ibute/facet/value triples. This greatly simplifies its use 
for frame-based representations. For example, in the terrorist event domain we use 
attributes and facets to distinguish among features of the different role fillers, e.g, tile 
victim's nationality and the actor's nationality. However. for purposes of clarity, in this 
paper we have collapsed the attr ibute and facet fields. 
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Table 1. Three  ins tances  of univers i t ies .  

Value for Value for Value for 
Attribute Columbia Yale Brown 

State 
Location 
Control 
Male:Female 
No-of-Students 
Student :Faculty 
SAT-Verbal 
SAT-Math 
Expenses 
%-Financial-Aid 
No-Applicm~ts 
%-Admittance 
%-Enrolled 
Academies 
Social 
Quality-of-Life 
Aead-Emphasis 
Aead-Emphasis 
Aead-Ernphasis 
Aead-Emphasis 

New-York 
Urban 
Private 
7:3 
< 5,000 
9:1 
625 
650 
> $10,000 
60 
4,000 7,000 
30 
5O 
5 out of 5 
3 out of 5 
3 out of 5 
Lib-Arts 

Connecticut 
Small-City 
Private 
55:45 
< 5,000 
5:1 
675 
675 
> $10,000 
4O 
10,000 13,000 
20 
60 
5 out of 5 
3 out of 5 
4 out of 5 
History 
Biology 
English 
Lib-Arts 

Rhode-Island 
Urban 
Private 
1:1 
< 5,000 
11:1 
625 
650 
> $10,000 
40 
10,000-13,000 
20 
50 
5 out of 5 
4 out of 5 
5 out of 5 
History 
Biology 
Art-Sciences 

and so forth. Some features, such as quality of social life, make use of 
arbitrary five point scales. While a simple feature representation is clearly 
inadequate for many tasks, it allows us to get started very easily on new 
domains. Table 1 shows the input features for Columbia, Yale, and Brown, 
three typical instances in the university domain. 

The goal of UNIMEM is to recognize similar instances and abstract 
them to form a hierarchy of generalized concept descriptions. Instances are 
stored in GBM under the generalizations that describe them. The resulting 
concept hierarchy can, if desired, be used by a performance system, such as 
a question-answering program. The manner in which generalizations are 
related is illustrated in Table 2~ which shows part of a concept hierarchy 
formed by UNIMEM from 150 university instances averaging about 20 fea- 
tures apiece. 5 (The complete hierarchy is available upon request from the 
author.) The table shows how the basic concept of a university is broken 
down into a number of more specialized versions. The hierarchical nature 
of the generalizations is indicated by indentation (e.g., GND60 inherits 
all the properties of GND2). The English concept descriptions have been 

'~UNIMEM does not require that  every instance have a value for every attribute~ 
hence the number of features per instance varies. Also, a t t r ibutes  with multiple values 
are allowed. 
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Table 2. A portion of UNIMEM's concept hierarchy for a university run. 

GNDO {'unusual' universities that are not covered by any generalization} 
[DALLAS-BAPTIST-COLLEGE JUILLIARD MICHIGAN-STATE SUNY-BUFFALO 
UNIVERSITY-OF-MISSISSIPPI VASSAR] 

GND2 {high quality of life and academics; engineering emphasis} 
[CHALMERS-UNIVERSITY-OF-TECHNOLOGY ECOLE-POLYTECHNIQUE PENN-STATE 
SAN-JOSE-STATE UNIVERSITY-OF-CALIFORNIA-SAN-DIEGO 
UNIVERSITY-OF-TEXAS] 

GND60 {large state schools with strong social life} 
[UNIVERSITY-OF-COLORADO UNIVERSITY-OF-MASSACHUSETTS-A~HERST] 

GND4 {private universities with high academic level and medium social 
life} 
[] 

GND9 {expensive, urban schools with strong applicant SAT scores} 
[HARVARD UNIVERSITY-OF-PENNSYLVANIA] 

GNDII9 {small schools with low admittance rates} 
[COLUMBIA WESLEYAN] 

GNDi9 {expensive schools with high enrollment yields} 
[MIT SWARTHMORE] 

GND133 {small schools with very high SATs and low admittance rates} 
[PRINCETON YALE] 

added by hand. At the top level, we see universities under GND0 that  are 
described by no generalized concepts. Shown beneath GND0 are two gen- 
eralized concepts, GND2 and GND4. The latter of these, which describes 
private universities, also has several more specific versions. 6 

In the hierarchy of generalizations that  describe concepts of increas- 
ing specificity, instances and sub-generalizations are stored using efficient 
indexing methods. 7 The generalizations themselves are sets of features. 
Table 3 shows several of the generalizations taken from the hierarchy in 
Table 2. GND4, the first generalization in the table, can be summarized 
as 'high-quality private universities,' represented by an appropriate set of 
features. In this hierarchy, no instances were stored directly under GND4, 
since those from which it was created had all been used to create sub- 
generalizations. 

6The more specific versions of a generalization are referred to as its sub- 
generalizations. 

rWe have experimented with both discrimination networks (Feigenbaum, 1963) and 
hash tables for indexing. The exact indexing method is not crucial in most domains: 
there are rarely a large number of instances under a given generalization, since sub- 
generalizations tend to be formed as the number of instances grows. 
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Table 3. Selected concept descriptions for the university domain. 

Feature Confidence 
Attribute Value Frequency Level 

GND4 [no instances] 

Quality-of-Life 4 out of 5 1 20.00 
Academics 4.5 out of 5 2 17.67 
Control Private 3 16.00 
Social 3 out of 5 3 20.00 

GND9 [Harvard University-of-Pennsylvania] 

Sat-Math 
%-Financial-Aid 
Location 
Student :Faculty 
Expenses 

662.5 
60 
urban 
10:1 
> $10,000 

4.13 
5.00 
0.00 
4.40 

11.00 

GND19 [MIT Swarthmore] 

Sat-Verbal 637.5 1 2.72 
%-Financial-Aid 45.0 1 2.20 
%-Enrolled 55.0 2 1.00 
No-of-Students < 5,000 5 5.00 

As par t  of its representation, UNIMEM includes numeric ratings that  in- 
dicate its confidence in each feature of each generalization. These numbers 
s tar t  at 0 and can increase or decrease during the processing of later ex- 
amples, as described in Section 2.2.3. The values in the rightmost column 
of Table 3 are the confidence levels. 8 

The numbers in the third column of the table are feature frequencies that  
indicate how often each feature appears in other  generalizations. This infor- 
mation is used for predictabil i ty analysis, a method  for determining which 
features are likely to indicate a generalization's relevance to new examples. 
While we will not discuss predictabili ty in depth  here - it is discussed more 
fully in Lebowitz (1983b) the basic idea is tha t  only certain features 
should be used to index a concept (because they indicate its relevance), 
and that  these features can be identified efficiently using Generalization- 
Based Memory. Predictabi l i ty  analysis can also be  important  in determin- 
ing causal explanations for generalizations (Lebowitz, 1986c). 

Table 3 also shows GND9 and GND19, two more specific versions of 
GND4. The concept GND9 describes expensive, urban schools and GND19 
describes schools tha t  are small and have high verbal SAT scores. Each 

8Naturally, the decimal places should not be taken too seriously. They are the product 
of the numeric evaluation procedure used. 
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of these generalizations has instances (universities) stored with it. When 
future instances are found to be described by these generalizations, they 
will be compared to the examples stored there. 

The use of a hierarchy of generalizations as a method of memory organi- 
zation allows efficient storage of information since it supports inheritance. 
In addition, GBM allows the generalizations and instances relevant for 
learning to be found efficiently in memory using the algorithm described 
below. This latter property is largely independent of UNIMEM's feature- 
based knowledge representation, as we have shown with RESEARCHER 
(Lebowitz, 1983a, 1986b), a system that  uses a more complex represen- 
tational scheme. The use of concept hierarchies with inheritance is by 
no means new; semantic networks (Quillian, 1968), frame systems (Min- 
sky, 1975), and MOPs (Schank~ 1982) are among many formalisms that  
incorporate this approach. What distinguishes UNIMEM is the dynamic 
formation of the concept hierarchy and the use of this hierarchy to guide 
the development of further concepts. 

An important  part  of tile UNIMEM methodology is that  the more spe- 
cialized versions of a given concept need not be mutually exclusive. In 
Table 2, for example, the two concepts 'schools with high quality of life 
and academics; engineering emphasis'  and 'private universities with high 
academic level and medium social life' are obviously not mutually exclu- 
sive; a university could be described by both concepts. An implication of 
this is that  UNIMEM can store an instance in several places in memory. 
Most clustering techniques require disjoint categories, but this does not 
seem to be the best way to maximize the inferential power of the concepts 
created. 

Nor must the categories at a given level cover all the instances. Even 
if a concept allows default inferencing, its negation may not because the 
instances not in that  category may have little in common. For example, 
universities that  are neither in GND2 nor GND4 above may share no fea- 
tures; hence no default inferences could be made based on nonmembership 
in those classes. 

2.2 A d d i n g  n e w  ins tances  to  m e m o r y  

The basic process of incorporating a new instance into GBM makes direct 
use of the memory organization defined above. UNIMEM's incorporation 
algorithm for a new instance with a list of input-features can be broken 
into two phases: 9 

9The UNIMEM incorporation algorithm includes a number of adjustable parameters,  
noted by a superscript P in the text. By parameterizing all aspects of UNIMEM, we 
do not give great meaning to any specific numeric value. In Section 4.1 we will discuss 
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1. Search GBM for the most specific concept node(s) that  the instance 
matches by calling SEARCH(root-node, input features). 

2. Add the new instance to memory by calling UPDATE(most-specific- 
node, input@atures) for the node(s) found by SEARCH. This involves 
comparing the new instance to the ones already stored and generalizing 
if appropriate. 

If desired the search phase could be used independently to retrieve instances 
that  match an input description. This could be done for information re- 
trieval and similar applications. 

2.2.1 Searching the generalization hierarchy 

As UNIMEM processes a new instance, it first finds the most specific 
generalizations that  describe it. GBM can be viewed as a large discrimi- 
nation net (Feigenbaum, 1963), so UNIMEM starts with its most general 
node and carries out a controlled depth-first search to find the most spe- 
cific generalization(s) that  legitimately describe the new instance. When 
the search begins, none of the input features have been matched to a gen- 
eralization. As UNIMEM searches down the concept hierarchy, features 
are gradually accounted for by various generalizations. The major steps of 
the SEARCH algorithm are: 

SEARCH(node, unexplained-features) 

1. If the sum of the distances between the features in unexplained-features 
and those of node is ' too large', e then node does not adequately match 
the instance; return the empty list. 

2. Otherwise, for each potentially relevant sub-node sx of node, call 
SEARCH(sx, [unexplained-features features of node]). 

3. If for any sx, SEARCH returns a list of nodes that  describe the new 
instance, then return the union of those lists. 

4. Otherwise, return the singleton list of node. (This case occurs only 
when each sub-node conflicts with the new instance. Since node does 
not conflict with the new instance, it is the most specific acceptable 
generalization on this search path.) 

the possibility of setting the parameters automatically. The Appendix gives a complete 
listing of UNIMEM's parameters. 
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During UNIMEM's  search process, feature values can do more than 
match  or mismatch - there can be varying degrees of closeness. 1° Instead 
of values simply matching or not, we allow the quality of feature matches to 
vary between 0 (total mismatch) and 1 (perfect match).  11 When UNIMEM 
matches a new instance to a generalization, it considers whether  tile sum 
of tile distances between the features in the generalization and those in the 
new instance is small enough r to assume that  the generalization describes 
the instance. 12 

If an instance has feature values that  conflict with a generalization, which 
is allowed as long as the total conflict is not too high, then the instance 
feature values simply override those in the generalization. This contrasts 
with many learning techniques, which assume that  all the features of a 
generalization must  hold for each instance that  it describes. In early ex- 
periments with UNIMEM, we found that  such an all-or-none matching 
scheme led to tile creation of excessive numbers of slightly different gener- 
alizations because new instances did not quite fit under old ones. Allowing 
contradiction does potentially leave UNIMEM open to problems of tile sort 
described by Brachman (1985), such as describing an instance as "an Ivy- 
League type school except it's not in the East, not private, not expensive 
. . . " .  However, as long as we keep the allowed-difference parameter  small, 
this does not appear to happen.  

2.2.2 Storing a new instance in memory 

Once UNIMEM has retrieved the most specific generalization(s) that  
a new instance matches, it compares the instance against others already 
stored with the concept(s) to determine whether  further  generalizations 
should be made. The system looks for instances that  have features in com- 
mon with the new one. If it finds one tha t  has enough features in common, r 
it creates a new node by generalizing the common features, and it stores 
the contributing instances with the new concept. If no sufficiently similar 
instances are found, it stores the new instance under the existing general- 
ization. The a t t r ibute /value  representation of UNIMEM normally yields a 
unique generalization of two instances, l~ but  multiple generalizations are 

~°We developed categorization algorithms for numeric input that allowed an all-or- 
none regimen to work reasonably well (Lebowitz, 1985), but we have since modified 
UNIMEM to take into account the closeness of values as described here. 

t iThe  system is set up so that a user can easily define different distance measures 
for various features, if desired. We currently consider numeric data, ordinal data, and 
simple hierarchical data. 

12We also add in a penalty for any feature of the generalization simply missing from 
the instance. This is possible since instance descriptions can be incomplete. 

taExceptions would be if there are multi-valued attributes or if the 'averaging' process 
described below returns multiple possibilities. 
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sometimes created by matching a new instance with several existing ones. 
The main steps in the UPDATE algorithm are: 

UPDATE( node, new-instance) 

1. Define new-features as the features of new-instance that  are not part  
of node (or its parent nodes). This information is retained from 
SEARCH. 

2. If none of the instances currently stored under node have enough P fea- 
tures with values sumciently close P to those of new-instance to warrant 
a new generalization, then store new-instance under node. 14 

3. Otherwise, for each instance with enough features in comm,m with 
new-instance, create a generalization node comprised of the shared 
features and: 

(a) Store the new node in the node's sub-generalization list. 

(b) Store both instances under the new node. 

(c) Remove the old instance from the original node. 

In deciding which features to include in a generalization, UNIMEM selects 
all those in the two instances with values that  are sufficiently close. P In 
those cases where features have slightly different values, UNIMEM uses 
an 'average' feature value in the generalization. For real-valued features 
this is the arithmetic or geometric mean; for ordinal attributes it is one 
of the two values; and for hierarchically-ordered attributes it is the lowest 
common ancestor. 

2. 2.3 Evaluating generalizations 

As seen above, concepts are generalized by UNIMEM on the basis of only 
two instances. This can cause the creation of an over-specified generaliza- 
tion if the initial instances share spurious features. Generalizations can be 
under-specified if the instances had unknown values for relevant features 
(which is possible, since UNIMEM does not require every instance to have 
values for each feature). Under-specification is not a problem, since the 
missing features will simply appear in sub-generalizations. However, con- 
cepts must be evaluated when they are potentially relevant to future input 
in order to remove overly-specific features. This is particularly true in do- 
mains where there are a large number of features for each instance, since 
coincidental matches become inevitable. UNIMEM performs evaluation as 

'4 'Enough'  is defined as a percentage of the maximum number of features of the two 
instances being compared. 
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a normal part of the memory search process, since the generalizations to be 
evaluated are exactly those that are accessed when a new instance is pro- 
cessed. We simply add the following step to the beginning of the SEARCH 
algorithm: 

• Increase confidence in any features of node that are also in unexplained- 
features; decrease confidence in those that are contradicted. 15 Delete 
any features with confidence levels that go low enough, p Make perma- 
nent any features with confidence levels that go high enough p (e.g., 
stop modifying their confidence levels). 

The evaluation operations are applied to all nodes considered during the 
SEARCH process, even if they do not ultimately match. 

This modification to SEARCH does not lead UNIMEM to entirely elim- 
inate a generalization when it fails to fit later input. Instead, it tries to 
throw away just the 'bad' (overly specific) parts and keep the 'good' parts. 
Confidence modification occurs by incrementing confidence levels when new 
values are close P to the generalization (in terms of the distance measure) 
and decrementing them when they are not. The amounts of the incre- 
ments or decrements depend upon the distance between the feature values 
of the instance and of the generalization. If a confidence level falls below 
a negative threshold, p then the system eliminates that feature from the 
generalization, since it has unreliably appeared in instances when the gen- 
eralization seemed relevant. 16 Above a specified level r values arc 'frozen' 
and assumed to be permanently correct. 

In some cases the feature evaluation process leads to concepts so general 
that they no longer provide substantial information. There is no advantage 
to retaining a category with so few features that no inferences can be made 
when an instance is matched to it. Thus, UNIMEM eliminates an entire 
generalization when too few of its features p remain, defined as a percentage 
of the number of features in the instances that formed the generalization. 
When it deletes a generalization, UNIMEM also loses access to the in- 
stances and sub-generalizations stored there. This loses instances that are 
not also stored elsewhere, but if we immediately reindexed the instances 
with the parent node, then the same instances that initially formed the 
eliminated generalization would do so again. In the domains that we deal 
with there are enough input examples so that good concepts will eventually 
be created, despite losing some information. However, for other domains 

~SNode is guaranteed to be 'potential ly relevant'  by the structure of the algorithm. 
~6Other than removing features, UNIMEM does not use the confidence level in the 

matching process. An interesting extension might be to give added weight to features 
with high confidence values. 
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Brown (1) 

Princeton (" GND3 "~ Arizona State f r:.l~lnt: 
'Yale 

Figure 1. Memory structure at the outset of the sample run. The values shown for 
GND1, GND2, GND3, and GND4 are the sum of the feature distances 
between each node and Columbia. The numbers in parentheses are the 
number of features the instance has in common with Columbia, not 
including the ones accounted for by generalizations. 

different strategies might be appropriate,  such as put t ing deleted instances 
back into memory after a delay. 

2.3 A s i m p l e  p r o g r a m  trace  

To illustrate UNIMEM's  update  algorithm, we will look in detail at how 
it adds an instance fl'om the university domain to an existing m e m o r y )  7 
This example will involve the three universities described in Table 1 as well 
as six others - MIT, Princeton,  Harvard, Arizona State, Case Western, 
and Auburn.  Figure 1 shows the structure of UNIMEM's  memory  after 
tile instances MIT, Brown, Princeton, Harvard, Yale, Arizona State, Case 
Western, and Auburn  have been processed in that  order. Table 4 shows 
the details of the generalizations, including the feature confidences at the 
beginning and end of the sample run. 

We will now describe in some detail how UNIMEM processes a new in- 
stance, Columbia. The system begins by searching memory  for the most 
specific generalizations that  satisfactorily match  the new instance. This 

17To make pedagogic points, we have set some of UNIMEM's parameters to unrealistic 
values. 
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begins by matching Columbia's features with those of GND1. As shown ill 
Figure 1, the total difference between the features of GND1 and Columbia is 
1.31. As tile parameters were set for this run, the allowed difference is 1.36 
(8% of 17 features), so GND1 is considered acceptable. The same is true 
fl)r GND2 with its 1.24 difference. However, GND2's sub-generalization, 
GND3, is not acceptable, nor is GND4. Note that since GND4 is not ac- 
ceptable, its sub-generalization, GND5, is not even considered. The final 
result of the search is that GND1 and GND2 are the most specific gener- 
alizations that match Columbia. 

Searching through memory also involves npdating confidence levels for 
features. Ill this case, if a generalization's feature value is close to that of 
Cohnnbia, then its confidence level is increased; otherwise it is decreased. 
Tile amount of the increment or decrement is based upon the degree of the 
match or mismatch. Looking at the rightrnost two columns for GND1 in 
Table 4, one can see that tile confidence level for the percentage of financial 
aid goes down, since the generalization value is 45% compared to 60% for 
Columbia. The remaining confidence levels go up, as the Columbia values 
are quite close to tile values in GND1. The confidence levels for GND5 
(not shown in tile table) are not adjusted at all, as it is skipped by the 
search algorithm. 

While considering GND2, UNIMEM reduces the confidence level for his- 
tory as an acadenfic emphasis from -2.0 to -3.0. This causes the confi- 
dence level to drop below the threshold for retaining features, so the system 
deletes the feature from the generalization. In order to maintain correct- 
ness, the same featm'e is added to GND2's sub-generalization, GND3. Also, 
since the feature was deleted from GND2 during the matching process, this 
particular feature difference is not considered part of the total discrepancy 
between GND2 and the new instance, which allows a match with Columbia. 

With the search and confidence evaluation phase complete, UNIMEM 
updates memory by adding Cohnnbia to both GND1 and GND2. In each 
case~ it compares tile new instance to those already stored with tile gen- 
eralization to see if there are a significant number of features in common 
(other than those ah'eady accounted fur by the generalization). The nuln- 
bet of features that Columbia has ill common with each relevant instance 
is shown in parentheses in Figure 1. Columbia shares only one feature with 
Brown, the first instance under GND1, but it shares four with MIT. Since 
this is above the parameter for generalizing on this run, UNIMEM creates 
a new generalization, GND6, which is indexed under GND1. Both MIT 
and Columbia are stored under the new generalization. Harvard, the only 
instance under GND2 (the other generalization that Columbia matched), 
shares only one feature with the new instance, and so no generalization 
is made. Cohlmbia is simply stored under (]ND2. Figure 2 shows the 
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Table 4. Genera l iza t ions  involved in the sample run.  

I Feature Initial Final 
Attribute Value  Frequency Confidence Confidence 

G N D 1  

Student :Faculty 
SAT-Verbal 
%-Financial-Aid 
%-Admittance 
%-Enrolled 
Social 
No-of-Students 
Location 
Expenses 
Academics 
Control 

5:1 
637.5 
45.0 
25.0 
55.0 
3.5 out of 5 
< 5,000 
Urban 
> $10,000 
5 out of 5 
Private 

5.78 
-2.00 

1.60 
- 1.20 

0.80 
3.33 
0.00 

-1.00 
2.00 
1.33 
2.00 

6.75 
-1 .25 

1.40 
-0 .60  

1.40 
4.00 
1.00 
0.00 
3.00 
2.33 
3.00 

G N D 2  

%-Financial-Aid 
%-Admittance 
Social 
Quality-of-Life 
Acad-Emphasis 
Acad-Emphasis 
Male:Female 
Student :Faculty 
SAT-Math 
Expenses 
Academics 
Control 

55.0 
20 
3 out of 5 
3.5 out of 5 
History 
Liberal-Arts 
65:35 
7:1 
675 
> $10,000 
5 out of 5 
Private 

1.20 
-2 .00 

2.00 
2.00 

-2 .00 
-2.00 
-0.68 

3.89 
-0.50 

0.00 
-0 .67 

0.00 

1.80 
-1 .80 

3.00 
2.67 

deleted 
-1.0O 
-0.12 

4.88 
0.00 
1.00 
0.33 
1.00 

G N D 3 ,  a m o r e  s p e c i f i c  v e r s i o n  o f  G N D 2  

SAT-Verbal 
%-Financial-Aid 
No-of-Applicants 
%-Enrolled 
No-of-Students 
Acad-Emphasis 

662.5 
45.0 
10,000-13,000 
60 
< 5,000 
History 

G N D 4  

0.00 
0.00 
0.00 
0.00 
0.00 

0.25 
0.00 

- 1.00 
0.20 
1.00 
0.00 

Student:Faculty 
%-Admittance 
Academics 
Acad-Emphasis 

20:1 
82.5 
3 out of 5 
Engineering 

1.00 
0.40 
0.33 
1.00 

1.97 
-0 .60 

0.00 
0.00 

G N D 6 ,  a m o r e  s p e c i f i c  v e r s i o n  o f  G N D 1  

Male:Female 75:25 1 - 0.00 
%-Financial-Aid 55.0 1 - 0.00 
No-of-Applicants 4,000-7,000 1 - 0.00 
Quality-of-Life 3 out of 5 1 - 0.00 
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Brown 

Columbia 
MIT 

Figure 2. Memory structure after Columbia has been processed. 

structure of memory after the processing of Columbia is complete. 

Notice that  Columbia was not compared against any of the instances 
stored under GND3, GND4, or GND5. This university may have much 
in common with some of these instances, but it is much more likely to be 
sinfilar to those under the matched generalizations. Restricting the set of 
instances that  are matched against is a prime factor in maintaining the 
efficiency of the algorithm. 

This sample run also illustrates the nature of UNIMEM's nondisjoint 
generalizations. GND1 and GND2 are not nmtually exclusive, and the 
program has matched Columbia with both of them. Essentially, GND1 
covers small urban universities with high academic levels and GND2 covers 
high 'quality of life' liberal arts schools. Columbia can quite logically be 
considered to exemplify either concept. 

2.4 U N I M E M  in terms  o f  search and m e m o r y  organizat ion  

Like artificial intelligence programs in general, UNIMEM can be viewed 
as searching through a space of alternatives. In this case, each state in the 
space represents an entire concept hierarchy. UNIMEM employs several 
operators to move through this search space, all of which are driven by the 
addition of new instances. First, it can simply change the confidence levels 
of features in concepts that  appear relevant to a new instance. Second, it 
can modify concepts by removing features for which the confidence levels 
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fall too low. Third, it can modify the structure of the generalization hierar- 
chy by adding new concepts when instances are sufficiently similar. Finally, 
it, can delete generalizations (and all their sub-generalizations) when too 
few features remain after deletions. 

Although it is possible to describe UNIMEM in search terms, we feel it is 
more valuable to describe it in the memory terms that we have been using. 
The basic data structure of Generalization-Based Memory is the key to 
its operation. In fact, we feel that more researchers should consider their 
work in memory terms. Viewing learning from this perspective forces one to 
consider how the concepts that are created can be efficiently accessed, how 
memory should be modified, and how the various data structures evolve 
over time, both in terms of structure and size. 

3. Experiments  with U N I M E M  

An important criterion on which to evaluate any learning system is its 
generality. In this section we demonstrate UNIMEM's behavior in two 
additional domains: congressional voting records and terrorist events. An- 
other important issue concerning a systenfs behavior is how it responds to 
changes in parameter values. Thus we conducted a set of experiments in 
parameter variation, which we also present in this section. 

3.1 Congressional voting records 

One domain on which we tested UNIMEM involved Congressional voting 
records. Instances were formed from the votes of each U.S. Congressman 
on a nmnber of major issues (taken from The 1983 American Political 
Almanac) colnbined with information about the district and state repre- 
sented. One advantage of this domain for research purposes is that people 
have strong intuitions about the kinds of generalizations that should be 
found. A complete description of the domain can be found in Lebowitz 
(1986c). In the run described here, we presented UNIMEM with 100 in- 
stances, each containing 15 votes and about 21 other features, is We ex- 
pected to find generalizations that related the various votes to each other 
(e.g., 'liberal' and 'conservative' ideologies), along with others that related 
the votes to the states and districts represented (e.g., someone representing 
a highly urban state would support bills that help cities). Indeed UNIMEM 
formed concepts of this sort. 

Figure 3 shows several of the generalizations that resulted from this run, 
along with their organization in memory. One top-level generalization, 
GND2, describes congressmen from agricultural states with high levels of 

lSFor some instances, certain features were unavailable. 
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J 
For 
For 
Against 

G N D 2  
Education-Vote 
Alaska- Parks-Vote 
Soc-Fund-Cut-Vote 

/ 

ROOT I 

----..... 
G N D 3  
Hosp-Cost-Cont-Vote Against 
Wind-Tax-Lira-Vote For 
Draft-Vote For 
N uc-Power-Vote Against 
MX-Cut-Vote Against 

I .° , 
G N D 8  
Education-Vote Against 
Nicaragua-Ban-Vote For 
Gas-Cont-Ban-Vote Against 
Soc-Fund-Cut-Vote For 
OSHA-Cut-Vote For 
PAC-Limit-Vote Against 

G N D 4  
Wind-Tax-Lim-Vote Against 
Gas-Cont-Ban-Vote For 
Hosp-Cost-Cont-Vote For 
Nicaragua-Ban-Vote Against 
OSHA-Cut-Vote Against 
Food-Stamp-Cap-Vote Against 
PAC-Limit-Vote For 
Fair-Housing-Vote For 

G N D 7  
Nicaragua-Ban-Vote Against 
MX-Cut-Vote For 
Fair-Housing-Vote For 

Figure 3. Partial concept hierarchy for congressional districts. Only vote-related 
features are shown. 

school expenditures m who voted for an education bill, parks in Alaska, and 
so forth. The 24th Texas Congressional District is stored under this gener- 
alization, along with two sub-generalizations. Someone familiar with U.S. 
polities would describe this voting pa t te rn  as 'liberal.' Similarly, the second 
top-level node in this example, GND3, would be considered 'conservative.' 

These two generalizations are non-disjoint, since their features do not in- 

19Values of the form 'n out of in' represent categorized numeric information. In this 
domain, such categories were automatically created using methods described in Lebowitz 
(1985). 
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elude opposite votes on the same bills. Instead, the generalizations include 
votes on different bills and are not exclusive. A conservative record can 
most confidently be identified based on the votes shown in GND3, such as 
a vote against cutt ing the MX missile, while a liberal record shows up from 
the votes in GND2, such as a positive education vote. A Congressman can 
fit into both categories (indeed, this happens in the sub-generalizations of 
GND2). Apparently 'liberal' does not equal 'not conservative.' 

The situation becomes particularly interesting when we look at the sub- 
generalizations of GND2 (GND4 and GND7) and GND3 (GND8). When 
we examine these generalizations carefully, we see that  the contrasting votes 
omitted from the top-level generalizations appear in their sub-generaliza- 
tions. For example, the 'liberal' generalization (GND2) contains a vote 
against a cut in social funds. The converse of this vote does not appear 
in GND3, but  it is present in its sub-generalization, GND8. Similarly, the 
opposite of the conservative vote against the MX missile is not included in 
GND2, but it does occur in one of the sub-generalizations, GND7. Certain 
votes that  do not serve well to define concepts at the top level can be useful 
in refining these concepts after the initial set of features is 'factored out. '  

3.2 Terrorist  events  

UNIMEM was developed from the memory and generalization module 
of IPP (Lebowitz, 1980, 1983b, 1983c), a program that  read news stories 
about international terrorism and added them to long-term memory. In the 
process, it formed a generalization hierarchy using a learning module that  
we will refer to as IPP-MEM. An interesting aspect of this domain is that  
descriptions of events tend to be incomplete, so that  the instances do not 
have the same feature sets. UNIMEM differs from IPP-MEM in a number 
of technical ways. For example, parameters have been added to make 
it more flexible and different methods of low-level indexing are available. 
The most substantial change is the modification of confdence methods to 
consider each feature in a generalization separately. IPP-MEM maintained 
a single confidence level for each generalization. As a result, even one 
anomalous feature could cause an entire generalization to be deleted. We 
wanted to see whether this change in UNIMEM would dramatically alter 
the kinds of generalizations that  remain in the generalization hierarchy at 
the end of a run. 

The experiment described here used 374 of the stories for which the 
IPP text processor (IPP-NLP) produced accurate representations, all taken 
from the period of 1979 1980. Table 5 shows three successively more spe- 
cific generalizations that  UNIMEM built up from a number of bombing 
stories in the sample set. The features in the table with ~deleted' in their 
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Table 5. IPP-NLP/UNIMEM generalizations from the terrorist domain. 

Feature Confidence 
Attribute Value Frequency Level 

G N D 1 0  4 instances] 

Weapon- Weapon 
Weapon-Class 
Results 
Location-Area 
Methods 
S-MOP 
Victim-Nationality 
Location-Nation 

Bomb 
Explosive 
Hurt-Person 
Western-Europe 
Explode-Bomb 
Destructive-Attack 
Spain 
Spain 

G N D 3 0 ,  a m o r e  specif ic  vers ion  of  G N D 1 0  

Results-Health 
S-MOP 
Methods 
Victim-Nationality 

-10 1 
Destructive-Attack 4 
Exifiode-Bomb 4 
Spain 

G N D 3 7 ,  a m o r e  specif ic  vers ion  of  G N D 3 0  

Victim-Role 
Victim-Role 
Victim-Auth 
Victim-Pol-Pos 
Victim-Nationality 
Location-Nation 

Authority 
Soldier 
T 
Estab 
England 
N-Ireland 

6.50 
15.00 
15.00 
15.00 

deleted 
deleted 
deleted 
deleted 

[12 instances} 

15.00 
11.00 
9.75 

deleted 

[4 instances] 

3.75 
-0.75 

3.75 
3.75 

deleted 
deleted 

confidence fields have been removed and are not part  of the final gener- 
alizations (but were initially included). GND10 describes terrorist events 
involving bombs in Western Europe in which people were hurt. This gen- 
eralization was original!y formed from stories originating in Spain with an 
explosion taking place. While this made the generalization carry more in- 
formation than the final version, it was also less widely applicable. Since 
other stories were found with the same characteristics, but  not occurring 
in Spain, UNIMEM removed the location from the generalization. This 
allowed it to apply to a wider range of examples. Ult imately UNIMEM 
created a sub-generalization of GND10 (GND30) that  described events in 
which an explosion took place and people were killed (as indicated by the 
- 1 0  health value). The system also formed an even more specific variant 
of GND10 (GND37) in which the victims were soldiers. 
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The output  in Table 5 is quite typical of the performance of UNIMEM 
in the terrorist event domain. The system created concepts that  seemed 
to capture basic regularities in the domain. Qualitative comparison of the 
UNIMEM generalizations in the terrorist event domain with those gener- 
ated by IPP-MEM was quite informative. Overall, the UNIMEM gener- 
alizations seemed more intuitively plausible and covered a wider range of 
concepts. On the other hand, they also seemed more 'bland,'  omitt ing some 
of the most 'interesting' generalizations that  the original system had made 

for example, that  pistols with silencers were frequently used in attacks 
on Italian political figures. 

It is clear from Table 5 wily the UNIMEM generalizations were more 
'bland' than those of IPP. Suppose that  each system formed a complicated 
generalization, like the one above, by noticing similar events. In response to 
future data, IPP-MEM would either keep the description in toto or delete 
it entirely. On the other hand, UNIMEM would inevitably refine the gener- 
alization, and make it less unusual, by removing the coincidental elements 
so that  it covers a wider range of events. While this is mildly disappoint- 
ing in the short run, overall it is quite positive. UNIMEM produces the 
basic generalizations (e.g., terrorist shootings usually hurt  people) needed 
for default reasoning. Furthermore, the 'flashy' generalizations need not 
be lost, as they can be formed as sub-generalizations. This did not happen 
very often in our experiment with the terrorist domain, since there were 
not enough examples and, more importantly, many of the examples had 
very few features. Large numbers of features actually hindered IPP-MEM, 
as it had no way to refine over-generalized concepts. Given UNIMEM's 
ability to deal with greater numbers of features, we plan to increase the 
level of detail of the feature sets produced from IPP-NLP representations. 

3.3 T h e  effect  o f  v a r y i n g  U N I M E M  p a r a m e t e r s  

UNIMEM has a number of adjustable parameters that  affect its behavior. 
Given different parameter settings, the same sequence of instances can lead 
to many different generalization hierarchies. In order to generate the 'best' 
hierarchy, we will have to find appropriate parameter settings, which may 
vary among domains or applications. For example, one might aim for 
generalizations that  predict a great deal in a limited nmnber of situations, 
or for ones that  are widely applicable but  predict only a small amount of 
information. 2° Convergence rate is also an issue for an incremental system 
like UNIMEM. Depending on the degree of consistency in the domain in 

2°Gluck and Corter (1985) and Fisher (1987) have argued on information-theoretic 
grounds that there is an optimal level of classification. However, their work does not 
apply directly to non-disjoint categories, nor to situations in which the input is uncertain 
and incomplete. 
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question, one may have to trade off learning speed with various aspects of 
hierarchy quality. 

In order to better understand the effect of UNIMEM's parameters on 
the shape of the hierarchy created and on its convergence behavior, we 
conducted a series of experiments involving parameter variation, which we 
describe in this section. 

3.3.1 Evaluating UNIMEM's behavior 

In order to intelligently evaluate the output of UNIMEM, we must con- 
sider what makes one set of concepts better than another. We can apply 
the criteria recursively so that they apply to entire hierarchies. Other 
things being equal, we would prefer concept descriptions with many fea- 
tures, since each additional feature adds inferential power to the general- 
ization. However, the more specific a generalization, the fewer examples it 
can be expected to cover. Thus, there is an inherent trade-off in concept 
formation between coverage and the ability to make predictions based on 
the generalizations. 

A second trade-off in concept formation involves non-disjoint concepts. 
As pointed out earlier, allowing overlap will often result in more specific 
generalizations with more inferential power. However, overlap can also 
make the concepts less useful for a performance element, as it will have to 
consider how to deal with the case where a new example fits into several 
categories. In addition, if there are two concepts that are only slightly 
different, since many of the same instances will be stored under both, 
UNIMEM will create very similar trees of sub-generalizations, which is 
inefficient in both space and time. 

The trade-offs between concept specificity and both generality and mini- 
nlal overlap can be instantiated in UNIMEM terms with two criteria. First, 
under any given generalization, there should be a 'modest number' of sub- 
generalizations. A number in the 4 12 range seems appropriate in our 
domains as it yields generalizations that are relatively specific, but general 
enough to cover a range of instances. Second, the instances covered by a 
set of concepts should be divided roughly equally among them, guarantee- 
ing that each generalization describes a number of different instances and 
tending to mininfize overlap. 

Since UNIMEM forms concepts incrementally, we must also deal with 
convergence. It is important to look at the time it takes the program to 
settle on a set of high confidence concepts that it is not likely to invalidate 
later in the run. Although we would like the generalization hierarchy to 
converge as rapidly as possible, as we will see below, this goal may conflict 
with the other desired properties. However, we must make sure that the 
program does not simply continually create and invalidate concepts. 
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Figure 4. Generalizations at end of run as a function of percentage to generalize 
and percentage to retain. 

3.3.2 An experiment in parameter variation 

Our initial experiment involved the variation of two parameters the 
percentage of features that  instances must have in common for general- 
ization to occur and the percentage of features that  must remain in a 
generalization for it to be retained. 21 Specifically, we set the 'percentage 
to generalize' parameter  value at 25%, 37.5%, and 50% and tile 'percentage 
to retain a generalization' at 20% and 25%. We expected these parameters 
to influence UNIMEM's rate of generalization, e.g., the larger percentage 
of features required for a generalization, the slower the system should gen- 
eralize. 

The experiment involved three randomly selected sequences of 100 uni- 
versities apiece. 22 For each of the six pairs of parameter  values, we had 
UNIMEM independently incorporate the three sets of universities into an 
initially empty memory and then collected summary information. All of 

ZlThe percentage to retain a generalization parameter is computed in terms of the 
initial nmnber of features in the instances. 

22Instances contained about 20 features in this domain, so the absolute number of 
features needed to retain a generalization is roughly 4 at the 20% level and 5 at the 25% 
level. The 25% value for the features to generalize parameter requires about 5 features, 
the 37.5% value requires about 8, and the 50% value about 10. 
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Figure 5. Generalizations created as a flmction of percentage to generalize and 
percentage to retain. 

the data  were averaged across the three runs. 23 Given difficulties in making 
assumptions about  the distribution of the data,  we will not present statis- 
tical analyses, but  instead examine the da ta  qualitatively. In addition, we 
restricted our analysis to the top-level generalizations, which can be viewed 
as UNIMEM's  overlapping categorization of all the input instances. 

The first dependent  variable that  we measured was the number of top- 
level generalizations retained by UNIMEM, as displayed in Figure 4. In 
the various experimental  conditions the system retained an average of be- 
tween 9 and 14 such generalizations, al though the number  will inevitably 
approach zero if either parameter  is made very much higher. There is some 
indication that  the number  of remaining generalizations tends to increase 
along with each parameter ,  but  this is not a strong trend. 

In an a t t empt  to clarify these results, we examined the two dependent  
variables that  determine the number  of generalizations that  remain the 
number  that  are created and the percentage of those created that  are 

~3While UNIMEM is potentially susceptible to effects of the order of instances, this 
usually is not a major issue. A few odd generalizations made at the beginning of a run 
may have to be discarded, losing some information. In this experiment, while there was 
some variation in the results between the three different data sets, in no case was it 
striking. 
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Figure 6. Generalizations deleted as a function of percentage to generalize and 
percentage to retain. 

deleted. The average number  of generalizations created for each combi- 
nation of parameters  is shown in Figure 5. We see, somewhat  surprisingly, 
that  the number  of generalizations created declines only moderate ly  as the 
features needed to generalize increases. We might expect  this decline to 
be greater since it should be harder to find instances with more features in 
common. For reasons that  will be considered below, the number  of features 
needed to retain a generalization has a substantial  effect on the nmnber 
created. 

Figure 6 shows the average percentage of generalizations deleted by 
UNIMEM's  evaluation method  when too many features were removed. As 
expected, more generalizations are deleted at the 25% retention level than 
at tile 20% level. A more surprising result is tha t  number of features 
needed to create a generalization affects the percentage that  are deleted. 
The reason becomes clear when one realizes tha t  the more features that  
are initially in a generalization, the more that  can be removed and still be 
over the deletion threshold. In effect, requiring more common features to 
form a generalization enhances the possibility that  there will be a ~good' 
set of features included that  UNIMEM can retain once the ~bad' ones are 
whit t led away. 
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Fig~lre 7. Average number of top-level initial and final features as a flmction of 
t)ercentage to generalize and percentage to retain. 

The decrease in the deletion rate as one increases the percentage of 
features needed to generalize explains the decrease in the creation rate. 
Since fewer generalizations are deleted, there is a higher chance that new 
instances will be stored under existing generalizations before the hierarchy 
converges. This diminishes the chance that new top-level generalizations 
will be created. The combination of creation and deletion behavior provides 
an explanation for the smaller number of generalizations retained at both 
ends of the 20% deletion level curve in Figure 4. If the number of features 
needed to generalize is very low, then few generalizations are kept, and 
if it is very high, then few are made. Determining the robustness of this 
phenomenon will require the collection of further data. 

Another evaluation criterion that one might expect the parameters under 
consideration to influence is the average number of features in a generaliza- 
tion. Figure 7 shows how this variable is affected. The average final number 
of features that remain in each top-level generalization is essentially inde- 
pendent of the number of features needed to create a generalization, but it 
does depend upon the number needed to retain a category. The lack of any 
effect for the creation threshold is despite the fact that the initial number 
of features in a generalization, also shown in Figure 7, clearly does depend 
on that parameter. 
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Figure 8. Average instance distribution as a function of percentage to generalize 
and percentage to retain. 

Another  one of our evaluation criteria was that ,  to the extent possi- 
ble, instances should be evenly divided among the various concepts. To 
measure this, we counted the instances stored under each top-level gen- 
eralization and its children. We then computed  the s tandard deviation 
among the top-level generalizations, normalized in terms of the mean. 24 
Figure 8 shows the results with this dependent  measure. In general, the 
s tandard deviation increases (the instances are less well distributed) with 
the number  of features needed to make a generalization. The (50%~ 20%) 
point is a notable exception. This pair of parameter  values also produced 
good behavior on the other measures as well. However, the results are not 
robust  enough to draw any strong conclusions. In particular, the s tandard 
deviation results are very susceptible to new top-level generalizations cre- 
ated near the end of a run that  describe only a small number  of instances. 
We plan to examine this si tuation in more detail using longer runs and by 
restricting our analysis to generalizations with high-confidence features. 

The final dependent  variable we considered was the average feature con- 
fidence level for top-level generalizations, which we use as an approximate 

24The normalization is needed since the total number of instances stored in the hier- 
archy can vary widely. This is because instances can be 'lost' when generalizations are 
deleted and because they can be stored in more than one place in memory. 
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Figure 9. Average feature confidence as a function of percentage to generalize and 
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measure of convergence. We present the results in Figure 9. The most 
notable thing about the data is that  confidence levels are much higher for 
the 20% retention level than for the 25% level, and that  the (50%, 20%) 
parameter combination clearly produces the highest confidence levels. The 
lower levels at the 25% retention level probably resulted from the failure 
of the concept set to converge before the run ended. Thus, the average 
reflects a number of generalizations that  would ultimately have been re- 
uloved entirely. We need to examine longer runs to determine whether this 
is strictly a convergence phenomenon or whether the confidence levels will 
remain lower even with a fixed set of generalizations. UNIMEM typically 
will not converge upon a final set of generalizations if one selects partic- 
ularly poor parameter values. Whether this property is good or bad is 
unclear. 

The results in this section illustrate the various trade-offs involving the 
UNIMEM parameters. Considering first the percentage to retain a gener- 
alization parameter,  the lower value (20%) produced generalizations with 
features that  had higher confidence, a desirable result that indicates more 
rapid convergence. However, as expected, the higher value (25%) produced 
generalizations with more features, which is also desirable. The results in- 
volving numbers of generalizations produced were largely inconclusive with 
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respect to this parameter,  though they did indicate that  the range of values 
we tried produced reasonable results in terms of our evaluation criteria. 

The other parameter  under consideration, percentage of features needed 
to generalize, generally produced better  results with the highest value 
(50%). The generalizations under that  condition tended to have higher 
confidence features and more features and there were a reasonable num- 
ber of generalizations. On the other hand, higher values of this parameter 
seemed to produce less well-distributed instances, although the 50% value 
actually produced the best result in combination with the 20% value of 
the 'percentage to retain' parameter. Notice that  if we let the percentage 
to generalize parameter  increase further and approach 100%, only identi- 
cal instances would be used to create new concepts, which does not seem 
acceptable. Hence a trade-off is apparent. 

It appears, then, that  there is a need for intermediate values for each 
of the two parameters that  we have examined. It seems that  if instances 
are generalized on the basis of too few features then they are not neces- 
sarily very similar, and so their generalization has little predictive power. 
UNIMEM's confidence evaluation methods work well when a good gener- 
alization is embedded in the initial one, but  not when the initial general- 
izations are essentially random. In contrast, if we require larger numbers 
of features to generalize than the ones used here, then the initial gener- 
alized instances have so much in common that  the generalization applies 
to few other instances and yet appears relevant to many of them. This 
undermines the ability of the confidence evaluation methods to identify 
irrelevant features. If too many features are required to retain generaliza- 
tions in relation to the number needed to make them, then ahnost all of 
the generalizations will be disconfirmed. If too few are required, then the 
remaining generalizations become essentially meaningless. 

While collecting the data for this experiment we also saved information 
about the computer  time needed to incorporate instances into memory. 
UNIMEM was designed so that  the time needed to add instances to mem- 
ory should increase only slightly as memory grows. Indeed, if memory 
reaches a point where most of the new examples are duplicates of existing 
ones, and hence cause no changes to the concept hierarchy, then update  
time should be nearly constant. In any case, the tree structure of memory 
should result in the time needed to update  memory growing at no more 
than a logarithmic rate, with the growth constant depending on how ef- 
ficiently instances and sub-generalizations are indexed. Figure 10 shows 
the empirical results for one run in the university domain, averaged over 
groups of ten instances. 25 The growth of update  time appears consistent 

25We average  t he  d a t a  over groups  of ten  ins tances ,  since ind iv idua l  u p d a t e  t imes  can  
vary  radical ly  d e p e n d i n g  u p o n  w h e t h e r  a new genera l i za t ion  node  needs  to be  c rea ted  
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with a logarithmic increase hypothesis and it clearly does not explode in 
any extreme way. We plan additional experiments to better estimate the 
growth rate and to examine UNIMEM's behavior when greater nunfl)ers of 
instances are involved. 

In conclusion, although we do not view tile results presented herein as 
definitive, they have given some insight into the effects of UNIMEM param- 
eters. In addition, we feel they show the kind of data that  must be collected 
before we can fully understand the nature of learning by obscrvat.ion. 

4. Re lated  research issues 

Our work with UNIMEM has left us with a number of interesting prob- 
lems to pursue. We briefly describe two of them here: the automatic mod- 
ification of parameter  settings and the integration of explanation-based 
methods with the empirical approach of UNIMEM. 

4.1 Automatic setting of UNIMEM parameters 

We have seen that  UNIMEM uses many paraineters and that their set- 
tings greatly affect the system's behavior. In the long run we would like 
the program to set these parameters itself for each new domain. The basic 

and how quickly the search through the concept hierarchy is narrowed. 
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idea is that UNIMEM would monitor its behavior and adjust parameters 
to guide it toward the desired kind of generalization hierarchy. The goal 
would be expressed as another set of parameters, but ones that would 
make intuitive sense to a user, such as the rate at which generalizations 
are created, the rate they are deleted, or the average branching factor of 
the generalization tree. 

It should not be difficult to extend UNIMEM in this fashion. The sys- 
tem would incrementally collect data about its behavior and periodically 
consider adjusting its parameters in response. However, we must first un- 
derstand the effects of the various parameters through experiments of the 
sort described above. As an initial attempt at automatic parameter adjust- 
ment we plan to have UNIMEM monitor the rate at which generalizations 
are deleted, and if this rate becomes too high or too low, have the system 
modify the parameters discussed in the previous section. 

4.2 Using domain-dependent knowledge 

Frequently when observing the world, humans attempt to explain the 
generalizations that they make (Schank, 1986), an ability that is lacking in 
UNIMEM. We are currently studying the relationship between empirical 
learning of the sort carried out by UNIMEM and explanation-based learn- 
ing methods that have been developed recently (e.g., DeJong & Mooney, 
1986; Mitchell, Keller, & Kedar-Cabelli, 1986; Silver, 1986). These meth- 
ods, instead of looking for regularities among a large number of examples, 
analyze a single example in terms of cause and effect and generalize on the 
basis of this analysis. Roughly speaking, these methods explain an example 
and then generalize it, eliminating elements that are not essential to the 
explanation. 

We have written elsewhere (Lebowitz, 1986a, 1986c) about the need 
to integrate these two styles of learning and our initial attempt to do so 
using UNIMEM. The basic approach is to explain empirically-produced 
generalizations using a simple rule base and to modify the UNIMEM gen- 
eralizations where this is not possible. We have also begun a new project 
that focuses on the interaction between the two learning methods in un- 
derstanding terrorism events (Danyluk, 1987). 

Four assumptions underlie our plan for integrated learning. First, while 
an important goal of learning is indeed a causal model and many explana- 
tion-based methods consider the causality behind examples, it is often not 
possible to deternfine underlying causality. Even where this is possible, it 
may not be computationally practical. Second, similarity usually indicates 
causality and is much easier to determine, and predictability can be used 
to help determine tt~e direction of causality. Third, there exist methods 



INCREMENTAL C O N C E P T  F()RMATION 133 

to refine generalizations, some of which we have seen in this paper, that 
mitigate the effects of coincidence. Finally, explanation-based and empir- 
ical methods complement each other effectively. In particular, it seems 
more efficient to use explanation-based methods to analyze generalizations 
rathe, r than every individual example. Explanations can also help in decid- 
ing which empirical generalizations are likely to be significant and which 
features to consider. 

5. Relat ion  to other work 

Our work on UNIMEM and generalization-based memory is closely re- 
lated to Michalski and Stepp's (1983) research on conceptual clustering. 
which they developed independently at about tile same time. 26 This ap- 
proach also accepts feature-based instances as input and generates (fron~ 
the top down) a hierarchical set of concept descriptions that smnmarizes 
them. However, tile underlying mechanism is quite different from the one 
used by UNIMEM. For instance, Miehalski and Stepp require their descrip- 
tions to perfectly describe instances they cover. In addition, their method 
is nonineremental, making use of an algorithm that first finds maximally 
general discriminants and then determines maximally specific definitions 
of the resulting concepts. More recent work by Stepp and Michalski (1986) 
makes use of domain goals to guide the search for descriptive concet)ts. 

Fisher (1987) has developed COBWEB, a system that has much more in 
common wittl UNIMEM. This program also performs incremental concept 
formation, constructing a concept hierarchy from the top down to summa- 
rize instances described as sets of features. Like UNIMEM, the system flflly 
integrates the process of recognition and learning, modifying its concept de- 
scriptions and hierarehy in the act of classifying each instance. Fisher's ap- 
proach differs from the present work along a number of dimensions. While 
UNIMEM uses simple conjunctive definitions for concepts. COBWEB em- 
ploys probabilistie representations (e.g, '60% of the instances in ( ' o n e e p |  

X are large and 40% are small'). Ill addition, the system uses an explicit 
evaluation function based on (]luck and (k)rter's (1985) category utility 
metric to determine optimal clusterings. 27 This measure wouht appear 
to be more computationally expensive than UNIMEM's matching t>rocess. 
but confirnfing this pre<tiction would require <tetailed analysis. Other dif- 

26We direct readers t<> Fisher and Langley (1985) for a survey of work on conceptual 
clustering met hods. 

27Hanson and Bauer (1986) have described WITT,  another conceptual clustering sys- 
tern that uses an information-theoretic evaluation flmction. This program differs from 
both UNIMEM and COBWEB in that il constructs its hierarchies from the bottom up. 
WITT can be run in either incremental or nonincremental illode. 
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ferences between UNIMEM and COBWEB include the latter's requirement 
that categories be disjoint and support for only nominal features. However, 
the general approach taken in the two systems is very similar. 

The approach we have taken with UNIMEM is even more closely re- 
lated to Kolodner's (1984) CYRUS model. This system was initially devel- 
oped at Yale contemporaneously with IPP, the predecessor of the current 
program. 2s Like UNIMEM, the CYRUS system builds up hierarchies of 
generalizations based on similarities among instances. The primary differ- 
ence is that CYRUS makes much more use of domain information, which 
it uses to determine which elements of instances can best serve as dis- 
criminants among concepts. Kolodner's system can handle instances that 
contain more information than can UNIMEM, since it can apply domain 
knowledge to avoid combinatorial explosions in retrieval and concept forma- 
tion. However, this strategy also limits its flexibility in application to new 
domains. Thus, UNIMEM's reliance on a relatively domain-independent 
feature representation can be viewed as both a strength and a weakness. 

All work in conceptual clustering, including UNIMEM, can also be com- 
pared to methods for statistical clustering (e.g., Anderberg, 1973). The 
concept hierarchies generated by our system bear considerable resemblance 
to the trees produced by hierarchical statistical clustering. However, sta- 
tistical approaches differ from conceptual methods in that they do not 
form descriptions of the resulting clusters. This results from a reliance on 
distance metrics to determine which clusters to form. Typically, these algo- 
rithms accept as input a matrix that specifies the distance between all pairs 
of instances. This may be computed from a feature-based representation 
or it may be given directly (e.g., by human subjects). The conceptual hier- 
archy is then built solely from the similarity matrix by grouping together 
instances that are near to each other. 

This approach makes sense if one has only the distance information avail- 
able, but it can lead to problems. In particular, statistical methods can 
cluster instances that are pairwise close, but which have no common simi- 
larities. They may also fail to cluster instances that have an underlying core 
of similarity, but which differ in other respects, so that they are not close 
together overall. If one has additional information in the form of instance 
descriptions, then it seems natural to take advantage of this information. 
This is exactly the approach taken by UNIMEM and other conceptual clus- 
tering methods. In addition, the incremental nature of UNIMEM lets it 

2SBoth IPP and CYRUS were heavily influenced by Schank's (1982) theory of memory 
organization packets (MOPs), a psychologically-oriented theory of memory that  was 
under development at the same time. CYRUS also involved a major effort in intelligent 
question answering, including reconstructing information. Section 3.2 describes how 
UNIMEM differs from IPP. 
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avoid computing distances between all pairs of instances by incorporat- 
ing them into memory one at a time. Miehalski and Stepp (1983) further 
contrast conceptual clustering with statistical methods. 

6. Conclusion 

Incremental concept formation is an important area of machine learn- 
ing involving the automatic construction of a knowledge base that orga- 
nizes real-world information. In this paper we have given an overview of 
UNIMEM, a program that performs concept formation incrementally. We 
demonstrated the system's generality by showing it in operation on several 
disparate domains. We also showed several of its key processes, includ- 
ing the creation of generalized concepts and their evaluation over time. 
We reported an experiment relating two of UNIMEM's parameters to the 
quality of the resulting set of concepts. While each new domain brings its 
own problems, the basic methods described here have proven to be quite 
robust. We feel that UNIMEM constitutes a promising step along the way 
toward systems that can make maximal use of information that they collect 
over time. 
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Appendix: UNIMEM Parameters 

Below we present a complete  list of the parameters  used to control the 
UNIMEM generalization process. The only parameters  tha t  have been 
omi t ted  are those tha t  control the form of the ou tput .  Typical  values are 
given in brackets. 

• Percentage of similar instance features needed to create a generaliza- 
t ion [40%]. 

• Absolute m i n i m u m  number  of features needed to generalize [2]. 

• Percentage of instance features needed to keep a generalization after 
some features have been deleted [20%]. 

• Absolute m i n i m u m  number  of features needed to keep a generalization 
[2]. 

• Total amount  of conflict between instance features and generalization 
features allowed in match ing  [1.01 . 

• Confidence level at which a feature is deleted [-3]. 

• Confidence level at which a feature is p resumed pe rmanen t  [20]. 

• Max imum distance between feature values allowed in matching  [0.5]. 

• Confidence mult ipl ier  for matches  [2.0]. 

• Confidence mult ipl ier  for mismatches  [-2.0]. 

• Number  of features tha t  indicate relevance in search [2]. 

• Number  of misses, less than  which indicates relevance [2]. 

• Penal ty  for missing feature [0.1]. 


