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Abstract. The distribution-independent model of (supervised) concept learning due to Valiant (1984) 
is extended to that of semi-supervised learning (ss-learning), in which a collection of disjoint concepts 
is to be simultaneously learned with only partial information concerning concept membership available 
to the learning algorithm. It is shown that many learnable concept classes are also ss-learnable. A new 
technique of learning, using an &termediate oracle, is introduced. Sufficient conditions for a collection 
of concept classes to be ss-learnable are given. 

1. Introduction 

Theoretical results in concept learning have received much attention recently within 
the model of learnability introduced by Valiant (1984). This model (called pac- 
learnability, for "probably approximately correct learning" (Angluin, 1988a)) as- 
sumes that there is a teacher, or oracle, that presents the learner with randomly 
generated examples (and counterexamples) of the concept to be learned. The effects 
of providing additional information to the learner, such as queries and hints, have 
also been studied (Valiant, 1984; Angluin, 1987, 1988a, 1988b, 1988c, 1988d; Ber- 
man & Roos, 1987). 

In this paper we ask whether it is possible to learn with less information--without  
a teacher labeling examples of each concept to be learned as positive or negative. 
Further,  we consider the problem of simultaneously learning a collection of con- 
cepts, instead of just a single, one. 

There are (at least) two situations that we might wish to model that involve 
learning in an environment with no teacher and many concepts to be learned. One 
is to assume there are no a priori underlying concepts against which the learner is 
to be evaluated, and that the goal is to partition the examples in a manner  consistent 
with some predetermined criterion. This approach is traditionally known as clus- 
tering, or unsupervised learning, and has been studied extensively. Summaries may 
be found in Anderberg (1973), Duda and Hart  (1973), Hartigan (1975), Carbonell, 
Michalski, and Mitchell (1983); Romesburg, (1984). 

The other approach, which is undertaken in this paper, is to assume that there 
are in fact specific concepts to be learned, yet there is no teacher labeling each 
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element as to its concept membership. In this case, the criterion of success is how 
well the learned concepts approximate the correct underlying concepts. Of course, 
in the absence of any information about the underlying concepts, and without a 
predetermined criterion for measuring the suitability of a clustering, the learning 
task is impossible. If, on the other hand, there is a teacher who labels each element 
with its corresponding concept name, then (for any reasonable definition of concept 
learning) the simultaneous (supervised) learning of a disjoint collection of concepts 
trivially reduces to separate instances of learning individual concepts. (For each 
concept, the positive examples will be the members of the concept, and the negative 
examples will be members of the other concepts.) 

We strike a compromise between these two extremes and investigate the si- 
multaneous learnability of a collection of concepts in a semi-supervised manner, 
i.e., with partial information. Rather than assuming that concept labels are given, 
we assume instead that there is an oracle that, upon request, will randomly and 
independently choose two examples from an unknown distribution on the space of 
possible points and tell the learner whether or not the points belong to the same 
concept. A possible interpretation or justification of such an oracle is a learning 
environment in which the learner is able to occasionally and randomly notice that 
two examples ought to be classified together (or apart), yet does not necessarily 
have the ability to relate these two examples to other examples previously seen or 
likely to be seen. 

If there is only one concept to be learned, then the problem is closely related 
to a form of concept learning in which the teacher, rather than providing randomly 
chosen positive and negative examples, instead answers whether two randomly 
chosen examples are of the same type, i.e., both positive or both negative, without 
telling which is the case. Thus the learnability of a single concept in a semi-super- 
vised manner is an interesting question itself, as it explores the boundary of the 
amount of information that is necessary for concept learning. It would seem that 
if, in addition, the examples were from many different concepts to be learned 
simultaneously in a semi-supervised manner, then the learning problem would be 
significantly more difficult. 

We show that, in fact, for a wide range of families F of Boolean formulas known 
to be pac-learnable, and for every constant r > 0, any collection of r disjoint 
concepts defined by formulas of F is learnable in a semi-supervised manner (ss- 
learnable) in polynomial time. 

Sufficient conditions are given for the ss-learnability of a collection of concepts, 
where each concept is from some fixed concept class of finite "Vapnik-Chervonenkis 
dimension" (VC-dimension), a combinatorial parameter of a concept class that is 
intimately related to the pac-learnability of that class (Blumer, Ehrenfeucht, Haus- 
sler, & Warmuth, 1986, 1987). In particular, it is shown that if C has finite VC- 
dimension, and C is learnable from positive examples only, then any collection of 
r disjoint concepts from C can be ss-learned in time polynominal in r. 

Of particular interest is a new technique of learning an intermediate oracle. Many 
concept classes would be ss-learnable if we were to assume the existence of an 
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oracle that, when asked about two examples, tells us whether or not they are 
examples of the same concept. We do not, however, wish to assume the availability 
of such an oracle. Since we have access to pairs of points labeled as to whether or 
not they are in the same concept, in many cases we can use these examples to learn 
a concept description that will imitate the desired oracle quite accurately. We call 
this concept description an intermediate oracle. Once learned, the intermediate 
oracle can be used in place of a real oracle. We expect that this technique will 
prove useful for other learning problems. 

The rest of the paper is organized as follows. In Section 2 we review the necessary 
background and define ss-learnability. Section 3 gives an algorithm for polynomial 
time ss-learning of monomial concept classes. Section 4 gives sufficient conditions 
for ss-learnability, which, in Section 5, are used to prove the ss-learnability of other 
classes of Boolean formulas. In Section 6, the ss-learnability of a concept class is 
related to the VC dimension of the class, and additional sufficient conditions are 
given. In Section 7, an ostensibly different definition of ss-learning is given, and 
shown to be equivalent to that of ss-learnability. Finally, Section 8 summarizes the 
results of the paper and suggests some directions for further study. 

2. Notation, definitions, and background 

For each n -> 1, let X, = {xl, x2 . . . . .  x,,} be a set of n Boolean variables. A family 
of Boolean formulas is a set F = U,~oNF,,, where for each n, F,, is any set of formulas 
over the variables X,,. For each f ~ F,,, f defines the concept {x E {0, 1}" : f(x) = 
1}. We will sometimes use f to denote the concept that the formula f defines; thus 
x E f means that f(x) = 1. Similarly, we will refer to the parameterized family of 
formulas F as a concept class. 1 An example is a element of {0, 1}% where n is given 
by context. An element x C {0, 1}" is a positive example (of f) if x E f, and a 
negative example otherwise. The symbol ® denotes the symmetric difference of 
two sets; thus for f,  f '  E F,,, f @ f '  = {x : f(x) ~ f'(x)}. 

If f ~ Fn and D is a probability measure defined on elements of {0, 1}" then let 
EXAMPLESf.v be an oracle which, when called, randomly chooses an element 
x E {0, 1} n according to the distribution D, and reports (x, +)  if x is a positive 
example, and (x, - )  if x is a negative example of f. (We call (x, +)  and (x, - )  
labeled examples.) If S C {0, 1}" then let D(S) = ~,,s D(s). 

The definition of pac-learnability of a family of formulas involves two parameters: 
an accuracy parameter e, and a confidence parameter B. Intuitively, a concept class 
is pac-learnable if there is a polynomial time algorithm that, given access to in- 
dependently generated labeled examples of some unknown target concept drawn 
according to any fixed but unknown distribution will, with high confidence (prob- 
ability at least 1 - 8), produce a concept from the class that has high accuracy 
(i.e., the probability that a randomly generated example is classified differently by 
the concept produced and the target concept is at most e). Further intuitions and 
justifications of this model, as well as relationships with previous work in machine 
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learning, have been discussed by Valiant (1984), Kearns, Li, Pitt, and Valiant 
(1987b), and Haussler (1988). 

Definition 2.1. The family F = O,~NF, of Boolean formulas is pac-learnable iff 
there exists an algorithm A and polynomials p and q such that for all n >-- 1, for 
all f ~ F,, for every probability distribution D on {0, 1}", and for all ~, 8 > 0, if 

Z is given as input p(,, ~, ~)labeled examples generated by EXAMPLESs, o, and the 

parameters e and 8, then in time q(,, !, ~)A outputs a formula f '  ~ F, such that with 

probability at least 1 - 8, D( f  ® f ' )  -< e. 

If D ( f @ f ' )  <- e, then we say that f '  is an e-approximation o f f ( w i t h  respect to 
D), or is e-accurate for f (with respect to D), omitting the parenthesized phrase 
whenever D is clear from context. Thus pac-learnability requires that a learning 
algorithm exists that, with high probability (1 - 8), can produce an e-approximation 
of any unknown target concept from the class of formulas being learned. Further, 
the time and number of examples used by the learning algorithm may increase at 
most polynomially in the inverse of the parameters e and 8, and polynomially in 
the length n of each example. 

There are a number of alternate definitions of pac-learnability that have been 
developed in order to model various additional aspects of the learning task. Our 
results hold with only minor modifications for most of these definitions of learn- 
ability (see, for example, Haussler, Kearns, Littlestone, & Warmuth, 1988). 

We review the definitions of some pac-learnable families of Boolean formulas. 
A literal (of the variable set Xn) is either the symbol xi or its negation Yi for some 
i ~ n. In the following, let k be any fixed natural number. 

monomials: Un~n{m : m is a conjunct of a subset of {Xl, x2, . . . ,  xn, Xl, x2 . . . . .  
Y,,}}. The size of a monomial is the number of literals it contains. 

kDNF: k-disjunctive normal form formulas = U,,~N{f : f i s  a disjunct of monomials, 
each of size at most k, over n variables}. 

kCNF: k-conjunctive normal form formulas = U,,,N{f : f is a conjunct of clauses. 
each of size at most k, over n variables}, where a clause is a disjunct of literals 
and the size of a clause is the number of literals it contains. 

k-term-DNF: U,~N{f : f is a disjunct of at most k monomials over n variables}. 
k-clause-CNF: Un,N{f : f is a conjunct of at most k clauses over n variables}. 
k-decision-lists: A k-Decision List (over n variables, for any n ~ N) is a list of 

pairs C = ((me, bl)," • ", (mj, bj)) where each me is a monomial (over n variables) 
of size at most k and each be is 0 or 1. The value of C on x ~ {0, 1} n is defined 
algorithmically: let i be the least number such that x satisfies rn,. Then C(x) = 
bi (or 0 if no such i exists). 
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A variant of pac-learnability (Pitt & Valiant, 1988; Blumer et al., 1987) is the 
notion of F pac-learnable in terms of  G (also written F pac-learnable "by"  G), 
where G is some other family of formulas. The definition is the same as pac- 
learnability, except that the e-approximate f o r m u l a f  output by the algorithm must 
be a member of the family G instead of F. As we shall see, this notion is particularly 
relevant to this work. 

Theorem 2.2. 

1. Monomials are pac-learnable. 
2. For each k -> 1, k D N F  is pac-learnable. 
3. For each k -> 1, kCNF is pac-learnable. 
4. For each k -> 1, k-decision-lists are pac-learnable. 
5. For each k >- 1, k-term-DNF is pac-learnable in terms of kCNF. 
6. For each k >- 1, k-clause-CNF is pac-learnable in terms of kDNF.  

1 and 3 are from Valiant (1984), 2 is from Valiant (1985), 4 from Rivest (1987), 
and 5 and 6 from Pitt and Valiant (1988). See also papers by Blumer et al. (1987), 
Kearns et al. (1987a, 1987b), Haussler (1988), and Littlestone (1988). 

A relaxation of the definitions of pac-learnable to that of prediction has also been 
studied (Littlestone, 1988; Haussler, Littlestone, & Warmuth, 1988; Pitt & War- 
muth, 1988; Haussler, Kearns, Littlestone, & Warmuth, 1988). We say that a class 
of concepts is (polynomially) predictable if Definition 2.1 holds, except instead of 
being required to output a formula f E F,, that is an e-approximation of the target 
concept f, the learning algorithm A may output any polynomial time algorithm M 
such that the function computed by M is an e-approximation of f. Clearly each of 
the classes mentioned in Theorem 2.2 is predictable. 2 

We now naturally extend the definition of pac-learning to the ss-learning of r 
disjoint concepts. Let r ~ N. Let F = U,,oNFn be a family of formulas, and for 
some n, let fl,  f2, • • . ,  f,. E F, be pairwise disjoint (i.e., the sets of satisfying 
assignments of the f~'s are disjoint). Let D be any probability distribution on 
{0, 1}" such that 

P ( u ,  r. , f . )  = 1. [11 

Thus the only elements that may occur when sampling from D are those which 
satisfy one (and hence exactly one) of the f.'s. 

Let LABELED-PAIRSr,,t~....s,.s) be an oracle that, when called, randomly and 
independently chooses two elements x, y ~ {0, 1}" according to the distribution D, 
and returns (x, y, same) if for some i, x and y both satisfy f,, or returns (x, y, 
different) if x and y satisfy different elements of {f~, f2, • . . ,  fr}. When D and f~, 
f2,. • . ,  f,. are clear from context, we omit the subscripts and write only LABELED-  
PAIRS. 
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An alternative definition would permit D to generate examples that are not in 
any of the f/s.  However,  it is then more difficult to find a natural definition of 
LABELED-PAIRS.  (It is not clear how a pair (x, y) should be labeled if one or 
both elements are not in any concept f . )  

To define the learning of a collection of r concepts 9 = {fl, f 2 ,  • • . ,  f r }  in a semi- 
supervised manner, we need to measure the error of a collection of s concepts 

= {g~, g2 . . . .  , g.~} with respect to 9 and a given distribution D. The definition 
is obtained by the following intuitive considerations: Ideally, s = r and there is a 
correspondence between elements of N and 9 such that each gi is an approximation 
of some unique concept fj. However,  it is conceivable that more or fewer than the 
true number of concepts were learned, and thus there may be no correspondence 
between some of the elements of c~ and some of the elements of 9 .  Let ~ '  C ~3 
be the set of those elements of qg for which there is in fact a corresponding element 
of 9 .  We measure the error of N in the following way: An element x E {0, 1}" is 
an error point if any of the following conditions hold. 

Error-1 x is not in any given gi E q3'. The intention is that cg, contains the relevant 
learned concepts-- those corresponding to the underlying concepts of ,% Thus 
any point falling outside of the region UC5 ' should be counted towards the error. 

Error-2 x is in the symmetric difference of some gi E c5' with the corresponding ~. 
This counts as error any discrepancy between a learned concept and the corre- 
sponding underlying concept that it is intended to approximate. 

Error-3 x is in the intersection of two different concepts in ~3. This prohibits ex- 
cessive overlap among the learned concepts. 

To formally restate the above regions of error, let I • N' ~ 9 be an injection 
mapping learned concepts of N' to their corresponding underlying target concepts 
of 9 .  Then 

• E 1  = U N '  

• E 2  = U~,o~,(g, • I(g3) 
• E3 = Ug,,,~,~,i~j(gi A gj) 

Now we may define how closely a finite collection ~3 of concepts approximates 
a finite collection ~ of concepts. 

Definition 2.3. Given 9 = {fl, f2 . . . .  , fr}, ~3 = {gl, g2, • • . ,  g,}, and a distribution 
D on {0, 1}" satisfying equation (1), then c5 is e-close to ~ iff there exists a subset 
~3' C_ c5 and an injection I : c5' ~ ~ such that 

D(E1 U E2 U E3) -< e. 

The motivation for counting the regions E1 and E2 as error associated with 
should be clear. The purpose of region E3 is to preclude the possibility of making 
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q5 so large that the difficulty in the learning problem becomes determining the 
subset c5' that has the desired properties. For example, if the third error component 
was omitted, any family F of formulas could be ss-learned (as defined below) by 
simply setting q5 = 2 {°'1}" SO that (5 contains every possible concept over n variables. 
Limiting the amount of overlap among the concepts of c5 appears to be the best 
among a number of different ways around this problem. 

Finally, the following definition of ss-learnability parallels that of pac-learnability, 
except that the information available to an ss-learning algorithm consists of 
LABELED-PAIRS,  and the algorithm is required to produce a collection of con- 
cepts that is e-close to the underlying collection of concepts. 

Definition 2.4. The family F = U,eyF,, of Boolean formulas is ss-learnable (learn- 
able in a semi-supervised manner) iff for each number r > 0, there exists an 
algorithm A and polynomials p and q such that for all n -> 1, for every disjoint 
collection {fl, f2, • • . ,  fr} _ F,, for any probabilit!) distribution D on {0, 1}" satisfying 
equation (1), and for all e, 8 > 0, if A is given as input the parameters e and 8, 
and at most p(n ~,~)labeled pairs generated by LABELED-PAIRSrl  ~ 1rD, then in 
time q@ i'g)' A outputs a collection {gl, g z , . . . ,  g~} C Fn that, with' proi~ability at 
least 1 - 8, is e-close to {fl, f2, . • . ,  fr}. 

Note that this definition does not require that the learned concepts be disjoint, 
even though the concepts which they approximate are disjoint. However,  any area 
of overlap among the learned concepts would contribute towards the allowable 
error (region E3). Similarly, the union of the learned concepts is not required to 
exhaust the instance space, but any region that is in one of the original concepts 
but in none of the learned concepts is counted towards the error (region El) .  

Note also that we allow the algorithm to depend on the number of concepts r 
to be learned. In particular, the run time need not be polynomial in r. Of course, 
it would be preferable to have an algorithm that always runs in time polynomial 
in r. We have not been able to extend our results in this manner. This is similar 
to the problem of pac-learning, where for many concept classes (e.g. DNF),  al- 
though it is not known whether the class as a whole is pac-learnable, positive 
learnability results have been found for subclasses in which some measure of the 
concept size is assumed to be bounded by a constant (e.g., k-DNF). 

3. Semi-supervised learning of monomials 

In this section we assume that the concepts to be learned are monomials ms, 
m2 . . . .  , mr over n variables. We show that, given access to randomly generated 
pairs of strings from concepts defined by monomials, labeled only as to whether 
or not they are members of the same concept, we can learn monomials that ac- 
curately describe the concepts in polynomial time. In Sections 4 and 5 we generalize 
the techniques to ss-learn other collections of concepts. 
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Theorem 3.I. Monomials are ss-learnable. 
The general idea of the proof of Theorem 3.1 is as follows. Suppose we have an 

oracle that can tell us for any pair of vectors x and y whether or not they are in 
the same concept, i.e., satisfy the same monomial. Then we can learn a set G of 
monomials that satisfies the definition of ss-learnability. This can be done by col- 
lecting enough individual points, say m of them (obtained by m/2 calls to 
LABELED-PAIRS),  to ensure that, with high probability, we have at least one 
representative from each concept of significant weight with respect to the distri- 

bution. Then, using our assumed oracle, we can query each of the (2) pairs of 

these points to see which of them are in the same concept, and use the results to 
build equivalence classes. We can then use the m points as examples (positive or 
negative, depending on the particular concept) with which to learn the monomials 
defining membership in the particular concepts. Thus m must also be large enough 
so that, with high probability, the learned monomials are sufficiently accurate. 

We don't  have such an oracle; what we do have is LABELED-PAIRS,  which 
can give us same and different labels, but only for randomly generated pairs of 
points, not for requested pairs. We cannot just wait for the pairs that we are 
interested in to be generated, since D may be such that this would take exponential 
time. What we will do to get around this problem is to learn an oracle from the 
examples of sameness and differentness supplied by LABELED-PAIRS.  Again, 
it might take too long to learn an oracle that responds correctly on all possible 
inputs; we instead learn an approximate oracle, and guarantee that the approximate 
oracle is accurate enough so that, with high probability, it will be correct on each 
pair of points in our sample of size m. (We call such an oracle an intermediate 
oracle, as it is not supplied to the learning algorithm, but is constructed and used 
by the learning algorithm as an oracle enabling a solution of the proper form to 
be discovered.) 

Definition 3.2. For any collection of monomials m l  . . . . .  mr over the variable 
set Xn, the concept SameConcept ({ml, . . . ,  mr)) __ {0, 1} 2" is the set of all vectors 
of length 2n such that the first n-bit substring and the second n-bit substring are 
in the same monomial concept; i.e., if x and y are n-bit strings and their conca- 
tenation xy E SameConcept ((m~, . . . ,  mr)), then for some i, 1 --< i -< r, x E mi 
and y E mi. When clear from context, we omit the argument {ml . . . .  , mr) and 
refer to the concept as SameConcept. 

Note that the oracle LABELED-PAIRS ............ z) is a generator of positive and 
negative examples for the concept SameConcept ({m~, . . . ,  mr)) (with product 
distribution D 2 : X2n --~ R defined by D2(z) = D(x)D(y), where z = xy). 

Lemma 3.3. The class of concepts U,, {SameConcept ((ml . . . .  , m~)) : m l  . . . .  , 

mr are monomials over the variable set X,} is pac-learnable in terms of rCNF. 

Proof. Let x and y be n-bit strings, and let z be their concatenation, xy. Suppose 
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that z E SameConcept ((mr, . . . ,  m~)). Then x, y E m~ for some i -< r. For each 
i -< r, let the monomial (over 2n bits) m'~ be defined such that for all j -< n, 

(xj ~ m ; ) / ~  (x,,+j E rnl) ~=) xj E rni 

and 

(x ~ rn'i) A (Yn+j E rn:) ¢=> 2j E rn~. 

Thus z must satisfy ml. In fact, the strings that satisfy m~ are exactly those strings 
that are concatenations of pairs of strings that both satisfy me. Thus the set of pairs 
of strings that are in the same concept is the set of strings whose concatenations 
satisfy the r-term DNF expression m~ V m; V .  • • V m'r. This means that the pairs 
of points that are in the same (different) concept are the pairs whose concatenations 
are positive (negative) examples of an r-term DNF expression over 2n variables. 
Although for each r -> 2 it is NP-hard to learn an e-accurate r-term DNF expression 
from examples (Pitt & Valiant, 1988), r-term DNF is pac-learnable in terms of 
rCNF (Theorem 2.2). Thus we can obtain (with probability at least 
1 - 8) an rCNF expression that is e-accurate for m~ V • • • V m'r in time polynomial 

in n, {, and ~. The rCNF expression will be used as an oracle SC for the concept 

SameConcept in the learning algorithm sketched below. [ ]  

Definition 3.4. For any p, 0 < p < 1, ap-significant concept me E {ml, m2, . • . ,  

mr} is one for which D(me) >- p. Elements of {rnl~ m2 . . . .  , mr} that are not p- 
significant are p-insignificant. 

Note that 

( ) 2 2 '  ° D U mi <- D(me) <- - [2] 
m i  is e/2r - ins igni f icant  m e is d 2 r  - ins igni f icant  i= 1 2r 2" 

We now sketch the ss-learning algorithm. Let  m be a number to be specified 
later. The size of m will be at most polynomial in n, 1 and 1 

Monomial ss-Learning Algorithm 

1. Use L A B E L E D - P A I R S  to learn, with probability at least 1 - ~, an oracle SC 
for SameConcept that is ~m~-accurate. A learning algorithm exists by Lemma 

3.3. The time taken (and hence the number of examples needed) is at most ( 4) ( ,1 )  pl 2,,,-;-, g, where pl ~. 7,g is the (polynomial) time needed to learn an rCNF 

expression of n variables with accuracy e and confidence 8. 
rrl 2. Make ~ calls to LABELED-PAIRS  to obtain, with probability at least 1 - a, 
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an m-sample (a sample of size m) containing at least one element from each 
~significant monomial. 

3. Use SC to divide the m-sample into equivalence classes in the obvious way. 
4. For each equivalence class, label the m-sample accordingly and input the sample, 

respectively, to any together with accuracy and confidence parameters ~ and 
algorithm for pac-learning of monomials. Each monomial output by the learning 
algorithm is output as a concept description. 

Theorem 3.5. Let the variable m in the Monomial ss-Learning Algorithm be such 
{~[ (2 r  ~)) where P2 is the (polynomial)number of ex- that m = max ln~,pan,-- 

amples needed by to pac-learn a monomial of n variables with accuracy parameter 
~ Then the Monomial ss-Learning Algorithm ss-learns -2r and confidence parameter T/ 

r disjoint monomial concepts. 
Clearly Theorem 3.1 follows from Theorem 3.5. To prove Theorem 3.5 we need 

the following definition and lemmas. 

Definition 3.6. A good run of the Monomial ss-Learning Algorithm is one in 
which 

(A) The oracle SC learned in step 1 is in fact a 2@sapproximation of SameConcept; 
(B) The m-sample obtained in step 2 does have at least one element of every 2@- 

significant monomial in {ml, m2, . . . ,  mr}; 
(C) In step 3, SC makes no mistakes in dividing the particular m-sample into 

equivalence classes; and 
(D) Each learned monomial concept from step 4 of the algorithm is in fact an 2~" 

approximation of the (real) monomial that covers the elements of the equiv- 
alence class labeled as positive examples. 

Lemma 3.7. Let ~t be the set of monomials to be learned. If a good run of the 
Monomial ss-Learning Algorithm occurs, and ~3 is the set of monomials produced, 
then N is e-close to .~. 

Proof. Set q5' (as described in Definition 2.3) equal to ~3. Let I be the injection 
mapping each learned monomial g E ~3' to the (real) monomial of & that is 
consistent with the labeling of the m-sample that was used to learn g. (By (C), 
there is exactly one such monomial.) Since ~3' = ~3, and since each x such that 
D(x) > 0 is in exactly one mi E {ml . . . . .  mr}, then for any i, j such that gi and gj 
are in ~3' and i ~ j, 

x ~g i  N g i ~ x  E g,@I(gi) V x  Egi@l(gj) .  
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Thus 

E3 = U (g, U g/) C U (gi ® l (g i ) )  = E2, 
gi, g j ~ , i , ~ j  g i ~ g  ' 

so to show that c5' is t-close to ~. it suffices to show that 

D(E1 U E2) <~ e. 

E By (D), for each g E N', g @ l(g) <- ~. and since there are at most r elements 
of c5', 

E e 
~ r  m 

2r 2" 

To show that (5' is e-close to ~/[, it thus suffices to show that 

e 

D(E1 - E2) -< 2" [3] 

By equation (2), equation (3) is true if 

E1 - E2 C_ U{mi • m~ is e/2r-insignificant}, [41 

which is true if 

E1 N U { m i  " mi is d2r-significant} C E2. IS] 

To see that containment (5) holds, note that if x E mi and mi is ~significant, 

then by (B), there is some g ~ ~5' such that I(g) = mi. If x is also in E1 = U~3 ', 
t h e n x ~  g, s o x E g ® l ( g )  C E 2 .  [] 

Lemma 3.8. Let SC be a ~japproximat ion of SameConcept (with respect to the 
product measure D2). If we randomly generate m points (from 2 calls to LABELED-  

- ~ SC will correctly classify each of the PAIRS), then with probability at least i ~, 
('~) pairs of points as to sameness and differentness. 

Proof. Let SC be a y~m~-approximation of SameConcept, and thus ~-accurate with 
respect to the oracle LABELED-PAIRS.  Consider any m-sample generated ran- 
domly from 2 calls to LABELED-PAIRS.  Number all of the pairs of points in the 
m-sample from l to (~). For each i from 1 to (m), let ~/i be the probability that the 
oracle SC is wrong on the i 'h of the (2) pairs. Since, for any m-sample, each 
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ermutation of the m points is equally likely, (v,, j_< (2 ]] yl = Yr. In particular, 
i---(2)) ~h = ~/,. Note that ~h is the probabilit)  that ~ a//~mraccurate oracle SC is 

wrong on the first pair. Thus the probability that SC is wrong on some pair is at 
most 

(2) 
'= - -  2 m  2 4"  

[]  

Lemma 3.9. If m is as in the hypothesis of Theorem 3.5 then the probability of 
a good run of the Monomial ss-Learning Algorithm is at least 1 - g. 

Proof. Let A, B, C, and D represent the events that (A), (B), (C), and (D) (as 
given in Definition 3.6) occur respectively. The probability of not obtaining a good 
run is then at most 

er(A) + Pr(A N B )  + Pr(A O B N C )  + er(A O B O  C O D ) .  

Then 

by the definition of pac-learnability. • Pr(A) is at most ~, 
4r thus the probability that B fails to occur, i.e., that • By hypothesis, m -> 2_r, In T' 

some ~-significant monomial does not have a representative in the m-sample, is 
at most 

2r 4r 

r 1 - 2r /  <- 4' 

8 
Hence Pr(A n B--) -< Pr(B) -< ~. 

• By Lemma 3.8, the probability that (C) fails to occur given that (A) occurs is at 
most ~, ~ thus Pr(A n B n C) _ < Pr(A N C-) _ < Pr(C ] A) - < -~ 4" 

• Given that A, B, and C occurred, the probability that a particular learned mon- 
omial has error more than ~r is at most 4r' ~- by the definition of pae-leamability and 
the fact that sufficiently many correctly labeled randomly generated examples 
were input to a monomial learning algorithm. Since there were at most r monomial 
equivalence classes obtained from the m-sample, the probability that (D) fails to 
occur, i.e., that some learned monomial has error more than ~, is at most ~. Thus 
Pr(A N B N  C N D ) - < P r ( D I A / k B / k C ) - < T v  

Thus the probability of not obtaining a good run is at most ~ + ~ + ~ + ; = 
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To complete the proof of Theorem 3.5 (and hence 3.1), note that by Lemma 3.9, 
the probability is at least 1 - g that a good run occurs, implying (by Lemma 3.7) 
that the set of monomials output by the Monomial ss-Learning Algorithm is 
e-close to the set of monomials to be learned. [] 

4. A sufficient condition for ss-learning 

In the proof of Lemma 3.3, the pairs of n bit strings that were generated by 
LABELED-PAIRS were concatenated into a single 2n bit string. It was then shown 
that the concept class corresponding to pairs labeled as "same" was learnable in 
terms of rCNF. Notice that all in fact that was required was that the concept of 
sameness was predictable (as defined following Theorem 2.2). To apply this tech- 
nique in general, we will need the following definition. 

Definition 4.1. Let F = U,.,~NF,~ be a family of formulas. Then let 

• FF2, = {f(xl, x2, . . . ,  xn) / ~ ' f ( X n + l ,  X n + 2 ,  . • . ,  X2n ) : f ~ Fn}, i.e., the collection 
of formulas over 2n variables obtained by conjoining two copies of any formula 
ffrom F., such that each variable xj appearing in the second description is changed 
to x,,+j. 

• VrFF2, ,  = {f l  V f a  V . . .  v f~  : f~ E FF2,~, 1 <- i <_ r}. 
• v~FF = U,,~N VrFF2,. 

Theorem 4.2. If F is pac-learnable and VrFF is predictable then F is ss-learnable. 

Proof. The proof is a straightforward generalization of the proof of Theorem 
3.1. We outline it here. Assume the existence of A, a pac-learning algorithm for 
F, that uses at most pA(n, !, ~)examples, and runs in time bounded by qa(n, !, ~)where 
PA and qA are polynomials. We also assume the existence of B, an algorithm that 
predicts VrFF, and uses at most ps(2n, !, ~) examples, and runs in time at most 

qB(2n, !, ~), where p8 and qn are polynomials. 

To ss-learn r disjoint concepts fl, f2, • • . ,  fr of F, examples of SameConcept ((fl, 
f2, • . . ,  fr)) are constructed by forming the conjuncts of the pairs of strings output 

/ 2m 2 by LABELED-PAIRS. The number of such examples constructed is pB~2n, 7-' ~)' 

which are then input to the algorithm B, along with the parameters n, e8 - ~ 
2m 2 

8 f2r 4r [ 2r 4 r \ ]  [ 2m 2 4\ 
and 8B = ~, where m = max171n~,p,q,,,7,~) ~. Then B, in time q,~2,,-T-,-g ), outputs 
some polynomial time algorithm M that is used as an oracle for the concept 
SameConcept. A set of m points is then randomly generated, using LABELED- 
PAIRS, and M is applied to every pair of the m points to obtain equivalence classes. 
The algorithm A is run once for each of the equivalence classes, using the error 

• 8 parameters eA = g and 8A = ~. The time needed is again at most polynomial in 
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all of the relevant parameters. An analysis identical to the one for the monomial 
case yields that the concepts learned by A are e-close to the true concepts with 
probability at least 1 - 8. [] 

5. ss-Learning other Boolean formulas 

The sufficient conditions of Theorem 4.2 are applied to show as corollaries that 
for each k, kDNF, kCNF, and k-decision-lists are ss-learnable. 

Corollary 5.1. For any constant k, the family of kCNF formulas is ss-learnable. 

Proof. If F is the family of kCNF expressions, then for each n, FF2n is a family 
of kCNF expressions, since the conjunction of two kCNF expressions is also a 
kCNF expression. Then VrFF, the disjunct of r kCNF expressions, may be rep- 
resented by an rkCNF expression without more than a polynomial increase in size, 
since r and k are constants. To see this, let the disjunction be 

r 

i = 1  

where each Ei is a kCNF expression. This is equivalent to the rkCNF expression 

A (cj, v v . . - v c j 3  

where the conjunction is taken over all possible choices of clauses cj~ E El, q, E 
E2 . . . . .  cj~ C Er. Thus we can learn vrFF in terms of rkCNF expressions (such 
expressions are pac-learnable by Theorem 2.2). Consequently, V~FF is predictable. 
Since the family F itself is pac-learnable, the result follows from Theorem 4.2. [] 

Corollary 5.2. For any constant k, the set of kDNF formulas is ss-learnable. 

Proof. Let F be the family of kDNF expressions. For each n, FF2, is a set of 
2kDNF expressions, since the conjunct of two kDNF expressions can be described 
by a 2kDNF expression. The family of disjunctions of r such expressions, VrFF, 
is also a set of 2kDNF expressions. Thus VrFF can be pac-learned in terms of 
2kDNF expressions using any of the algorithms of Valiant (1985), Blumer et al. 
(1987), Haussler (1988), or Littlestone (1988). Since 2kDNF expressions are thus 
predictable, and F is pac-learnable, the result follows from Theorem 4.2. [] 

Corollary 5.3. For any constant k, the set of k-decision lists is ss-learnable. 

Proof. Let F be the family of k-decision lists. The family FF2n can be described 
by a 2k-decision list as follows. The monomials of the new list are formed by 
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conjoining one monomial from each of the two original lists; they are given a label 
of l if both of the constituent monomials are labeled with l 's; otherwise, they are 
given a label of 0. The new labeled monomials are then sorted so that 

1. Every monomial with first half mi occurs before every monomial with first half 
mj if mi occurs before m i in the first decision list. 

2. For all monomials with the same first half, every monomial with the second half 
m~ occurs before every monomial with second half m~ iff mk occurs before m~ 
in the second decision list. 

The disjunction of two k-decision lists can be represented by a 2k-decision list 
which is constructed in a manner similar to the coniunctive case. Thus the dis- 
junction of r 2k-decision lists can be represented by a 2rk-decision list, which is 
pac-learnable (Theorem 2.2). Thus VrFF is pac-learnable in terms of 2rk-decision 
lists and is therefore predictable. Since F is pac-learnable, the result follows from 
Theorem 4.2. []  

6. Unparameterized ss-learning and the VC dimension 

As seen from Theorem 4.2, in order for our ss-learning algorithm to be applied 
successfully to a pac-learnable concept class F, it is sufficient that the class VrFF 
be predictable. In this section we give sufficient conditions for the class VrFF to 
be predictable, when the concept class F is over an unparameterized domain and 
has finite VC dimension, as defined below. 

Thus far we have exclusively discussed concept classes F that consisted of Boolean 
formulas, and hence were defined as infinite collections of subclasses (F = Un_~0F,,) 
parameterized by n, the number of variables in the formula. For any fixed n, the 
pac-learnability of any subclass of formulas F, is uninteresting, because there are 
at most a finite number of possible formulas, and a naive exhaustive search tech- 
nique can be shown to successfully pac-learn. However, nontrivial learning prob- 
lems do arise over a single domain X (as opposed to the parameterized domains 
{0, l}n), when X is infinite. For example, if X is the Euclidean plane, we may be 
interested in the learnability of concepts that consist of rectangles with sides parallel 
to the coordinate axes. We define these problems formally following (Blumer et 
al., 1986). 

If X is any set, then a concept c of X is any subset of X. A concept class C is 
any collection of concepts of X. Associated with C is some reasonable encoding 
scheme for elements of C. 

Definition 6.1. A concept class C (over domain X) is polynomially learnable iff 
there exists an algorithm A, and polynomials p and q, such that for all c C C, for 
every probability distribution D on X, and for all e, g > 0, if A is given as input 
p(~. ~) labeled examples generated by EXAMPLESc.~, and the parameters e and g, 
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then in time a(! 1-] A outputs the description of a concept c' • C such that with 
probability at]~s/t  1 - 8, D(c @ c') <- e. 

Thus polynomial learnability is identical to pac-learnability, except the domain 
parameter n has been eliminated. Similarly, the definitions of predictability and 
ss-learnability for unparameterized concept classes exactly follow the definitions of 
predictability and ss-learnability in the parameterized case, except the parameter 
n is omitted. 

From Theorem 4.2, we saw that (in the parameterized case), the predictability 
of VrFF plays an important role in the application of our general technique. Sim- 
ilarly, for any (unparameterized) concept class C, the predictability of the associated 
concept class vrCC (defined below) will be relevant. 

Definition 6.2. Let C _C 2 x be a concept class. Then 

• for any cl, c2 E C, the concept q x c2 (over domain X x X) is the concept 
{{x, y} : x e q ,  y • c2}. 

• the concept class C x C ( o v e r X  x X) is the set of concepts{q x c2 : q ,  
c 2 •  (7}. 

• the concept class CC (over X x X) is the set of concepts {c x c : c E C}. 
• the concept class vrCC (over X x J0 is the set of concepts {q V c2 V " • " V 

cr : c, • CC}. 

Corollary 6.3. Let C C 2 x be a concept class such that C is polynomially learnable, 
and VrCC is predictable. Then C is ss-learnable. 

Proof. This may be viewed as a special case of Theorem 4.2. [] 

We will refine the sufficient condition of Corollary 6.3 by incorporating sufficient 
conditions for the predictability of VrCC. In order to do this, we will rely on a 
characterization of the polynomially learnable concept classes due to (Blumer et 
al., 1987). To state the relevant necessary and sufficient conditions for polynomial 
learnability, we need a number of preliminary definitions. 

Definition 6.4. Given a nonempty concept class C C_ 2 x and a set of points S c_ 
X, IIc(S) denotes the set of all subsets of S that can be obtained by intersecting S 
with a concept in C, i.e., IIc(S) = {S N c : e E C}. If Hc(S) = 2 s, then we say 
that S is shattered by C. The Vapnik-Chervonenkis (VC) dimension of C is the 
cardinality of the largest finite set of points S C X that is shattered by C. If arbitrarily 
large finite sets are shattered, then the VC dimension of C is infinite. 

Definition 6.5. If C C 2 x is a concept class, then a randomized polynomial time 
hypothesis finder for C is a randomized polynomial time algorithm that takes as 
input a finite labeled sample of a concept in C, and for some y > 0, with probability 
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at least ~/produces (the description of) a concept in C that is consistent with the 
labeled sample. (A concept c is consistent with a labeled sample if every positive 
example in the sample is an element of c, and no negative example is an element 
of c.) 

The following theorem is a special case of Theorem 3.1.1 in (Blumer et al., 
1987). 

Theorem 6.6. If C is a concept class over domain X, then C is polynomially 
learnable if and only if the VC dimension of C is finite and there is a randomized 
polynomial time hypothesis finder for C. 

The following is a slight variant of Theorem 3.2.4 from Blumer et al. (1987). 

Lemma 6. 7. If C C 2 x is a concept class that is polynomially learnable, then VrC 
is polynomially predictable. Further, the time required is polynomial in r as welt 
as -1 and ! 

Pro@ Modify the proof of Theorem 3.2.4 of Blumer et al. (1987) in a straight- 
forward manner to allow for a randomized polynomial time hypothesis finder, 
instead of a deterministic one. [] 

We now prove a sufficient condition for ss-learnability of an (unparameterized) 
concept class. 

Theorem 6.8. If C _C 2 x is a concept class such that C is polynomially learnable 
and there exists a randomized polynomial time hypothesis finder for CC, then C 
is ss-learnable. 

Proof. By Corollary 6.3, it is sufficient to show that VrCC is predictable. Since 
C is polynomially learnable, by Theorem 6.6, C has finite VC dimension. By Lemma 
6.9 below, CC also has finite VC dimension. This, together with the hypothesis 
that CC has a randomized polynomial time hypothesis finder (and an application 
of Theorem 6.6 once again), implies that CC is polynomially learnable. Finally, 
applying Lemma 6.7 with CC in place of C, we conclude that V,CC is 
predictable. [] 

Lemma 6.9. If C has (finite) VC dimension d, then CC has (finite) VC dimension 
at most 4d log 6. 

Proof. For any concept class C, let VCdim(C) denote the VC dimension of C. 
Note that CC C_ C x C, so clearly VCdim(CC) <- VCdim(C × C). We show that 
VCdim(C × C) -< 4d log 6. 

Let the concept class C × X (over domain X × X) be the set {c × X : c C C}. 
Similarly, define X × C = {X × c : c ~ C}. We claim that VCdim(C × X) = 
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VCdim(X × C) = VCdim(C). We only show that VCdim(C x X) = VCdim(C). 
The proof for X x C is virtually identical. 

To see that VCdim(C x X) -> VCdim(C), note that if S _C X is a set of points 
that is shattered by C, then S x {x} is shattered by C x X, for any particular point 
x ~ X. To show that VCdim(C x X) -< VCdim(C), let {{xl, Yl), (x2, y 2 ) ,  • • • ( X d ,  

Yd)} be shattered by C × X. Observe that for every c x X C C x X, and for all 
x, y, y '  ~ X, we have (x, y) E c x X if and only if (x, y')  E c x X. Thus we can 
replace yl, y2, • . • ye with any single point y ~ X, and then {(xl, y), (x2, y), . • • 
(xd, y)} is shattered by C x X. Let S = {xl, x2, . • . ,  xe}. Since S x {y} is shattered 
by C x X, for every T C S, there is a c E C such that (c × X) n (S × {y}) = T 
× {y}. This is true if and only if c n S = T. Thus for every T C_ S, there is some 
c ~ C such that c A S -- T and thus S is shattered by C. Since IS] = IS × {Y}I, 
this demonstrates that VCdim(C x X) -< VCdim(C), and thus completes the proof 
of the claim that VCdim(C x X) = VCdim(C). 

Finally, for any concept classes C1, C2, define the internal intersection (denoted 
n of C~ and C2 by C~ n C~ = {c~ n c2 : c~ E G ,  c2 E C2}. Lemma 3.2.3 of (Blumer 
et al., 1987) shows that if C has VC dimension d, then C n C has VC dimension 
at most 4d log 6. A virtually identical proof shows that C1 n C2 has VC dimension 
at most 4d log 6, for any two concept classes G ,  C2 each with VC dimension d. 
This result, together with our claim above, shows that (C x X) n (X × C) has 
VC dimension at most 4d log 6. To complete the proof of the lemma, note that C 
× C = (C × X) n (X × C); thus VCdim(C × C) -< 4d log 6. [] 

As an example, the concept class of axis-aligned rectangles in the Euclidean 
plane satisfies the hypothesis of Theorem 6.8, and thus is ss-learnable. 

As a final sufficient condition, we show that if C is polynomially learnable from 
positive examples alone, then C is ss-learnable. For simplicity of exposition, the 
definition below of learnability from positive examples is slightly nonstandard, 
although our results hold also for more standard definitions (for example, the 
unparameterized version of the definitions of Natarajan (1987), or Pitt and Valiant 
(1988)). It is essentially the same as the definition of polynomial learnability, but 
restricts access of the learning algorithm to positive examples only, and further 
requires that the concept it finds have perfect accuracy on the set of negative 
examples. 

Definition 6.10. The concept class C C 2 x is polynomially learnable from positive 
examples alone iff there exists an algorithm A and polynomials p and q such that 
for all c E C, for every probability distribution D on elements of c (positive 
examples) and for all ~, 8 > 0, i fA is given as input p(! l) labeled examples generated 
by EXAMPLESc D, and the parameters e and 8, tl~e~ in time q(~, ~) A outputs the 
description of a concept c' E C such that with probability at le'ast 1 - 8, D(c - 
c ' ) - < e a n d c '  - c = 0. 

Theorem 6.11. If C is polynomially learnable from positive examples alone, then 
C is ss-learnable. 
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Proof. By Theorem 6.8 (and the fact that learnability from positive examples 
alone trivially implies polynomial learnability), it suffices to show that if C is 
polynomially learnable from positive examples alone, then CC has a randomized 
polynomial time hypothesis finder. We describe a randomized polynomial time 
algorithm that, given as input a collection S C_ X × X of labeled examples of some 
concept c × c ~ CC, will output a concept c' × c' E CC that is consistent with 
S. 

Let S + consist of the positive examples of c x c in S, and let m = IS + I. Note 
that if (x, y) E S + then x E c and y E c (whereas if (x, y) is a negative example 
of c × c, we cannot deduce whether x 65 c, or y 65 c, or both). Form the set P = 
{x • 9y  such that (x, y) ~ S + or (y, x) E S+}. Let A be a learning algorithm for C 
that uses positive examples only. Now run A with accuracy parameter e < 1 _< 

2m 1 ~ . and confidence parameter g < ~. If a positive example is requested, randomly 
choose an element of P according to the (uniform) distribution D assigning each 
element of P probability ~-. By the definition of polynomial learning from positive 

examples alone, A will find, with probability at least ~. a concept c' E C such that 
D(c - c') --< e < 1 and c' - c : 0. The first condition in fact asserts that c' 

2m 
contains each element of P, otherwise the error according to D would be at least 

> ± a contradiction. The second condition asserts that c' contains no element IPI- 2m" 
of ~. It follows that c' × c' is consistent with S. [] 

Finally, note that by Lemma 6.7, Theorems 6.8 and 6.11 show ss-learnability in 
a stronger sense; the time needed to ss-learn r disjoint concepts is polynomial in 
r as well as n, 1 and i 

7. Equivalence of two types of learning 

An interesting aspect of the definition of ss-learnability is that it is not at all clear 
how an algorithm might test a candidate solution for correctness. In concept learn- 
ing, it is possible to test the accuracy of the learned concept using labeled examples 
of the unknown concept which are provided by the teacher. In ss-learnability, all 
that is available is a randomly generated pair, possibly totally unrelated to any 
examples seen before. 

From this perspective, a reasonable alternate definition of ss-learning would only 
require that the algorithm find a set of formulas from the set F,, that correctly 
predicts (within e) the labels from randomly generated LABELED-PAIRS,  instead 
of requiring t-closeness to some unkown formulas. The alternate definition is given 
below; "sc" stands for "same concept." 

Definition 7.1. A family F = U.~NFn of Boolean formulas is sc-learnable iff for 
each number r G N there exists an algorithm A and polynomials p and q such that 
for all n -> 1,, for every disjoint collection {fl, f2 . . . .  fr} C_ Fn, for any probability 
distribution D on {0, 1} ~ satisfying equation (1), and for all e, 8 > 0, if A is given 
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as input the parameters e and g, and at most p@ !, ~)labeled pairs generated from 

LABELED-PAIRSr~,~. . . ,~ ,m then in time q@ ~. ~), A outputs a collection N = {gl, 

g2 • • . ,  g,} of (not necessarily disjoint) formulas in F, that with probability at least 
1 - 8 has the following property: The probability that a pair of examples drawn 
from LABELED-PAIRSI~,~...,I~,D is incorrectly classified by (5 as to whether or not 
they are from the same concept is at most e. (A pair is correctly classified by N if 
either the pair is (x, y, same)  and both x and y are in exactly one g C (5, or the 
pair is (x, y, different) and for some g, g' C (5, g ¢ g',  x E g, y C g' ,  and neither 
x nor y are in any other element of (5.) 

Note that in the above definition, if a pair generated by LABELED-PAIRS 
contains some element x that is not contained in any element of N, then this is 
counted as an incorrect classification. Similarly, if a pair contains an element in 
the intersection of two elements of (5, then this is also an incorrect classification. 

Theorem 7.2. A family F is sc-learnable iff it is ss-learnable. 

Proof.  Suppose that F is ss-learnable. Then for any n, and any disjoint fl, f~_ . . . .  
fr ~ Fn, we can obtain with probability at least 1 - g, and in time polynomial in 
n, 1 and ~, a set of (not necessarily disjoint) concepts (5 = {gi, g2. • . ,  gs} such that 
(5 is i-close to {f~, f2 • • . ,  f,-}. We show that using the learned concepts (5 to predict 
sameness/differentness will satisfy the requirements of sc-learnability. 

Suppose that (5 is ~-close to {fi, f2 • • . ,  fr}, that LABELED-PAIRS outputs the 
pair (x, y, label),  with label ~ {same, different}, and that x E fx and y Efy,  where 
fx, fy E {f~, fz • • . ,  fr}. Since (5 is ~--close to {fl, f2  • • . ,  fr}, by definition there is a 
subset (5' _C (5 and an injection I ..2 (5' ~ {f~, f2, • . . ,  fr} such that with probability 

-~ x is in exactly one concept gx E (5, g~ is in (5', and x ~ I(g,,) (and at least 1 - 2' 
thus l(gx) f~). The analogous relationships are true for y. 

Case 1: fx = fy. With probability at least 1 - e, x is in exactly one concept gx C 
(5, y is in exactly one concept gy ~ (5, gx and gy are in (5', and I(gx) = fx = f~ = 
I(gy), so the learned concepts <5 produce the correct response of "same concept." 

Case 2: f~ ~ fy .  With probability at least 1 - e, x is in exactly one concept g~ E 
(5, y is in exactly one concept gy ~ (5, g~ and gy are in (5', and I(g~) = fx ¢ f y  = 
I(gy), so (5 produces the correct response of "different concepts." 

Thus with probability at least 1 - B, (5 = {gl, g2 • • . ,  gs} is ~-close to {fl, f 2 . . . ,  
fr} and the probability of correct classification is at least 1 - e. Hence F is ss- 
learnable implies that F is sc-learnable. 

Now suppose that F is scdearnable. If F is pac-learnable as well, then we are 
done by using the sc-learned formulas as an oracle SC, and applying Theorem 4.2. 
However, it is not clear whether F is sc-learnable implies F is pac-learnable. (The 
obvious approach to showing this by letting r = 1 fails because there are then no 
negative examples, so nothing constrains the ss-learning algorithm from over- 
generalizing. If we let r = 2, with the second concept being the negative examples 
of some target concept to be pac-learned, then the ss-learning algorithm is only 
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required to work provided that the negative examples can also be expressed as a 
concept in F.) We show that regardless of the pac-learnability of F, if F is sc- 
learnable then F is ss-learnable. 

Let F be sc-learnable. Then for any n, and any collection ~ = {f~, f2 . . . .  f~} of 
disjoint elements of F,, we can obtain in polynomial time, with probability at least 
1 - g, a collection N = {g~, g2 . . . .  g,} of (not necessarily disjoint) elements of Fn 
such that the elements of ~3 correctly classify pairs from LABELED-PAIRS as to 

E2 
sameness/differentness with probability at least 1 - 6T 2. We will show that ~3 is 
therefore e-close to 9 ,  and the theorem follows. 

Claim. For each ~significant f E ,~ there is a unique g ~ ~3 such that D(f  N g) 
~ .  

8r 

P r o o f  o f  Claim. Assume there is no such g. .Then the probability of choosing 
two points from f n o t  both in some particular g E q3 (and thus obtaining an incorrect 
classification) is at least 

- 32-P > 6s ' 

a contradiction. Now assume that there is more than one such element of q3, say 
g and g'. Then the probability of choosing two points x, y such that x E f n g and 
y C f N g' (and thus obtaining an incorrect classification regardless of whether g 

> 6-~F.a'- " " provmg' " and g' are disjoint)is at least @) contradiction, thus the claim. 

[] 

To complete the proof of Theorem 7.2, we find a subset q3' _C q3 and a bijection 
I : N' --> {f ~ ~ : f i s  ~-significant} (and hence an injection with range 9)  witnessing 
that q3 is e-close to 9.  For each ~-significant f ,  let the unique g such that D(f  N g) 

>- ± be an element of N', with I(g) = f .  
8r 
Now for each g C wo', D(g  ® I(g)) <- ±. for if not, then either D(g  - I(g)) >-- 

4r' 
8-7' or D(I(g)  - g) >- -st The cases are similar; we show that the first case cannot 

happen: If 

e 
D(g  - I(g)) = D(g  n I(g)) >- - -  

8r' 

then since D(g  n I(g)) >-- ~ (by definition of g), we have the probability that a 

misclassification occurs is at least g > 657' a contradiction. 
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It follows that 

D(E2) = D (  U & O I(&)) <- r - -  = - 
gi~N' 4r 4" 

Then, as in the proof of Lemma 3.7, 

E1 - E2 ___ U ~ " 3~ is e/4r-insignificant}, [61 

which is true if 

E1 D U ~ : fi is e/4r-significant} _C_ E2. [7] 

To see that containment (7) holds, note that if x E f~ and f~ is ~significant, then 
by the claim, there is a unique & ~ aS' such that D@ D &) -> ~, and thus I(gi) = 

f .  If x is also in E1 = U~3 ', then x ~ &, so x E gj • I(&) C_ E2,  and containment 
(7) follows. Containment (6) implies that 

D(E1  - E2) -< ~. 

By the definition of sc-learnability, 

E 2 ~_ 

D(E3) = D( U (g, n < 
gi, gj~%iv_ j - ' ~  

SO 

E E E 
D ( E 1 U E 2 U  E3)_<D(E2)  + D(E1  - E2) + D ( E 3 ) < ~  + ~ + ~ = E. 

[] 

Corollary 7.3. Each of the families described in Theorems 3.1 and Corollaries 
5.1, 5.2, and 5.3 is sc-learnable. Further, any concept class satisfying the hypothesis 
of Theorems 4.2, 6.8, or 6.11, or Corollary 6.3 is sc-learnable. 

8. Conclusion 

We have defined a new type of learning in which multiple concepts are learned 
simultaneously. This is done, furthermore, using a teacher that provides less in- 
formation than the teacher in pac-learning. This definition provides for a level of 
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teacher involvement that is intermediate between supervised and unsupervised 
learning. 

We have shown that a number of pac-learnable concept classes are also learnable 
under the new definition; we leave open the question of whether this is true of all 
pac-learnable classes. It is also not known whether the set of ss-learnable classes 
is a subset of the pac-learnable classes; that is, whether there exist concept classes 
that are not pac-learnabte but are ss-learnable. As noted in the proof of Theorem 
7.2, trying to pac-learn a single concept by ss-learning the concept with r = 1 fails 
to resolve this issue. 

A main open problem is to determine whether there is an ss-learning algorithm 
for monomials (or any of the other classes considered here) with running time 
polynomial in the parameter r, the number of disjoint classes. 

Another potential area of study is the effect of removing the restriction on the 
distribution D that requires all of the points generated by LABELED-PAIRS to 
come from one of the concepts to be learned. The definition of LABELED-PAIRS 
would have to be altered to reflect the fact that points in the pairs may not be in 
any of the concepts. Allowing arbitrary distributions would, in addition to making 
the definition more general, cause the case of ss-learning a single concept to more 
closely approximate single concept learning, since negative examples of the concept 
would be permitted. 

Haussler (1988) shows that internal disjunctive concepts are pac-learnable. It 
can be shown that they are also ss-learnable, provided that the length of the 
compound terms can be bounded by a constant. An interesting open problem is 
whether the class is still ss-learnable when this restriction is lifted. 

Our technique of constructing an intermediate oracle to facilitate learning may 
prove useful in other learning problems. The use of such an oracle enables us to 
exploit the phenomenon of concept classes that are learnable by other classes, but 
are not themselves learnable. 
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Notes 

1. In some applications it may be desirable to parameterize a family F by some size measure other 
than (or in addition to) the number of variables. 

2. See Haussler, Kearns, Littlestone, & Warmuth (1988), Littlestone (1988), and Pitt & Warmuth 
(1988) for comparisons of this and other models of prediction. 
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