
Machine Learning 2:103 138, 1987
@ 1987 Kluwer Academic Publishers, Boston Manufactured in The Netherlands

Experiments with Incremental Concept
Formation: UNIMEM

MICHAEL LEBOWITZ (LEBOWITZ@CS.COLUMBIA.EDU)

Department of Computer Science, Columbia Univer,~ity, New York, NY 100o7, U.S.A.

(Received: November 14, 1986)

(Revised: June 9, 1987)

Keywords : Concept formation, learning by observation, generalization, conceptual
clustering

Abs t rac t . Learning by observation involves automatic creation of categories that sum-
marize experience. In this paper we present UNIMEM, an artificial intelligence system
that learns by observation. UNIMEM is a robust program that can be run on many do-
mains with real-world problem characteristics such as uncertainty, incompleteness, and
large numbers of examples. We give an overview of the program that illustrates several
key elements, including the automatic creation of non-disjoint concept hierarchies that
are evaluated over time. We then describe several experiments that we have carried out
with UNIMEM, including tests on different domains (universities, Congressional voting
records, and terrorist events) and an examination of the effect of varying UNIMEM's
parameters on the resulting concept hierarchies. Finally we discuss flmlre directions for
our work with the program.

1. I n t r o d u c t i o n

Learn ing f rom observa t ion is a task t h a t is i m p o r t a n t in domains where
examples are not pre-classified, bu t where one still wishes to de tec t gen-
eral rules and intel l igent ly organize examples . In this p a p e r we discuss
U N I M E M , a sy s t em tha t learns f rom observa t ion by not ic ing regular i t ies
among examples and organiz ing t h e m into a genera l iza t ion hierarchy. We
view U N I M E M b o t h as imp lemen t ing an a lgo r i thm for concep t fo rma t ion
and as a p r o t o t y p e intel l igent in fo rma t ion sys t em t h a t can inco rpora t e
large a m o u n t s of d a t a into m e m o r y and re t r ieve ap p ro p r i a t e i n fo rma t ion
in response to user queries. U N I M E M is no t i n t ended to be a psychological
model per Be, since it deals wi th a task more da ta - in tens ive t h a n people
are likely to pe r fo rm. However , in developing the p r o g r a m we have m a d e
use of t echniques der ived by observ ing h m n a n behavior .

Tile task of U N I M E M is to take a series of examples (or instances)
t h a t are expressed as col lect ions of fea tures and bui ld up a general iza-

104 M. LEBOWITZ

tion hierarchy of concepts. For example, UNIMEM might use information
about a collection of universities to inductively determine the concepts of
Ivy League universities, European technical universities, and so forth, and
determine which examples are described by which concepts. The point of
creating such concept descriptions is that they allow a performance element
using the output of the program to make inferences about new examples
based on partial information.

Successful learning from real-world input must deal with several con-
straints. The key features that characterize the operation of UNIMEM
are:

• It learns by observation; it is not explicitly told how examples should
be grouped into categories;

• It is incremental; output must be available after processing each ex-
ample; it cannot wait for all the input;

• It must handle examples in large numbers (currently hundreds, even-
tually more);

• Its generalizations are pragmatic; they need not perfectly describe all
the instances they cover. 1

Although certain learning systems have dealt with tasks having some of
these characteristics, little work has been concerned with all of them. How-
ever, all seem to characterize human concept formation and all seem valu-
able for learning in complex real-world domains. We constantly receive
new examples and the world is not perfectly regular.

The task of UNIMEM is basically that of conceptual clustering as pre-
sented by Michalski and Stepp (1983) and Fisher and Langley (1985), but
our work also draws upon research in learning from examples (e.g., Win-
ston, 1975; Mitchell, 1982; Dietterich & Michalski, 1986). However, in a
learning by observation setting, one must consider not just how to com-
pare examples, but also decide which examples to compare. This decision
largely determines the concepts that one creates. We make the assumption
that similarities among natural occurring examples reflect meaningful reg-
ularities in the world, an assumption that we discuss at length elsewhere
(Lebowitz, 1986a).

The name UNIMEM is derived from the phrase UNiversal MEMory
model, which reflects our goal of generality. We would like the system to
be easily applicable to new domains, at least those where a feature-based
representation is adequate. Domains in which UNIMEM has been used

1Pragmatic generalization is crucial in dealing with uncertain, incomplete, or incon-
sistent data, where apparently equivalent situations may produce different results.

INCREMENTAL CONCEPT FORMATION 105

include: U.S. states, Congressional voting records, software evaluations,
biological data, football plays, universities, terrorist events, census data,
and financial data. In the following sections we provide an overview of
the UNIMEM learning algorithm, along with an example of the system in
operation, and then describe several experiments that we have performed
with the program. These include both examining the system's behavior in
several different domains and a study of the effects of varying UNIMEM's
parmneters. We conclude with a discussion of several open research issues
and the relation of our work to other research in machine learning.

2. T h e basic U N I M E M a l g o r i t h m

UNIMEM takes a series of examples in a domain and organizes them
into a permanent long-term memory. 2 The key idea behind the system
is Generalization-Based Memory (GBM):3 a hierarchy of concepts for de-
scribing classes of objects. GBM is built up by generalizing from specific
examples, which involves both searching memory for similar examples and
abstracting out similarities. To illustrate the UNIMEM learning algorithm,
we will use examples from the domain of university information. For this
domain we collected descriptions of 224 universities. Information was taken
from standard reference books and by surveying undergraduate students.
In studying learning by observation, we feel that it, is important to collect
as much information as possible and not prejudge whether any particular
piece of information is likely to be useful in generalization.

2.1 UNIMEM's representation of instances and concepts

Input to UNIMEM is a series of examples, or instances, given to the
program one at a time. An instance is described as a set of features that
are essentially attribute/value pairs. 4 Each university has attributes such
as 'percent of students receiving financial aid,' 'average math SAT score,'

2UNIMEM runs in UCI LISP on a DECSystem/2060 and in Portable Standard LISP
on an HP 9861 workstation and a DEC VAX-750.

aGBM is also used by our other prototype intelligent information system, RE-
SEARCHER, which reads, remembers, and generalizes from patent abstracts (Lebowitz,
1983a, 1986b). The instances in RESEARCHER are more complex than those in
UNIMEM, but it can handle fewer examples. The idea of GBM was originally developed
for IPP, a program that read and learned from news stories about terrorism (Lebowitz
1980, 1983b); see also Section 3.2 of this paper.

4UNIMEM actually uses at tr ibute/facet/value triples. This greatly simplifies its use
for frame-based representations. For example, in the terrorist event domain we use
attributes and facets to distinguish among features of the different role fillers, e.g, tile
victim's nationality and the actor's nationality. However. for purposes of clarity, in this
paper we have collapsed the attr ibute and facet fields.

106 M. LEBOWITZ

Table 1. Three ins tances of univers i t ies .

Value for Value for Value for
Attribute Columbia Yale Brown

State
Location
Control
Male:Female
No-of-Students
Student :Faculty
SAT-Verbal
SAT-Math
Expenses
%-Financial-Aid
No-Applicm~ts
%-Admittance
%-Enrolled
Academies
Social
Quality-of-Life
Aead-Emphasis
Aead-Emphasis
Aead-Ernphasis
Aead-Emphasis

New-York
Urban
Private
7:3
< 5,000
9:1
625
650
> $10,000
60
4,000 7,000
30
5O
5 out of 5
3 out of 5
3 out of 5
Lib-Arts

Connecticut
Small-City
Private
55:45
< 5,000
5:1
675
675
> $10,000
4O
10,000 13,000
20
60
5 out of 5
3 out of 5
4 out of 5
History
Biology
English
Lib-Arts

Rhode-Island
Urban
Private
1:1
< 5,000
11:1
625
650
> $10,000
40
10,000-13,000
20
50
5 out of 5
4 out of 5
5 out of 5
History
Biology
Art-Sciences

and so forth. Some features, such as quality of social life, make use of
arbitrary five point scales. While a simple feature representation is clearly
inadequate for many tasks, it allows us to get started very easily on new
domains. Table 1 shows the input features for Columbia, Yale, and Brown,
three typical instances in the university domain.

The goal of UNIMEM is to recognize similar instances and abstract
them to form a hierarchy of generalized concept descriptions. Instances are
stored in GBM under the generalizations that describe them. The resulting
concept hierarchy can, if desired, be used by a performance system, such as
a question-answering program. The manner in which generalizations are
related is illustrated in Table 2~ which shows part of a concept hierarchy
formed by UNIMEM from 150 university instances averaging about 20 fea-
tures apiece. 5 (The complete hierarchy is available upon request from the
author.) The table shows how the basic concept of a university is broken
down into a number of more specialized versions. The hierarchical nature
of the generalizations is indicated by indentation (e.g., GND60 inherits
all the properties of GND2). The English concept descriptions have been

'~UNIMEM does not require that every instance have a value for every attribute~
hence the number of features per instance varies. Also, a t t r ibutes with multiple values
are allowed.

INCREMENTAL C O N C E P T FORMATION 107

Table 2. A portion of UNIMEM's concept hierarchy for a university run.

GNDO {'unusual' universities that are not covered by any generalization}
[DALLAS-BAPTIST-COLLEGE JUILLIARD MICHIGAN-STATE SUNY-BUFFALO
UNIVERSITY-OF-MISSISSIPPI VASSAR]

GND2 {high quality of life and academics; engineering emphasis}
[CHALMERS-UNIVERSITY-OF-TECHNOLOGY ECOLE-POLYTECHNIQUE PENN-STATE
SAN-JOSE-STATE UNIVERSITY-OF-CALIFORNIA-SAN-DIEGO
UNIVERSITY-OF-TEXAS]

GND60 {large state schools with strong social life}
[UNIVERSITY-OF-COLORADO UNIVERSITY-OF-MASSACHUSETTS-A~HERST]

GND4 {private universities with high academic level and medium social
life}
[]

GND9 {expensive, urban schools with strong applicant SAT scores}
[HARVARD UNIVERSITY-OF-PENNSYLVANIA]

GNDII9 {small schools with low admittance rates}
[COLUMBIA WESLEYAN]

GNDi9 {expensive schools with high enrollment yields}
[MIT SWARTHMORE]

GND133 {small schools with very high SATs and low admittance rates}
[PRINCETON YALE]

added by hand. At the top level, we see universities under GND0 that are
described by no generalized concepts. Shown beneath GND0 are two gen-
eralized concepts, GND2 and GND4. The latter of these, which describes
private universities, also has several more specific versions. 6

In the hierarchy of generalizations that describe concepts of increas-
ing specificity, instances and sub-generalizations are stored using efficient
indexing methods. 7 The generalizations themselves are sets of features.
Table 3 shows several of the generalizations taken from the hierarchy in
Table 2. GND4, the first generalization in the table, can be summarized
as 'high-quality private universities,' represented by an appropriate set of
features. In this hierarchy, no instances were stored directly under GND4,
since those from which it was created had all been used to create sub-
generalizations.

6The more specific versions of a generalization are referred to as its sub-
generalizations.

rWe have experimented with both discrimination networks (Feigenbaum, 1963) and
hash tables for indexing. The exact indexing method is not crucial in most domains:
there are rarely a large number of instances under a given generalization, since sub-
generalizations tend to be formed as the number of instances grows.

108 M. LEBOWITZ

Table 3. Selected concept descriptions for the university domain.

Feature Confidence
Attribute Value Frequency Level

GND4 [no instances]

Quality-of-Life 4 out of 5 1 20.00
Academics 4.5 out of 5 2 17.67
Control Private 3 16.00
Social 3 out of 5 3 20.00

GND9 [Harvard University-of-Pennsylvania]

Sat-Math
%-Financial-Aid
Location
Student :Faculty
Expenses

662.5
60
urban
10:1
> $10,000

4.13
5.00
0.00
4.40

11.00

GND19 [MIT Swarthmore]

Sat-Verbal 637.5 1 2.72
%-Financial-Aid 45.0 1 2.20
%-Enrolled 55.0 2 1.00
No-of-Students < 5,000 5 5.00

As par t of its representation, UNIMEM includes numeric ratings that in-
dicate its confidence in each feature of each generalization. These numbers
s tar t at 0 and can increase or decrease during the processing of later ex-
amples, as described in Section 2.2.3. The values in the rightmost column
of Table 3 are the confidence levels. 8

The numbers in the third column of the table are feature frequencies that
indicate how often each feature appears in other generalizations. This infor-
mation is used for predictabil i ty analysis, a method for determining which
features are likely to indicate a generalization's relevance to new examples.
While we will not discuss predictabili ty in depth here - it is discussed more
fully in Lebowitz (1983b) the basic idea is tha t only certain features
should be used to index a concept (because they indicate its relevance),
and that these features can be identified efficiently using Generalization-
Based Memory. Predictabi l i ty analysis can also be important in determin-
ing causal explanations for generalizations (Lebowitz, 1986c).

Table 3 also shows GND9 and GND19, two more specific versions of
GND4. The concept GND9 describes expensive, urban schools and GND19
describes schools tha t are small and have high verbal SAT scores. Each

8Naturally, the decimal places should not be taken too seriously. They are the product
of the numeric evaluation procedure used.

INCREMENTAL CONCEPT FORMATION 109

of these generalizations has instances (universities) stored with it. When
future instances are found to be described by these generalizations, they
will be compared to the examples stored there.

The use of a hierarchy of generalizations as a method of memory organi-
zation allows efficient storage of information since it supports inheritance.
In addition, GBM allows the generalizations and instances relevant for
learning to be found efficiently in memory using the algorithm described
below. This latter property is largely independent of UNIMEM's feature-
based knowledge representation, as we have shown with RESEARCHER
(Lebowitz, 1983a, 1986b), a system that uses a more complex represen-
tational scheme. The use of concept hierarchies with inheritance is by
no means new; semantic networks (Quillian, 1968), frame systems (Min-
sky, 1975), and MOPs (Schank~ 1982) are among many formalisms that
incorporate this approach. What distinguishes UNIMEM is the dynamic
formation of the concept hierarchy and the use of this hierarchy to guide
the development of further concepts.

An important part of tile UNIMEM methodology is that the more spe-
cialized versions of a given concept need not be mutually exclusive. In
Table 2, for example, the two concepts 'schools with high quality of life
and academics; engineering emphasis' and 'private universities with high
academic level and medium social life' are obviously not mutually exclu-
sive; a university could be described by both concepts. An implication of
this is that UNIMEM can store an instance in several places in memory.
Most clustering techniques require disjoint categories, but this does not
seem to be the best way to maximize the inferential power of the concepts
created.

Nor must the categories at a given level cover all the instances. Even
if a concept allows default inferencing, its negation may not because the
instances not in that category may have little in common. For example,
universities that are neither in GND2 nor GND4 above may share no fea-
tures; hence no default inferences could be made based on nonmembership
in those classes.

2.2 A d d i n g n e w ins tances to m e m o r y

The basic process of incorporating a new instance into GBM makes direct
use of the memory organization defined above. UNIMEM's incorporation
algorithm for a new instance with a list of input-features can be broken
into two phases: 9

9The UNIMEM incorporation algorithm includes a number of adjustable parameters,
noted by a superscript P in the text. By parameterizing all aspects of UNIMEM, we
do not give great meaning to any specific numeric value. In Section 4.1 we will discuss

110 M. LEBOWITZ

1. Search GBM for the most specific concept node(s) that the instance
matches by calling SEARCH(root-node, input features).

2. Add the new instance to memory by calling UPDATE(most-specific-
node, input@atures) for the node(s) found by SEARCH. This involves
comparing the new instance to the ones already stored and generalizing
if appropriate.

If desired the search phase could be used independently to retrieve instances
that match an input description. This could be done for information re-
trieval and similar applications.

2.2.1 Searching the generalization hierarchy

As UNIMEM processes a new instance, it first finds the most specific
generalizations that describe it. GBM can be viewed as a large discrimi-
nation net (Feigenbaum, 1963), so UNIMEM starts with its most general
node and carries out a controlled depth-first search to find the most spe-
cific generalization(s) that legitimately describe the new instance. When
the search begins, none of the input features have been matched to a gen-
eralization. As UNIMEM searches down the concept hierarchy, features
are gradually accounted for by various generalizations. The major steps of
the SEARCH algorithm are:

SEARCH(node, unexplained-features)

1. If the sum of the distances between the features in unexplained-features
and those of node is ' too large', e then node does not adequately match
the instance; return the empty list.

2. Otherwise, for each potentially relevant sub-node sx of node, call
SEARCH(sx, [unexplained-features features of node]).

3. If for any sx, SEARCH returns a list of nodes that describe the new
instance, then return the union of those lists.

4. Otherwise, return the singleton list of node. (This case occurs only
when each sub-node conflicts with the new instance. Since node does
not conflict with the new instance, it is the most specific acceptable
generalization on this search path.)

the possibility of setting the parameters automatically. The Appendix gives a complete
listing of UNIMEM's parameters.

INCREMENTAL CONCEPT FORMATION 111

During UNIMEM's search process, feature values can do more than
match or mismatch - there can be varying degrees of closeness. 1° Instead
of values simply matching or not, we allow the quality of feature matches to
vary between 0 (total mismatch) and 1 (perfect match). 11 When UNIMEM
matches a new instance to a generalization, it considers whether tile sum
of tile distances between the features in the generalization and those in the
new instance is small enough r to assume that the generalization describes
the instance. 12

If an instance has feature values that conflict with a generalization, which
is allowed as long as the total conflict is not too high, then the instance
feature values simply override those in the generalization. This contrasts
with many learning techniques, which assume that all the features of a
generalization must hold for each instance that it describes. In early ex-
periments with UNIMEM, we found that such an all-or-none matching
scheme led to tile creation of excessive numbers of slightly different gener-
alizations because new instances did not quite fit under old ones. Allowing
contradiction does potentially leave UNIMEM open to problems of tile sort
described by Brachman (1985), such as describing an instance as "an Ivy-
League type school except it's not in the East, not private, not expensive
. . . " . However, as long as we keep the allowed-difference parameter small,
this does not appear to happen.

2.2.2 Storing a new instance in memory

Once UNIMEM has retrieved the most specific generalization(s) that
a new instance matches, it compares the instance against others already
stored with the concept(s) to determine whether further generalizations
should be made. The system looks for instances that have features in com-
mon with the new one. If it finds one tha t has enough features in common, r
it creates a new node by generalizing the common features, and it stores
the contributing instances with the new concept. If no sufficiently similar
instances are found, it stores the new instance under the existing general-
ization. The a t t r ibute /value representation of UNIMEM normally yields a
unique generalization of two instances, l~ but multiple generalizations are

~°We developed categorization algorithms for numeric input that allowed an all-or-
none regimen to work reasonably well (Lebowitz, 1985), but we have since modified
UNIMEM to take into account the closeness of values as described here.

t iThe system is set up so that a user can easily define different distance measures
for various features, if desired. We currently consider numeric data, ordinal data, and
simple hierarchical data.

12We also add in a penalty for any feature of the generalization simply missing from
the instance. This is possible since instance descriptions can be incomplete.

taExceptions would be if there are multi-valued attributes or if the 'averaging' process
described below returns multiple possibilities.

112 M. LEBOWITZ

sometimes created by matching a new instance with several existing ones.
The main steps in the UPDATE algorithm are:

UPDATE(node, new-instance)

1. Define new-features as the features of new-instance that are not part
of node (or its parent nodes). This information is retained from
SEARCH.

2. If none of the instances currently stored under node have enough P fea-
tures with values sumciently close P to those of new-instance to warrant
a new generalization, then store new-instance under node. 14

3. Otherwise, for each instance with enough features in comm,m with
new-instance, create a generalization node comprised of the shared
features and:

(a) Store the new node in the node's sub-generalization list.

(b) Store both instances under the new node.

(c) Remove the old instance from the original node.

In deciding which features to include in a generalization, UNIMEM selects
all those in the two instances with values that are sufficiently close. P In
those cases where features have slightly different values, UNIMEM uses
an 'average' feature value in the generalization. For real-valued features
this is the arithmetic or geometric mean; for ordinal attributes it is one
of the two values; and for hierarchically-ordered attributes it is the lowest
common ancestor.

2. 2.3 Evaluating generalizations

As seen above, concepts are generalized by UNIMEM on the basis of only
two instances. This can cause the creation of an over-specified generaliza-
tion if the initial instances share spurious features. Generalizations can be
under-specified if the instances had unknown values for relevant features
(which is possible, since UNIMEM does not require every instance to have
values for each feature). Under-specification is not a problem, since the
missing features will simply appear in sub-generalizations. However, con-
cepts must be evaluated when they are potentially relevant to future input
in order to remove overly-specific features. This is particularly true in do-
mains where there are a large number of features for each instance, since
coincidental matches become inevitable. UNIMEM performs evaluation as

'4 'Enough' is defined as a percentage of the maximum number of features of the two
instances being compared.

INCREMENTAL CONCEPT FORMATION l l 3

a normal part of the memory search process, since the generalizations to be
evaluated are exactly those that are accessed when a new instance is pro-
cessed. We simply add the following step to the beginning of the SEARCH
algorithm:

• Increase confidence in any features of node that are also in unexplained-
features; decrease confidence in those that are contradicted. 15 Delete
any features with confidence levels that go low enough, p Make perma-
nent any features with confidence levels that go high enough p (e.g.,
stop modifying their confidence levels).

The evaluation operations are applied to all nodes considered during the
SEARCH process, even if they do not ultimately match.

This modification to SEARCH does not lead UNIMEM to entirely elim-
inate a generalization when it fails to fit later input. Instead, it tries to
throw away just the 'bad' (overly specific) parts and keep the 'good' parts.
Confidence modification occurs by incrementing confidence levels when new
values are close P to the generalization (in terms of the distance measure)
and decrementing them when they are not. The amounts of the incre-
ments or decrements depend upon the distance between the feature values
of the instance and of the generalization. If a confidence level falls below
a negative threshold, p then the system eliminates that feature from the
generalization, since it has unreliably appeared in instances when the gen-
eralization seemed relevant. 16 Above a specified level r values arc 'frozen'
and assumed to be permanently correct.

In some cases the feature evaluation process leads to concepts so general
that they no longer provide substantial information. There is no advantage
to retaining a category with so few features that no inferences can be made
when an instance is matched to it. Thus, UNIMEM eliminates an entire
generalization when too few of its features p remain, defined as a percentage
of the number of features in the instances that formed the generalization.
When it deletes a generalization, UNIMEM also loses access to the in-
stances and sub-generalizations stored there. This loses instances that are
not also stored elsewhere, but if we immediately reindexed the instances
with the parent node, then the same instances that initially formed the
eliminated generalization would do so again. In the domains that we deal
with there are enough input examples so that good concepts will eventually
be created, despite losing some information. However, for other domains

~SNode is guaranteed to be 'potential ly relevant' by the structure of the algorithm.
~6Other than removing features, UNIMEM does not use the confidence level in the

matching process. An interesting extension might be to give added weight to features
with high confidence values.

114 M. LEBOWITZ

Brown (1)

Princeton (" GND3 "~ Arizona State f r:.l~lnt:
'Yale

Figure 1. Memory structure at the outset of the sample run. The values shown for
GND1, GND2, GND3, and GND4 are the sum of the feature distances
between each node and Columbia. The numbers in parentheses are the
number of features the instance has in common with Columbia, not
including the ones accounted for by generalizations.

different strategies might be appropriate, such as put t ing deleted instances
back into memory after a delay.

2.3 A s i m p l e p r o g r a m trace

To illustrate UNIMEM's update algorithm, we will look in detail at how
it adds an instance fl'om the university domain to an existing m e m o r y) 7
This example will involve the three universities described in Table 1 as well
as six others - MIT, Princeton, Harvard, Arizona State, Case Western,
and Auburn. Figure 1 shows the structure of UNIMEM's memory after
tile instances MIT, Brown, Princeton, Harvard, Yale, Arizona State, Case
Western, and Auburn have been processed in that order. Table 4 shows
the details of the generalizations, including the feature confidences at the
beginning and end of the sample run.

We will now describe in some detail how UNIMEM processes a new in-
stance, Columbia. The system begins by searching memory for the most
specific generalizations that satisfactorily match the new instance. This

17To make pedagogic points, we have set some of UNIMEM's parameters to unrealistic
values.

INCREMENTAL CONCEPT FORMATION 115

begins by matching Columbia's features with those of GND1. As shown ill
Figure 1, the total difference between the features of GND1 and Columbia is
1.31. As tile parameters were set for this run, the allowed difference is 1.36
(8% of 17 features), so GND1 is considered acceptable. The same is true
fl)r GND2 with its 1.24 difference. However, GND2's sub-generalization,
GND3, is not acceptable, nor is GND4. Note that since GND4 is not ac-
ceptable, its sub-generalization, GND5, is not even considered. The final
result of the search is that GND1 and GND2 are the most specific gener-
alizations that match Columbia.

Searching through memory also involves npdating confidence levels for
features. Ill this case, if a generalization's feature value is close to that of
Cohnnbia, then its confidence level is increased; otherwise it is decreased.
Tile amount of the increment or decrement is based upon the degree of the
match or mismatch. Looking at the rightrnost two columns for GND1 in
Table 4, one can see that tile confidence level for the percentage of financial
aid goes down, since the generalization value is 45% compared to 60% for
Columbia. The remaining confidence levels go up, as the Columbia values
are quite close to tile values in GND1. The confidence levels for GND5
(not shown in tile table) are not adjusted at all, as it is skipped by the
search algorithm.

While considering GND2, UNIMEM reduces the confidence level for his-
tory as an acadenfic emphasis from -2.0 to -3.0. This causes the confi-
dence level to drop below the threshold for retaining features, so the system
deletes the feature from the generalization. In order to maintain correct-
ness, the same featm'e is added to GND2's sub-generalization, GND3. Also,
since the feature was deleted from GND2 during the matching process, this
particular feature difference is not considered part of the total discrepancy
between GND2 and the new instance, which allows a match with Columbia.

With the search and confidence evaluation phase complete, UNIMEM
updates memory by adding Cohnnbia to both GND1 and GND2. In each
case~ it compares tile new instance to those already stored with tile gen-
eralization to see if there are a significant number of features in common
(other than those ah'eady accounted fur by the generalization). The nuln-
bet of features that Columbia has ill common with each relevant instance
is shown in parentheses in Figure 1. Columbia shares only one feature with
Brown, the first instance under GND1, but it shares four with MIT. Since
this is above the parameter for generalizing on this run, UNIMEM creates
a new generalization, GND6, which is indexed under GND1. Both MIT
and Columbia are stored under the new generalization. Harvard, the only
instance under GND2 (the other generalization that Columbia matched),
shares only one feature with the new instance, and so no generalization
is made. Cohlmbia is simply stored under (]ND2. Figure 2 shows the

116 M. LEBOWIT2

Table 4. Genera l iza t ions involved in the sample run.

I Feature Initial Final
Attribute Value Frequency Confidence Confidence

G N D 1

Student :Faculty
SAT-Verbal
%-Financial-Aid
%-Admittance
%-Enrolled
Social
No-of-Students
Location
Expenses
Academics
Control

5:1
637.5
45.0
25.0
55.0
3.5 out of 5
< 5,000
Urban
> $10,000
5 out of 5
Private

5.78
-2.00

1.60
- 1.20

0.80
3.33
0.00

-1.00
2.00
1.33
2.00

6.75
-1 .25

1.40
-0 .60

1.40
4.00
1.00
0.00
3.00
2.33
3.00

G N D 2

%-Financial-Aid
%-Admittance
Social
Quality-of-Life
Acad-Emphasis
Acad-Emphasis
Male:Female
Student :Faculty
SAT-Math
Expenses
Academics
Control

55.0
20
3 out of 5
3.5 out of 5
History
Liberal-Arts
65:35
7:1
675
> $10,000
5 out of 5
Private

1.20
-2 .00

2.00
2.00

-2 .00
-2.00
-0.68

3.89
-0.50

0.00
-0 .67

0.00

1.80
-1 .80

3.00
2.67

deleted
-1.0O
-0.12

4.88
0.00
1.00
0.33
1.00

G N D 3 , a m o r e s p e c i f i c v e r s i o n o f G N D 2

SAT-Verbal
%-Financial-Aid
No-of-Applicants
%-Enrolled
No-of-Students
Acad-Emphasis

662.5
45.0
10,000-13,000
60
< 5,000
History

G N D 4

0.00
0.00
0.00
0.00
0.00

0.25
0.00

- 1.00
0.20
1.00
0.00

Student:Faculty
%-Admittance
Academics
Acad-Emphasis

20:1
82.5
3 out of 5
Engineering

1.00
0.40
0.33
1.00

1.97
-0 .60

0.00
0.00

G N D 6 , a m o r e s p e c i f i c v e r s i o n o f G N D 1

Male:Female 75:25 1 - 0.00
%-Financial-Aid 55.0 1 - 0.00
No-of-Applicants 4,000-7,000 1 - 0.00
Quality-of-Life 3 out of 5 1 - 0.00

INCREMENTAL CONCEPT FORMATION 117

Brown

Columbia
MIT

Figure 2. Memory structure after Columbia has been processed.

structure of memory after the processing of Columbia is complete.

Notice that Columbia was not compared against any of the instances
stored under GND3, GND4, or GND5. This university may have much
in common with some of these instances, but it is much more likely to be
sinfilar to those under the matched generalizations. Restricting the set of
instances that are matched against is a prime factor in maintaining the
efficiency of the algorithm.

This sample run also illustrates the nature of UNIMEM's nondisjoint
generalizations. GND1 and GND2 are not nmtually exclusive, and the
program has matched Columbia with both of them. Essentially, GND1
covers small urban universities with high academic levels and GND2 covers
high 'quality of life' liberal arts schools. Columbia can quite logically be
considered to exemplify either concept.

2.4 U N I M E M in terms o f search and m e m o r y organizat ion

Like artificial intelligence programs in general, UNIMEM can be viewed
as searching through a space of alternatives. In this case, each state in the
space represents an entire concept hierarchy. UNIMEM employs several
operators to move through this search space, all of which are driven by the
addition of new instances. First, it can simply change the confidence levels
of features in concepts that appear relevant to a new instance. Second, it
can modify concepts by removing features for which the confidence levels

118 M. LEBOWITZ

fall too low. Third, it can modify the structure of the generalization hierar-
chy by adding new concepts when instances are sufficiently similar. Finally,
it, can delete generalizations (and all their sub-generalizations) when too
few features remain after deletions.

Although it is possible to describe UNIMEM in search terms, we feel it is
more valuable to describe it in the memory terms that we have been using.
The basic data structure of Generalization-Based Memory is the key to
its operation. In fact, we feel that more researchers should consider their
work in memory terms. Viewing learning from this perspective forces one to
consider how the concepts that are created can be efficiently accessed, how
memory should be modified, and how the various data structures evolve
over time, both in terms of structure and size.

3. Experiments with U N I M E M

An important criterion on which to evaluate any learning system is its
generality. In this section we demonstrate UNIMEM's behavior in two
additional domains: congressional voting records and terrorist events. An-
other important issue concerning a systenfs behavior is how it responds to
changes in parameter values. Thus we conducted a set of experiments in
parameter variation, which we also present in this section.

3.1 Congressional voting records

One domain on which we tested UNIMEM involved Congressional voting
records. Instances were formed from the votes of each U.S. Congressman
on a nmnber of major issues (taken from The 1983 American Political
Almanac) colnbined with information about the district and state repre-
sented. One advantage of this domain for research purposes is that people
have strong intuitions about the kinds of generalizations that should be
found. A complete description of the domain can be found in Lebowitz
(1986c). In the run described here, we presented UNIMEM with 100 in-
stances, each containing 15 votes and about 21 other features, is We ex-
pected to find generalizations that related the various votes to each other
(e.g., 'liberal' and 'conservative' ideologies), along with others that related
the votes to the states and districts represented (e.g., someone representing
a highly urban state would support bills that help cities). Indeed UNIMEM
formed concepts of this sort.

Figure 3 shows several of the generalizations that resulted from this run,
along with their organization in memory. One top-level generalization,
GND2, describes congressmen from agricultural states with high levels of

lSFor some instances, certain features were unavailable.

INCREMENTAL CONCEPT FORMATION 119

J
For
For
Against

G N D 2
Education-Vote
Alaska- Parks-Vote
Soc-Fund-Cut-Vote

/

ROOT I

----.....
G N D 3
Hosp-Cost-Cont-Vote Against
Wind-Tax-Lira-Vote For
Draft-Vote For
N uc-Power-Vote Against
MX-Cut-Vote Against

I .° ,
G N D 8
Education-Vote Against
Nicaragua-Ban-Vote For
Gas-Cont-Ban-Vote Against
Soc-Fund-Cut-Vote For
OSHA-Cut-Vote For
PAC-Limit-Vote Against

G N D 4
Wind-Tax-Lim-Vote Against
Gas-Cont-Ban-Vote For
Hosp-Cost-Cont-Vote For
Nicaragua-Ban-Vote Against
OSHA-Cut-Vote Against
Food-Stamp-Cap-Vote Against
PAC-Limit-Vote For
Fair-Housing-Vote For

G N D 7
Nicaragua-Ban-Vote Against
MX-Cut-Vote For
Fair-Housing-Vote For

Figure 3. Partial concept hierarchy for congressional districts. Only vote-related
features are shown.

school expenditures m who voted for an education bill, parks in Alaska, and
so forth. The 24th Texas Congressional District is stored under this gener-
alization, along with two sub-generalizations. Someone familiar with U.S.
polities would describe this voting pa t te rn as 'liberal.' Similarly, the second
top-level node in this example, GND3, would be considered 'conservative.'

These two generalizations are non-disjoint, since their features do not in-

19Values of the form 'n out of in' represent categorized numeric information. In this
domain, such categories were automatically created using methods described in Lebowitz
(1985).

120 M. LEBOWITZ

elude opposite votes on the same bills. Instead, the generalizations include
votes on different bills and are not exclusive. A conservative record can
most confidently be identified based on the votes shown in GND3, such as
a vote against cutt ing the MX missile, while a liberal record shows up from
the votes in GND2, such as a positive education vote. A Congressman can
fit into both categories (indeed, this happens in the sub-generalizations of
GND2). Apparently 'liberal' does not equal 'not conservative.'

The situation becomes particularly interesting when we look at the sub-
generalizations of GND2 (GND4 and GND7) and GND3 (GND8). When
we examine these generalizations carefully, we see that the contrasting votes
omitted from the top-level generalizations appear in their sub-generaliza-
tions. For example, the 'liberal' generalization (GND2) contains a vote
against a cut in social funds. The converse of this vote does not appear
in GND3, but it is present in its sub-generalization, GND8. Similarly, the
opposite of the conservative vote against the MX missile is not included in
GND2, but it does occur in one of the sub-generalizations, GND7. Certain
votes that do not serve well to define concepts at the top level can be useful
in refining these concepts after the initial set of features is 'factored out. '

3.2 Terrorist events

UNIMEM was developed from the memory and generalization module
of IPP (Lebowitz, 1980, 1983b, 1983c), a program that read news stories
about international terrorism and added them to long-term memory. In the
process, it formed a generalization hierarchy using a learning module that
we will refer to as IPP-MEM. An interesting aspect of this domain is that
descriptions of events tend to be incomplete, so that the instances do not
have the same feature sets. UNIMEM differs from IPP-MEM in a number
of technical ways. For example, parameters have been added to make
it more flexible and different methods of low-level indexing are available.
The most substantial change is the modification of confdence methods to
consider each feature in a generalization separately. IPP-MEM maintained
a single confidence level for each generalization. As a result, even one
anomalous feature could cause an entire generalization to be deleted. We
wanted to see whether this change in UNIMEM would dramatically alter
the kinds of generalizations that remain in the generalization hierarchy at
the end of a run.

The experiment described here used 374 of the stories for which the
IPP text processor (IPP-NLP) produced accurate representations, all taken
from the period of 1979 1980. Table 5 shows three successively more spe-
cific generalizations that UNIMEM built up from a number of bombing
stories in the sample set. The features in the table with ~deleted' in their

INCREMENTAL CONCEPT FORMATION 121

Table 5. IPP-NLP/UNIMEM generalizations from the terrorist domain.

Feature Confidence
Attribute Value Frequency Level

G N D 1 0 4 instances]

Weapon- Weapon
Weapon-Class
Results
Location-Area
Methods
S-MOP
Victim-Nationality
Location-Nation

Bomb
Explosive
Hurt-Person
Western-Europe
Explode-Bomb
Destructive-Attack
Spain
Spain

G N D 3 0 , a m o r e specif ic vers ion of G N D 1 0

Results-Health
S-MOP
Methods
Victim-Nationality

-10 1
Destructive-Attack 4
Exifiode-Bomb 4
Spain

G N D 3 7 , a m o r e specif ic vers ion of G N D 3 0

Victim-Role
Victim-Role
Victim-Auth
Victim-Pol-Pos
Victim-Nationality
Location-Nation

Authority
Soldier
T
Estab
England
N-Ireland

6.50
15.00
15.00
15.00

deleted
deleted
deleted
deleted

[12 instances}

15.00
11.00
9.75

deleted

[4 instances]

3.75
-0.75

3.75
3.75

deleted
deleted

confidence fields have been removed and are not part of the final gener-
alizations (but were initially included). GND10 describes terrorist events
involving bombs in Western Europe in which people were hurt. This gen-
eralization was original!y formed from stories originating in Spain with an
explosion taking place. While this made the generalization carry more in-
formation than the final version, it was also less widely applicable. Since
other stories were found with the same characteristics, but not occurring
in Spain, UNIMEM removed the location from the generalization. This
allowed it to apply to a wider range of examples. Ult imately UNIMEM
created a sub-generalization of GND10 (GND30) that described events in
which an explosion took place and people were killed (as indicated by the
- 1 0 health value). The system also formed an even more specific variant
of GND10 (GND37) in which the victims were soldiers.

122 M. LEBOWITZ

The output in Table 5 is quite typical of the performance of UNIMEM
in the terrorist event domain. The system created concepts that seemed
to capture basic regularities in the domain. Qualitative comparison of the
UNIMEM generalizations in the terrorist event domain with those gener-
ated by IPP-MEM was quite informative. Overall, the UNIMEM gener-
alizations seemed more intuitively plausible and covered a wider range of
concepts. On the other hand, they also seemed more 'bland,' omitt ing some
of the most 'interesting' generalizations that the original system had made

for example, that pistols with silencers were frequently used in attacks
on Italian political figures.

It is clear from Table 5 wily the UNIMEM generalizations were more
'bland' than those of IPP. Suppose that each system formed a complicated
generalization, like the one above, by noticing similar events. In response to
future data, IPP-MEM would either keep the description in toto or delete
it entirely. On the other hand, UNIMEM would inevitably refine the gener-
alization, and make it less unusual, by removing the coincidental elements
so that it covers a wider range of events. While this is mildly disappoint-
ing in the short run, overall it is quite positive. UNIMEM produces the
basic generalizations (e.g., terrorist shootings usually hurt people) needed
for default reasoning. Furthermore, the 'flashy' generalizations need not
be lost, as they can be formed as sub-generalizations. This did not happen
very often in our experiment with the terrorist domain, since there were
not enough examples and, more importantly, many of the examples had
very few features. Large numbers of features actually hindered IPP-MEM,
as it had no way to refine over-generalized concepts. Given UNIMEM's
ability to deal with greater numbers of features, we plan to increase the
level of detail of the feature sets produced from IPP-NLP representations.

3.3 T h e effect o f v a r y i n g U N I M E M p a r a m e t e r s

UNIMEM has a number of adjustable parameters that affect its behavior.
Given different parameter settings, the same sequence of instances can lead
to many different generalization hierarchies. In order to generate the 'best'
hierarchy, we will have to find appropriate parameter settings, which may
vary among domains or applications. For example, one might aim for
generalizations that predict a great deal in a limited nmnber of situations,
or for ones that are widely applicable but predict only a small amount of
information. 2° Convergence rate is also an issue for an incremental system
like UNIMEM. Depending on the degree of consistency in the domain in

2°Gluck and Corter (1985) and Fisher (1987) have argued on information-theoretic
grounds that there is an optimal level of classification. However, their work does not
apply directly to non-disjoint categories, nor to situations in which the input is uncertain
and incomplete.

INCREMENTAL CONCEPT FORMATION 123

question, one may have to trade off learning speed with various aspects of
hierarchy quality.

In order to better understand the effect of UNIMEM's parameters on
the shape of the hierarchy created and on its convergence behavior, we
conducted a series of experiments involving parameter variation, which we
describe in this section.

3.3.1 Evaluating UNIMEM's behavior

In order to intelligently evaluate the output of UNIMEM, we must con-
sider what makes one set of concepts better than another. We can apply
the criteria recursively so that they apply to entire hierarchies. Other
things being equal, we would prefer concept descriptions with many fea-
tures, since each additional feature adds inferential power to the general-
ization. However, the more specific a generalization, the fewer examples it
can be expected to cover. Thus, there is an inherent trade-off in concept
formation between coverage and the ability to make predictions based on
the generalizations.

A second trade-off in concept formation involves non-disjoint concepts.
As pointed out earlier, allowing overlap will often result in more specific
generalizations with more inferential power. However, overlap can also
make the concepts less useful for a performance element, as it will have to
consider how to deal with the case where a new example fits into several
categories. In addition, if there are two concepts that are only slightly
different, since many of the same instances will be stored under both,
UNIMEM will create very similar trees of sub-generalizations, which is
inefficient in both space and time.

The trade-offs between concept specificity and both generality and mini-
nlal overlap can be instantiated in UNIMEM terms with two criteria. First,
under any given generalization, there should be a 'modest number' of sub-
generalizations. A number in the 4 12 range seems appropriate in our
domains as it yields generalizations that are relatively specific, but general
enough to cover a range of instances. Second, the instances covered by a
set of concepts should be divided roughly equally among them, guarantee-
ing that each generalization describes a number of different instances and
tending to mininfize overlap.

Since UNIMEM forms concepts incrementally, we must also deal with
convergence. It is important to look at the time it takes the program to
settle on a set of high confidence concepts that it is not likely to invalidate
later in the run. Although we would like the generalization hierarchy to
converge as rapidly as possible, as we will see below, this goal may conflict
with the other desired properties. However, we must make sure that the
program does not simply continually create and invalidate concepts.

124 M. LEBOWITZ

~: 14
o 13

12
N

" " 11
CO
~- 10
c g
~0 8
o 7

.a 5 E
= 4

Z 3

2
1
0

• pet to retain gen = 25%

[] pet to retain gen = 20%

I I I

25% 37.5% 50%
Feature percent to generalize

Figure 4. Generalizations at end of run as a function of percentage to generalize
and percentage to retain.

3.3.2 An experiment in parameter variation

Our initial experiment involved the variation of two parameters the
percentage of features that instances must have in common for general-
ization to occur and the percentage of features that must remain in a
generalization for it to be retained. 21 Specifically, we set the 'percentage
to generalize' parameter value at 25%, 37.5%, and 50% and tile 'percentage
to retain a generalization' at 20% and 25%. We expected these parameters
to influence UNIMEM's rate of generalization, e.g., the larger percentage
of features required for a generalization, the slower the system should gen-
eralize.

The experiment involved three randomly selected sequences of 100 uni-
versities apiece. 22 For each of the six pairs of parameter values, we had
UNIMEM independently incorporate the three sets of universities into an
initially empty memory and then collected summary information. All of

ZlThe percentage to retain a generalization parameter is computed in terms of the
initial nmnber of features in the instances.

22Instances contained about 20 features in this domain, so the absolute number of
features needed to retain a generalization is roughly 4 at the 20% level and 5 at the 25%
level. The 25% value for the features to generalize parameter requires about 5 features,
the 37.5% value requires about 8, and the 50% value about 10.

INCREMENTAL CONCEPT FORMATION 125

36
t -

._o 33
ao

o ~

~ 27 L .

~ 24
iI j

o 18

E 12
z 9

6

mmnm m
n n

[] pct to retain gen ---- 25%

[] pet to retain gen = 20%

--m

I I !

25% 37.5% 50%
Feature percent to generalize

Figure 5. Generalizations created as a flmction of percentage to generalize and
percentage to retain.

the data were averaged across the three runs. 23 Given difficulties in making
assumptions about the distribution of the data, we will not present statis-
tical analyses, but instead examine the da ta qualitatively. In addition, we
restricted our analysis to the top-level generalizations, which can be viewed
as UNIMEM's overlapping categorization of all the input instances.

The first dependent variable that we measured was the number of top-
level generalizations retained by UNIMEM, as displayed in Figure 4. In
the various experimental conditions the system retained an average of be-
tween 9 and 14 such generalizations, al though the number will inevitably
approach zero if either parameter is made very much higher. There is some
indication that the number of remaining generalizations tends to increase
along with each parameter , but this is not a strong trend.

In an a t t empt to clarify these results, we examined the two dependent
variables that determine the number of generalizations that remain the
number that are created and the percentage of those created that are

~3While UNIMEM is potentially susceptible to effects of the order of instances, this
usually is not a major issue. A few odd generalizations made at the beginning of a run
may have to be discarded, losing some information. In this experiment, while there was
some variation in the results between the three different data sets, in no case was it
striking.

126 M. LEBOWITZ

9O ¢..

0
• ~ 80

N

"-- 70

50
0

40
lao
f~

i1)

? 20
I1)

D-
10

[] pct to retain gen = 25%

[] pct to retain gen = 20%

!1

l I I
25% 37.5% 50%

Feature percent to generalize

Figure 6. Generalizations deleted as a function of percentage to generalize and
percentage to retain.

deleted. The average number of generalizations created for each combi-
nation of parameters is shown in Figure 5. We see, somewhat surprisingly,
that the number of generalizations created declines only moderate ly as the
features needed to generalize increases. We might expect this decline to
be greater since it should be harder to find instances with more features in
common. For reasons that will be considered below, the number of features
needed to retain a generalization has a substantial effect on the nmnber
created.

Figure 6 shows the average percentage of generalizations deleted by
UNIMEM's evaluation method when too many features were removed. As
expected, more generalizations are deleted at the 25% retention level than
at tile 20% level. A more surprising result is tha t number of features
needed to create a generalization affects the percentage that are deleted.
The reason becomes clear when one realizes tha t the more features that
are initially in a generalization, the more that can be removed and still be
over the deletion threshold. In effect, requiring more common features to
form a generalization enhances the possibility that there will be a ~good'
set of features included that UNIMEM can retain once the ~bad' ones are
whit t led away.

INCREMENTAL CONCEPT FORMATION 127

12

~ 9
8

4

!!ii i! i!i!ii !!i iii {ii!!:iiJ!i!51
0 0 pct to retain gen = 20% (final features)

I I I

25% 37.5% 50%
Feature percent to generalize

Fig~lre 7. Average number of top-level initial and final features as a flmction of
t)ercentage to generalize and percentage to retain.

The decrease in the deletion rate as one increases the percentage of
features needed to generalize explains the decrease in the creation rate.
Since fewer generalizations are deleted, there is a higher chance that new
instances will be stored under existing generalizations before the hierarchy
converges. This diminishes the chance that new top-level generalizations
will be created. The combination of creation and deletion behavior provides
an explanation for the smaller number of generalizations retained at both
ends of the 20% deletion level curve in Figure 4. If the number of features
needed to generalize is very low, then few generalizations are kept, and
if it is very high, then few are made. Determining the robustness of this
phenomenon will require the collection of further data.

Another evaluation criterion that one might expect the parameters under
consideration to influence is the average number of features in a generaliza-
tion. Figure 7 shows how this variable is affected. The average final number
of features that remain in each top-level generalization is essentially inde-
pendent of the number of features needed to create a generalization, but it
does depend upon the number needed to retain a category. The lack of any
effect for the creation threshold is despite the fact that the initial number
of features in a generalization, also shown in Figure 7, clearly does depend
on that parameter.

128 M. LEBOWITZ

"-" 1.0

0.9

0.8

~" 0.7
0

• ~ 0.6
N

o.s

0.4

0.3

~- 0.2
L/)

o.1
f:::

o.o

_ - - - - - - - - - - B

• pct to retain gen = 25%

[] pct to retain gen = 20%

l I I

25% 37 3 % 50%
Feature percent to generalize

Figure 8. Average instance distribution as a function of percentage to generalize
and percentage to retain.

Another one of our evaluation criteria was that , to the extent possi-
ble, instances should be evenly divided among the various concepts. To
measure this, we counted the instances stored under each top-level gen-
eralization and its children. We then computed the s tandard deviation
among the top-level generalizations, normalized in terms of the mean. 24
Figure 8 shows the results with this dependent measure. In general, the
s tandard deviation increases (the instances are less well distributed) with
the number of features needed to make a generalization. The (50%~ 20%)
point is a notable exception. This pair of parameter values also produced
good behavior on the other measures as well. However, the results are not
robust enough to draw any strong conclusions. In particular, the s tandard
deviation results are very susceptible to new top-level generalizations cre-
ated near the end of a run that describe only a small number of instances.
We plan to examine this si tuation in more detail using longer runs and by
restricting our analysis to generalizations with high-confidence features.

The final dependent variable we considered was the average feature con-
fidence level for top-level generalizations, which we use as an approximate

24The normalization is needed since the total number of instances stored in the hier-
archy can vary widely. This is because instances can be 'lost' when generalizations are
deleted and because they can be stored in more than one place in memory.

INCREMENTAL CONCEPT FORMATION 129

¢-

.o 10
c~

N 9

I1)

'- 7 ID

6

o 4 e'-

3 "E
o 2

o 1

" 0
0II

[3

J

J l J

• pet to retain gen = 2B%

[] pct to retain gen = 20%

I I I

25% 37 .5% 50%

Feature percent to general ize

Figure 9. Average feature confidence as a function of percentage to generalize and
percentage to retain.

measure of convergence. We present the results in Figure 9. The most
notable thing about the data is that confidence levels are much higher for
the 20% retention level than for the 25% level, and that the (50%, 20%)
parameter combination clearly produces the highest confidence levels. The
lower levels at the 25% retention level probably resulted from the failure
of the concept set to converge before the run ended. Thus, the average
reflects a number of generalizations that would ultimately have been re-
uloved entirely. We need to examine longer runs to determine whether this
is strictly a convergence phenomenon or whether the confidence levels will
remain lower even with a fixed set of generalizations. UNIMEM typically
will not converge upon a final set of generalizations if one selects partic-
ularly poor parameter values. Whether this property is good or bad is
unclear.

The results in this section illustrate the various trade-offs involving the
UNIMEM parameters. Considering first the percentage to retain a gener-
alization parameter, the lower value (20%) produced generalizations with
features that had higher confidence, a desirable result that indicates more
rapid convergence. However, as expected, the higher value (25%) produced
generalizations with more features, which is also desirable. The results in-
volving numbers of generalizations produced were largely inconclusive with

130 M. L E B O W I T Z

respect to this parameter, though they did indicate that the range of values
we tried produced reasonable results in terms of our evaluation criteria.

The other parameter under consideration, percentage of features needed
to generalize, generally produced better results with the highest value
(50%). The generalizations under that condition tended to have higher
confidence features and more features and there were a reasonable num-
ber of generalizations. On the other hand, higher values of this parameter
seemed to produce less well-distributed instances, although the 50% value
actually produced the best result in combination with the 20% value of
the 'percentage to retain' parameter. Notice that if we let the percentage
to generalize parameter increase further and approach 100%, only identi-
cal instances would be used to create new concepts, which does not seem
acceptable. Hence a trade-off is apparent.

It appears, then, that there is a need for intermediate values for each
of the two parameters that we have examined. It seems that if instances
are generalized on the basis of too few features then they are not neces-
sarily very similar, and so their generalization has little predictive power.
UNIMEM's confidence evaluation methods work well when a good gener-
alization is embedded in the initial one, but not when the initial general-
izations are essentially random. In contrast, if we require larger numbers
of features to generalize than the ones used here, then the initial gener-
alized instances have so much in common that the generalization applies
to few other instances and yet appears relevant to many of them. This
undermines the ability of the confidence evaluation methods to identify
irrelevant features. If too many features are required to retain generaliza-
tions in relation to the number needed to make them, then ahnost all of
the generalizations will be disconfirmed. If too few are required, then the
remaining generalizations become essentially meaningless.

While collecting the data for this experiment we also saved information
about the computer time needed to incorporate instances into memory.
UNIMEM was designed so that the time needed to add instances to mem-
ory should increase only slightly as memory grows. Indeed, if memory
reaches a point where most of the new examples are duplicates of existing
ones, and hence cause no changes to the concept hierarchy, then update
time should be nearly constant. In any case, the tree structure of memory
should result in the time needed to update memory growing at no more
than a logarithmic rate, with the growth constant depending on how ef-
ficiently instances and sub-generalizations are indexed. Figure 10 shows
the empirical results for one run in the university domain, averaged over
groups of ten instances. 25 The growth of update time appears consistent

25We average t he d a t a over groups of ten ins tances , since ind iv idua l u p d a t e t imes can
vary radical ly d e p e n d i n g u p o n w h e t h e r a new genera l i za t ion node needs to be c rea ted

INCREMENTAL CONCEPT FORMATION 131

, - - 8

~ 9

6

[2.
t.) 5

~ 4

o 3

° ~

o l

E0
p-

6.0
s.4

4.9 :: :::: -

10 20 30

7 .3
H

H : H
• H

~ H

H I H ~ ' " , H , : i "

i ~) / : ~ i" , i i i i i (~ ? i ~ i / ~V" ,~ / ((

40 50

7.5 7.5

6 .4
6.0

i :

:: i i i : i i i

: i

• : :

i

: i

60 70 80 90 100
Number o f i n s t a n c e s in m e m o r y

Figure 10. Time to i nco rpo ra t e new instanc('s as a f lmct ion of instanc(~s a l ready in

illeIilory.

with a logarithmic increase hypothesis and it clearly does not explode in
any extreme way. We plan additional experiments to better estimate the
growth rate and to examine UNIMEM's behavior when greater nunfl)ers of
instances are involved.

In conclusion, although we do not view tile results presented herein as
definitive, they have given some insight into the effects of UNIMEM param-
eters. In addition, we feel they show the kind of data that must be collected
before we can fully understand the nature of learning by obscrvat.ion.

4. Re lated research issues

Our work with UNIMEM has left us with a number of interesting prob-
lems to pursue. We briefly describe two of them here: the automatic mod-
ification of parameter settings and the integration of explanation-based
methods with the empirical approach of UNIMEM.

4.1 Automatic setting of UNIMEM parameters

We have seen that UNIMEM uses many paraineters and that their set-
tings greatly affect the system's behavior. In the long run we would like
the program to set these parameters itself for each new domain. The basic

and how quickly the search through the concept hierarchy is narrowed.

132 M. LEBOWITZ

idea is that UNIMEM would monitor its behavior and adjust parameters
to guide it toward the desired kind of generalization hierarchy. The goal
would be expressed as another set of parameters, but ones that would
make intuitive sense to a user, such as the rate at which generalizations
are created, the rate they are deleted, or the average branching factor of
the generalization tree.

It should not be difficult to extend UNIMEM in this fashion. The sys-
tem would incrementally collect data about its behavior and periodically
consider adjusting its parameters in response. However, we must first un-
derstand the effects of the various parameters through experiments of the
sort described above. As an initial attempt at automatic parameter adjust-
ment we plan to have UNIMEM monitor the rate at which generalizations
are deleted, and if this rate becomes too high or too low, have the system
modify the parameters discussed in the previous section.

4.2 Using domain-dependent knowledge

Frequently when observing the world, humans attempt to explain the
generalizations that they make (Schank, 1986), an ability that is lacking in
UNIMEM. We are currently studying the relationship between empirical
learning of the sort carried out by UNIMEM and explanation-based learn-
ing methods that have been developed recently (e.g., DeJong & Mooney,
1986; Mitchell, Keller, & Kedar-Cabelli, 1986; Silver, 1986). These meth-
ods, instead of looking for regularities among a large number of examples,
analyze a single example in terms of cause and effect and generalize on the
basis of this analysis. Roughly speaking, these methods explain an example
and then generalize it, eliminating elements that are not essential to the
explanation.

We have written elsewhere (Lebowitz, 1986a, 1986c) about the need
to integrate these two styles of learning and our initial attempt to do so
using UNIMEM. The basic approach is to explain empirically-produced
generalizations using a simple rule base and to modify the UNIMEM gen-
eralizations where this is not possible. We have also begun a new project
that focuses on the interaction between the two learning methods in un-
derstanding terrorism events (Danyluk, 1987).

Four assumptions underlie our plan for integrated learning. First, while
an important goal of learning is indeed a causal model and many explana-
tion-based methods consider the causality behind examples, it is often not
possible to deternfine underlying causality. Even where this is possible, it
may not be computationally practical. Second, similarity usually indicates
causality and is much easier to determine, and predictability can be used
to help determine tt~e direction of causality. Third, there exist methods

INCREMENTAL C O N C E P T F()RMATION 133

to refine generalizations, some of which we have seen in this paper, that
mitigate the effects of coincidence. Finally, explanation-based and empir-
ical methods complement each other effectively. In particular, it seems
more efficient to use explanation-based methods to analyze generalizations
rathe, r than every individual example. Explanations can also help in decid-
ing which empirical generalizations are likely to be significant and which
features to consider.

5. Relat ion to other work

Our work on UNIMEM and generalization-based memory is closely re-
lated to Michalski and Stepp's (1983) research on conceptual clustering.
which they developed independently at about tile same time. 26 This ap-
proach also accepts feature-based instances as input and generates (fron~
the top down) a hierarchical set of concept descriptions that smnmarizes
them. However, tile underlying mechanism is quite different from the one
used by UNIMEM. For instance, Miehalski and Stepp require their descrip-
tions to perfectly describe instances they cover. In addition, their method
is nonineremental, making use of an algorithm that first finds maximally
general discriminants and then determines maximally specific definitions
of the resulting concepts. More recent work by Stepp and Michalski (1986)
makes use of domain goals to guide the search for descriptive concet)ts.

Fisher (1987) has developed COBWEB, a system that has much more in
common wittl UNIMEM. This program also performs incremental concept
formation, constructing a concept hierarchy from the top down to summa-
rize instances described as sets of features. Like UNIMEM, the system flflly
integrates the process of recognition and learning, modifying its concept de-
scriptions and hierarehy in the act of classifying each instance. Fisher's ap-
proach differs from the present work along a number of dimensions. While
UNIMEM uses simple conjunctive definitions for concepts. COBWEB em-
ploys probabilistie representations (e.g, '60% of the instances in (' o n e e p |

X are large and 40% are small'). Ill addition, the system uses an explicit
evaluation function based on (]luck and (k)rter's (1985) category utility
metric to determine optimal clusterings. 27 This measure wouht appear
to be more computationally expensive than UNIMEM's matching t>rocess.
but confirnfing this pre<tiction would require <tetailed analysis. Other dif-

26We direct readers t<> Fisher and Langley (1985) for a survey of work on conceptual
clustering met hods.

27Hanson and Bauer (1986) have described WITT, another conceptual clustering sys-
tern that uses an information-theoretic evaluation flmction. This program differs from
both UNIMEM and COBWEB in that il constructs its hierarchies from the bottom up.
WITT can be run in either incremental or nonincremental illode.

134 M. LEBOWITZ

ferences between UNIMEM and COBWEB include the latter's requirement
that categories be disjoint and support for only nominal features. However,
the general approach taken in the two systems is very similar.

The approach we have taken with UNIMEM is even more closely re-
lated to Kolodner's (1984) CYRUS model. This system was initially devel-
oped at Yale contemporaneously with IPP, the predecessor of the current
program. 2s Like UNIMEM, the CYRUS system builds up hierarchies of
generalizations based on similarities among instances. The primary differ-
ence is that CYRUS makes much more use of domain information, which
it uses to determine which elements of instances can best serve as dis-
criminants among concepts. Kolodner's system can handle instances that
contain more information than can UNIMEM, since it can apply domain
knowledge to avoid combinatorial explosions in retrieval and concept forma-
tion. However, this strategy also limits its flexibility in application to new
domains. Thus, UNIMEM's reliance on a relatively domain-independent
feature representation can be viewed as both a strength and a weakness.

All work in conceptual clustering, including UNIMEM, can also be com-
pared to methods for statistical clustering (e.g., Anderberg, 1973). The
concept hierarchies generated by our system bear considerable resemblance
to the trees produced by hierarchical statistical clustering. However, sta-
tistical approaches differ from conceptual methods in that they do not
form descriptions of the resulting clusters. This results from a reliance on
distance metrics to determine which clusters to form. Typically, these algo-
rithms accept as input a matrix that specifies the distance between all pairs
of instances. This may be computed from a feature-based representation
or it may be given directly (e.g., by human subjects). The conceptual hier-
archy is then built solely from the similarity matrix by grouping together
instances that are near to each other.

This approach makes sense if one has only the distance information avail-
able, but it can lead to problems. In particular, statistical methods can
cluster instances that are pairwise close, but which have no common simi-
larities. They may also fail to cluster instances that have an underlying core
of similarity, but which differ in other respects, so that they are not close
together overall. If one has additional information in the form of instance
descriptions, then it seems natural to take advantage of this information.
This is exactly the approach taken by UNIMEM and other conceptual clus-
tering methods. In addition, the incremental nature of UNIMEM lets it

2SBoth IPP and CYRUS were heavily influenced by Schank's (1982) theory of memory
organization packets (MOPs), a psychologically-oriented theory of memory that was
under development at the same time. CYRUS also involved a major effort in intelligent
question answering, including reconstructing information. Section 3.2 describes how
UNIMEM differs from IPP.

INCREMENTAL CONCEPT FORMATION 135

avoid computing distances between all pairs of instances by incorporat-
ing them into memory one at a time. Miehalski and Stepp (1983) further
contrast conceptual clustering with statistical methods.

6. Conclusion

Incremental concept formation is an important area of machine learn-
ing involving the automatic construction of a knowledge base that orga-
nizes real-world information. In this paper we have given an overview of
UNIMEM, a program that performs concept formation incrementally. We
demonstrated the system's generality by showing it in operation on several
disparate domains. We also showed several of its key processes, includ-
ing the creation of generalized concepts and their evaluation over time.
We reported an experiment relating two of UNIMEM's parameters to the
quality of the resulting set of concepts. While each new domain brings its
own problems, the basic methods described here have proven to be quite
robust. We feel that UNIMEM constitutes a promising step along the way
toward systems that can make maximal use of information that they collect
over time.

Acknowledgements

This research was supported in part by the United States Army Research
Institute under contract MDA-903-85-0103. Many graduate and under-
graduate students at Columbia University have been involved with UNI-
MEM. In particular, Ursula Wolz has contributed greatly to the develop-
ment of the program. Discussions with Tom Ellman, Michelle Baker, and
Andrea Danyluk have helped advance the theory. This paper is a sub-
stantially expanded version of one that appeared in the Proceedings of the
Seventh European Conference on Artificial Intelligence. Comments by Pat
Langley on earlier drafts were extremely valuable and much appreciated.

References

Anderberg, M. R. (1973). Cluster analysis for applications. New York:
Academic Press.

Brachman, R. J. (1985). I lied about the trees. AI Magazine, 6, 80 93.

Danyluk, A. P. (1987). The use of explanations for similarity-based learning
(Technical Report). New York: Columbia University, Department of
Computer Science.

DeJong, G. F., & Mooney. R. (1986). Explanation-based learning: An
alternative view. Machine Learning, 1. 145 176.

136 M. LEBOWITZ

Dietterich, T. G., & Michalski, R. S. (1986). Learning to predict sequences.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach (Vol. 2). Los Altos, CA:
Morgan Kaufmann.

Feigenbaum, E. A. (1963). The simulation of verbal learning behavior. In
E. A. Feigenbaum & J. Feldman (Eds.), Computer,s and thought. New
York: McGraw-Hill.

Fisher, D. It. (1987). Knowledge acquisition via incremental conceptual
clustering. Machine Learning, ~, 139 172.

Fisher, D., & Langley, P. (1985). Approaches to conceptual clustering.
Proceedings" of the Ninth International Joint Conference on Artificial
Intelligence (pp. 691 697). Los Angeles, CA: Morgan Kaufinann.

Gluck, M., & Corter, J. (1985). Information, uncertainty, and the utility of
categories. Proceedings of the Seventh Annual Conference of the Co 9-
nitive Science Society (pp. 283 287). Irvine, CA: Lawrence Erlbaum.

Hanson, S. J., & Bauer, M. (1986). Conceptual clustering, semantic orga-
nization and polymorphy. Proceedings of the International Meeting on
Advance,s in Learning (pp. 53 77). Les Arc, France.

Kolodner, J. L. (1984). Retrieval and organizational strategies in conceptual
memory: A computer model. Itillsdale, N J: Lawrence Erlbaum.

Lebowitz, M. (1980). Generalization and memory in an integrated under-
~standing sy,stem (Tech. Rep. No. 186). New Haven, CT: Yale Univer-
sity, Department of Computer Science.

Lebowitz. M. (1983a). RESEARCHER: An overview. Proceedings of the
Third National Conference on Artificial Intelligence (pp. 232 235).
Washington, DC: Morgan Kaufmann.

Lebowitz, M. (19831)). Generalization from natural language text. Cogni-
tive Science. 7, 1 40.

Lebowitz, M. (1983c). Memory-based parsing. Artificial Intelligence, 21,
363 404.

Lebowitz, M. (1985). Classifying numeric information for generalization.
Cognitive Science, 9. 285 308.

Let)owitz. M. (1986a). Not the path to perdition: The utility of similarity-
based learning. Proceedings of the Fifth National Conference on ArtiJi-
eial Intelligence (pp. 533 537). Philadelphia, PA: Morgan Kaufinann.

Lebowitz. M. (1986b). An experiment in intelligent information systems:
RESEARCHER. In 12,. Davies (Ed.), Intelligent library and information
systems. London: Ellis Horwood.

IN(~REMENTAL CONC, EPT FORMATION 137

Lebowitz, M. (1986c). Integrated learning: Controlling explanation. Cog-
nitive Science, 10,219 240.

Michalski, R. S., & Stepp, R. E. (1983). Automated construction of clas-
sifications: Conceptual clustering versus numerical taxonomy. IEEE
Tran.sactions on Pattern Analysis and Machine Intelligence, 5, 396
409.

Minsky, M. (1975). A fi'amework for representing knowledge. In P. H. Win-
ston (Ed.), The psychology of computer vision. New York: McGraw-
Hill.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence.
18,203 226.

Mitchell, T. M., Keller, R. M., & Kcdar-Cabelli, S. T. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1, 47 80.

Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.). Semantic
information proce,ssing. Cambridge, MA: MIT Press.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learn-
ing in computers and people. New York: Cambridge University Press.

Schank, I1. C. (1986). Explanation patterns. Hillsdale, N J: Lawrence Erl-
baum.

Silver B. (1986). Precondition analysis: Learning control information. In
R. S. Michalski, .1. G. Carbonell, & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach (Vol. 2). Los Altos, CA:
Morgan Kauflnann.

Stepp, R. E., & Michalski. R. S. (1986). Conceptual clustering: Inventing
goal-oriented classifications of structured objects. In R. S. Michalski, J.
G. Carl)onoll. & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach (Vol. 2). Los Altos. CA: Morgan Kaufmann.

Utgoff. P. E. (1986). Machine learning of inductive bia,~'. Norwell, MA:
Kluwer Acadenfic.

Winston, P. H. (1975). Learning structural descriptions from examples. In
P. H. Winston (Ed.), The psychology of computer vi,~ion. New York:
McGraw-Hill.

138 M. LEBOWITZ

Appendix: UNIMEM Parameters

Below we present a complete list of the parameters used to control the
UNIMEM generalization process. The only parameters tha t have been
omi t ted are those tha t control the form of the ou tput . Typical values are
given in brackets.

• Percentage of similar instance features needed to create a generaliza-
t ion [40%].

• Absolute m i n i m u m number of features needed to generalize [2].

• Percentage of instance features needed to keep a generalization after
some features have been deleted [20%].

• Absolute m i n i m u m number of features needed to keep a generalization
[2].

• Total amount of conflict between instance features and generalization
features allowed in match ing [1.01 .

• Confidence level at which a feature is deleted [-3].

• Confidence level at which a feature is p resumed pe rmanen t [20].

• Max imum distance between feature values allowed in matching [0.5].

• Confidence mult ipl ier for matches [2.0].

• Confidence mult ipl ier for mismatches [-2.0].

• Number of features tha t indicate relevance in search [2].

• Number of misses, less than which indicates relevance [2].

• Penal ty for missing feature [0.1].

