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Abstract. We propose an algorithm for the inference of decision graphs from a set of labeled instances. In 
particular, we propose to infer decision graphs where the variables can only be tested in accordance with a given 
order and no redundant nodes exist. This type of graphs, reduced ordered decision graphs, can be used as canonical 
representations of Boolean functions and can be manipulated using algorithms developed for that purpose. This 
work proposes a local optimization algorithm that generates compact decision graphs by performing local changes 
in an existing graph until a minimum is reached. The algorithm uses Rissanen's minimum description length 
principle to control the tradeoffbetween accuracy in the training set and complexity of the description. Techniques 
for the selection of the initial decision graph and for the selection of an appropriate ordering of the variables are 
also presented. Experimental results obtained using this algorithm in two sets of examples are presented and 
analyzed. 
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1. I n t r o d u c t i o n  

This paper describes heuristic algorithms for the induction of minimal complexity decision 
graphs from training set data. Decision graphs can be viewed as a generalization of decision 

trees, a very successful approach for the inference of classification rules (Breiman et al,, 

1984; Quinlan, 1986). The selection of decision graphs instead of decision trees, as the rep- 

resentation scheme, is important because very large decision trees are required to represent 

some concepts of interest. This makes it hard to learn these concepts using decision trees 

as the underlying representation. In particular, the quality of the generalization performed 
by a decision tree induced from data suffers because of two well known problems: the 

replication of subtrees required to represent some concepts and the rapid fragmentation of 

the training set data when attributes that can take a high number of values are tested at a node 

(Oliver, 1993). Reduced ordered decision graphs, the particular representation addressed in 

this work, are decision graphs that have no redundant nodes and where the tests performed 
on the variables follow some fixed order for all paths in the graph. These graphs exhibit 
some specific characteristics that makes them specially useful for the task at hand. 

Decision graphs have been proposed as one way to alleviate these problems, but the 

algorithms proposed to date for the construction of these graphs suffer from serious limi- 

tations, Mahoney and Mooney (1991) proposed to identify related subtrees in a decision 
tree obtained using standard methods, but reported limited success since they observed no 
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improvement in the quality of the generalization performed. Their lack of success may 
be partially explained by the fact that they used a non-canonical representation of Boolean 
functions (DNF expressions) to represent the functions implemented by these subtrees. 
The non-canonicity of this representation makes it a non-trivial process to identify identi- 
cal subtrees and may explain, at least partially, the lack of effectiveness of the approach. 
Oliver (1993) proposed a greedy algorithm that performs either a join or a split operation, 
depending on which one reduces the description length to a larger extent. He reported 
improvements over the use of decision trees on relatively simple problems, but our exper- 
iments using a similar approach failed on more complex test cases because the algorithm 
tends to perform premature joins on complex problems. 

Kohavi (1994) proposed an approach that also uses reduced ordered decision graphs. 
His approach builds an ordered decision graph in a bottom-up fashion, starting at the level 
closest to the terminal nodes. This choice is partially based on the fact that the widest level 
(i.e., the level with the larger number of nodes) of a reduced ordered decision graph is, in 
general, closer to the bottom of the graph. He uses this characteristic of reduced ordered 
decision graphs to argue that it is advantageous to select the variable ordering in a bottom-up 
fashion. This algorithm is, however, too inefficient to be used directly in large problems, 
although this limitation can be circumvented by the use of attribute-selection techniques. 
More recently, Kohavi (1995) proposed an alternative that is also based on the identification 
of common subtrees in a decision tree. However, unlike other approaches, this decision tree 
is constrained to exhibit the same ordering of tests for all possible paths in the tree, thereby 
suffering from potential data fragmentation. A combination of these approaches with some 
of the techniques introduced in this work may be worth studying. 

The approach described in this paper is radically different. First, the problem of selecting 
an appropriate ordering for the variables is solved using one of the highly effective heuristic 
algorithms for variable reordering proposed in the logic synthesis literature (Rudell, 1993). 
Second, the algorithm that derives a compact decision graph uses many of the techniques 
developed in the logic synthesis and machine learning communities in its search for compact 
decision graphs. A compact decision graph is derived by performing incremental changes in 
an existing solution until a local optimum is obtained. The initial decision graph is obtained 
using the facilities provided by standard packages for the manipulation of decision graphs 
together with well-known machine learning techniques. 

As with many other approaches to the induction of classification rules, the induction 
of a decision graph from a labeled training set has to deal with the problem of trading 
off accuracy in the training set with accuracy on future examples. In general, accuracy 
on unseen examples is closely related with the compactness of the description selected. 
Descriptions that are too complex may exhibit high accuracy in the training set data but will 
generalize poorly, a phenomenon commonly described as over-fitting. The general bias 
for simpler hypotheses is known as Occam's razor and has been addressed by a number of 
authors (Pearl, 1978; Blumer et al., 1986; Blumer et al., 1987). A particularly useful way of 
viewing this problem, the minimum description length (MDL) principle, has been proposed 
by Rissanen (1978,1986). Using this principle, the problem of selecting a decision graph 
that exhibits a good generalization accuracy can be formulated as the selection of a graph 
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that minimizes the code length required to describe both the graph and the exceptions to 
that graph present in the training set data. 

The selection of decision graphs as the representation scheme and the search for decision 
graphs of small description length can be viewed as the selection of a particular inductive 
bias. No bias is intrinsically superior to any other bias for all concepts, and an argument 
for the superiority of a particular bias can only be made in the context of a particular set of 
induction problems. A particularly clear study of the inherent equivalence of all biases in 
the absence of a context was presented by Schaffer (1994). He shows that any improvement 
produced by a particular algorithm in some set of problems has to be compensated by 
reduced performance in another set. We argue, however, that the bias for small decision 
graphs is appropriate for many interesting concepts and present empirical results that show 
that this is indeed the case for some types of practical problems. 

As mentioned, this work draws heavily on techniques developed by other authors in the 
machine learning and logic synthesis fields. From machine learning, we use many of the 
techniques developed for the induction of decision trees (Quinlan, 1986) as well as the 
constructive induction algorithms first studied by Pagallo and Haussler (1990). From the 
logic synthesis field, we use the vast array of techniques developed for the manipulation of 
reduced ordered decision graphs as canonical representations for Boolean functions (Bryant, 
1986; Brace et al., 1989) and the variable reordering algorithms studied by a number of 
different authors (Friedman and Supowit, 1990; Rudell, 1993). For the benefit of readers 
not familiar with the use of reduced ordered decision graphs as a tool for the manipulation 
of Boolean functions, Appendix A gives an overview of the techniques available and their 
relation to this work. 

The remainder of this article is organized as follows: Section 2 introduces the basic 
concepts and definitions, and describes the properties of reduced ordered decision graphs 
that make them useful for the manipulation of discrete functions, in general, and for this task, 
in particular. Section 3 describes how the minimum description length principle is applied 
and gives the details of the encoding scheme used, which follows closely the approach 
followed by Quinlan and Rivest (1989). Section 4 contains the central contribution of this 
paper and describes a simple but effective local optimization algorithm that derives reduced 
ordered decision graphs of small complexity from a training set. The algorithm proposed 
initializes the decision graph using one of the techniques described in Section 4.1 and 
then applies incremental changes to the decision graph that reduce the overall description 
complexity. Section 5 describes the results of a series of experiments performed with this 
and other algorithms. The performance of the algorithm is compared with the performance 
of alternative approaches in a variety of problems defined over discrete and continuous 
domains. The set of problems analyzed includes problems generated from artificial and 
real-world domains, as well as a benchmark set assembled by an independent group for the 
purpose of comparing induction algorithms. Section 6 summarizes the results obtained and 
proposes some directions for future work in this area. 
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2. Decision Trees and Decision Graphs 

We address the problem of inferring a classification rule from a labeled set of instances, 
the training set. In particular, we are interested in supervised, single-concept learning in 
discrete spaces. Let the input space be defined by a set of discretely valued attributes, 
D = Xa x X2 • .. x X N ,  and let a concept be a subset of the input space. Each instance 
(di, li) E D x {0, 1} is described by a collection of discretely valued attributes d~ that 
defines a point in D and a label li that is 1 iff this point belongs to the target concept, C. 
The training set is a set of instances T = {(all, l l ) , , .  •, (din, Ira)}. The values l l , - . . ,  lm 
define a Boolean vector l with ra components that has a 1 in the ith position iff di is in 
C. Boolean vectors will also be used in other contexts and will be manipulated using the 
standard Boolean operations in the natural way. When describing expressions that involve 
either Boolean functions or Boolean vectors, we will follow the accepted conventions from 
the logic synthesis literature. Specifically, we will omit the conjunction operator, use the 
+ symbol to represent disjunction and the ~ symbol to represent the exclusive-or operator. 
The norm of a Boolean vector z, Izl, represents the number of  ones in z. 

The objective is to infer a classification rule, or hypothesis, that can be viewed as a 
function f : X1 x X2 x ... x X N  --~ {0, 1} that approximates the characteristic function 
of concept C. 

We are particularly concerned with two representations for functions defined over discrete 
domains: decision trees and decision graphs. A decision tree is a rooted tree where each 
non-terminal node is labeled with the index of the attribute tested at that node. From each 
non-terminal node labeled with variable xi, [Xi[ arcs point to other nodes. Each one of 
these arcs is labeled with one of the possible values of the attribute zi.  In the case of 
single concept learning, there are two types of terminal (or leaf) nodes: type 0 and type 1, 
denoting, respectively, non-inclusion and inclusion in the target concept. 

Similarly, a decision graph is a directed acyclic graph where each non-terminal node is 
labeled with the index of the attribute tested at that node. A decision graph is similar to 
a decision tree except that the underlying graph may have re-convergent paths. Decision 
graphs are commonly described as Boolean decision diagrams in the logic synthesis liter- 
ature and as branching programs in computer science theory work (Meinel, 1989). Figure 
1 shows a decision tree and a decision graph for the function f : {0, 1} 4 ~ {0, 1} defined 
by f = XlX2 + x3x4. In this and other figures illustrating functions defined over Boolean 
spaces, we will use the convention that the rightmost edge leaving each node will always 
be the one labeled with the value 1. 

Decision graphs and decision trees can be used to classify any instance by tracing a 
path from the root to a terminal node that follows the edges labeled with the values of the 
attributes present in that instance. 

A decision graph is called ordered if there is an ordering of the variables such that, for all 
possible paths in the graph, the variables are always tested in that order (possibly skipping 
some of them). A decision graph is called reduced if no two nodes exist that branch exactly 
in the same way, and it is never the case that all outgoing edges of a given node terminate in 
the same node (Bryant, 1986). A graph that is both reduced and ordered is called a reduced 
ordered decision graph (RODG). For a given ordering of the variables, reduced ordered 
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Figure 1. Decision tree for f = x lx2  + x3x4 and the corresponding decision graph. 

decision graphs are canonical representations of Boolean functions, a characteristic that 
makes them specially useful for the manipulation of this type of functions. 

In this work, only problems defined over Boolean spaces are considered. Problems 
defined by multi-valued attributes can be easily mapped into a Boolean space by replacing 
each multi-valued attribute xi E X~ by a set of Ilog2 ]Xi[] Boolean-valued attributes. We 
will henceforth assume that all attributes are Boolean valued and that D = {0, 1} N = B N. 
The encoding of multi-valued variables as a set of Boolean variables does not change 
the class of concepts that can be represented in polynomial size by either decision trees of 
decision graphs, but may still have a considerable impact on the quality of the generalization 
performed. In most cases, this transformation makes concepts slightly harder to learn 
because they are represented by more complex trees in terms of the Boolean attributes. In 
a few other cases, it actually helps the induction process by creating regularities in the data 
that are not apparent before the transformation. For example, inferring the concept of a 
prime number is possible if the number is represented in binary but infeasible if the number 
is represented as an integer-valued attribute. Extending the system to make it able to handle 
multi-valued attributes directly is an important direction for future research and does not 
require any fundamental change in the algorithms. It does, however, require the use of a 
distinct package for the manipulation of discrete functions than the one used. 

The present system internally transforms discretely valued attributes into Boolean-valued 
ones in a way that is transparent to the user. However, if the final RODG needs to be easily 
understandable (instead of simply used to classify new instances), it is harder to interpret 
because of the binary coding of multi-valued variables. A post-processing step can be used 
to recover an RODG formulated in terms of the original variables whenever clarity of the 
derived rule is a critical factor. 

Consider now a decision tree or a decision graph defined over the domain D. Let 
ha, n2, ..., nr  be the nodes in the tree or graph. Let vi denote the variable tested in node 
ni,  nt~ (the then node) denote the node pointed to by the arc leaving node ni when vi is 
1 and n~ (the else node) denote the node pointed to by the arc leaving node ni when vi 
is 0. Finally let node ns be the root of the decision tree or graph. Each node ni defines a 
Boolean function f ( n i )  : D ~ B defined, in a recursive way, by 
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f f(nt~) i f v ~ = l  
f(n~) (1) f(n~,) i fvi  0 

The recursion stops when n~, (or nt,) is a terminal node. In this case f (n~)  (or f(nt~)) 
equals the constant 0 function or the constant 1 function, depending on the type of the 
terminal node. 

We will use y~ to denote the Boolean vector with m components that has a 1 in position 
j iff the function defined by node ni has the value 1 for the value of the attributes defined 
by the jth instance in the training set: 

yJ = f /(dj)  (2) 

In an analogous way, Vi will denote the Boolean vector with m components that has a 1 
in position j iff the variable vi has the value 1 for the j th instance in the training set: 

Vij = vi(dj) (3) 

2.1. Manipulating Discrete Functions Using RODGs 

For a given ordering of the variables, reduced ordered decision graphs are a canonical 
representation for functions in that domain (Bryant, 1986). This means that given a function 
f : Xl × X2... × X N  --+ {0, 1} and an ordering of the variables, there is one and only one 
representation for a function f .  

Packages that manipulate RODG's are widely available and have become the most 
commonly used tool for discrete-function manipulation in the logic synthesis commu- 
nity (Brayton et al., 1990). Some of these packages are restricted to Boolean functions 
(Brace et al., 1989). In this case, each non-terminal node has exactly two outgoing edges. 
Other packages (Kam & Brayton, 1990) can accept multi-valued attributes directly, thereby 
allowing each non-terminal node to have an arbitrary number of outgoing edges. 

All these packages provide at least the same basic functionality: the ability to combine 
functions using basic Boolean and arithmetic operations and the ability to test for con- 
tainment or equivalence of two functions. They also provide an array of more complex 
primitives for function manipulation that are not relevant for the work presented here. 

Several functions can be represented using a multi-rooted (or shared) RODG and each 
function is usually represented by a pointer to the RODG node that represents the function. 
Because RODG's are canonical, the equivalence test (and, therefore, the tautology test) can 
be performed in constant time. This means that the task of checking for the equivalence of 
two functions represented by their shared RODGs is a trivial one because it reduces to the 
comparison of two pointers. 1 

The algorithms described in this paper make use of only a small fraction of the facilities 
provided by RODG packages. In particular they will only use the following primitives for 
Boolean-function manipulation: 

• Boolean combination of two existing functions. For example, f := 9 h returns a 
function f that is the Boolean and of two existing functions, 9 and h. 
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Figure 2. RODGs  for the functions g = x 2 x 4 ,  h = ~ + x4 and f = x l x 2 x 4  + Y - { ( ~  + x4) .  

• Complement of an existing function. Example: f := ~. 

• Creation of a function from an existing variable. For example, f := Fvar(i) returns a 
function f that is 1 when variable xi is 1 and is 0 otherwise. 

The if-then-else operator. For example, f := Ite(v, 9, h) returns the function g for the 
points where function v is 1 and the function h for the points where v is 0. Although 
the Ite operator is simply a shorthand for the combination f := (vg) + (~h), it has a 
fundamental role in the definition of RODG operations and deserves separate treatment. 

A complete description of the algorithms used by the RODG packages to manipulate 
Boolean functions is outside the scope of this paper, but we include, in Appendix A a 
description of the basic techniques designed for this purpose. A more complete exposition 
can be found in the literature (Bryant, 1986; Brace et al., 1989). For the purposes of 
understanding the approach outlined in this paper, it is sufficient to understand how the 
facilities provided by these packages can be used to manipulate Boolean functions. 

Example: The function f : {0, 1} 4 --~ {0, 1} defined in expression (4) can be obtained 
using the primitives provided by the package. Figure 2 shows the successive RODG's 
created by the package to represent the functions 9, h and f .  In these diagrams, a white 
square represents the terminal node that corresponds to 0, a filled square represents the 
terminal node that corresponds to 1. 

x2x4 if z I = 1 
f ( x l , x2 ,x3 ,x4)= "2-~3+x4 i f z l = O  (4) 

[] 
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3. Minimizing Message Length and Encoding of RODGs 

The tradeoff between hypothesis simplicity and accuracy in the training data is controlled 
using the minimum description length (MDL) principle of Rissanen (1978,1986). This very 
general principle can be derived from algorithmic complexity theory in a simple and elegant 
way (Li & Vit~inyi, 1994). It states, in a simplified way, that the hypothesis that minimizes 
the sum of the length of the hypothesis description with the length of the data encoded using 
this hypothesis as a way to predict the labels is the one more likely to be accurate in unseen 
instances. 2 

Assume that an encoding scheme for describing both RODGs and a list of exceptions has 
been agreed upon in advance. Let d 9 be the description length of an RODG and da be the 
length of the message required to describe the exceptions to this RODG in a given training 
set. According to the MDL principle, the RODG that minimizes the total description length, 
d o + da, will exhibit the best generalization accuracy) 

The computation of dg, the description length of the RODG, is performed by evaluating 
the length of a particular encoding. We encode a reduced ordered decision graph using a 
scheme inspired by the one proposed by Quinlan and Rivest (1989), modified to take into 
account the fact that a node can be visited more than once. It is also restricted to consider 
only decision graphs with two terminal nodes, the representation used in this work. Nodes 
in an RODG are encoded as follows: 

• A node that was never visited before is encoded starting with 1 followed by the encoding 
of the variable tested at that node, followed by the encoding of the node pointed to by 
the else edge, followed by an encoding of the node pointed to by the then edge. 

• A node that was visited before is encoded starting with 0 followed by a reference to the 
already described node. 

The first node to be described is the root of the graph, and the two terminal nodes are 
considered visited from the beginning and assigned references 0 and 1. We ignore the 
issues related with the use of non-integral numbers of bits and we make the description 
less redundant by noting that when one is deeper in the decision graph not all variables 
can be usefully tested (only the ones that were not tested previously). Furthermore, when 
a reference to an already described node is given, only log 2 (r I) bits are required, where r '  
is the number of nodes described up to that point. 

We now need to compute da, the description length of the exceptions to a given RODG 
present in the training set. Exceptions to the RODG will be encoded as a string of O's 
and l 's  where the l ' s  indicate the locations of the exceptions. In general, the strings have 
many more O's than l's. Again we follow closely the encoding used by Quinlan and Rivest. 
Assume that there are k 1 's in the string and the strings are of length m, known in advance. 

We can encode the string by first sending the value of k, which requires log2(m ) bits and (°) then describing which string with k l ' s  we are referring to. Since there are k such 

strings we find that 

da = log2(m) + log2 k 
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Using Stirling's formula to approximate the second term in (5) we obtain 

d d = m H  m + 2 2 2 ~ + 0  

(6) 

where H(p) is the usual entropy function 

H(p) : -p log2(p)  - (1 - p)logz(1 - p) (7) 

Wallace and Patrick (1993) point out that the coding scheme proposed by Quinlan and 
Rivest is sub-optimal for some types of trees. In particular, they analyze the deficiencies 
of this coding scheme for non-binary trees and for trees with more than two classes. Their 
analysis, however, does not hold for the decision-graph case since it makes use of specific 
characteristics of trees that are not shared by graphs. Our encoding scheme may, however, 
suffer from other inefficiencies because it does not make use of all the prior knowledge about 
graph structure. In particular, it is known that nodes that are lower in the decision graph will 
be reused and therefore referenced more often than nodes at upper levels. Conceptually, 
this could be used to our advantage in building a more efficient coding scheme by assigning 
shorter codes to nodes closer to the terminal nodes. In practice, it is hard to use this 
knowledge to achieve significant gains in coding length because little is known about the 
distributions of references to nodes in typical problems. 

4. Deriving an RODG of Minimal Complexity 

This section contains the central contribution of this paper and describes in detail the 
algorithms used to derive an RODG of minimal complexity. The RODG that serves as the 
starting point for the local optimization algorithm, described in Section 4.2, is obtained 
from the training set data using one of the techniques described in Section 4.1. Section 4.3 
describes the algorithms that select the best ordering of the variables. 

4.1. Generating the Initial RODG 

There are several possible ways to generate an RODG that can be used as the starting 
point for the local optimization algorithm. Our experiments have shown that three of them 
are particularly effective, although the relative size of the RODGs generated by different 
methods varies strongly from problem to problem (Oliveira, 1994). The RODG selected 
as the initial solution is the RODG that exhibits the smallest total description length of the 
following three candidates: 

• The RODG that realizes the function implemented by a decision tree derived from the 
training set data using a standard decision-tree algorithms. 

• The RODG that realizes the function implemented by a decision tree defined over a 
new set of variables obtained using constructive-induction techniques. 
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• The RODG obtained by applying the restrict heuristic (Coudert et al., 1989) to the 
function obtained by listing all positive instances in the training set. 

We now describe in more detail how each one of these techniques can be used to obtain 
an RODG that serves as the starting point for the local optimization algorithm. 

4.1.I. Initialization Using Decision Trees 

One way to initialize the RODG is to obtain a decision tree from the data and to convert the 
function obtained by the decision tree to RODG form. 

Several efficient algorithms for the induction of decision trees from data have been pro- 
posed in the literature. Since the attributes are Boolean and we are not concerned with 
algorithms for pruning the tree, we can use a relatively straightforward algorithm to gener- 
ate the decision tree. A simplified version of ID3 (Quinlan, 1986) is used to generate the 
decision tree. The decision tree is built in a recursive way, by selecting, at each point, the 
attribute to be tested as the one that provides the larger amount of information about the 
class of the instances that reached that node. 

Example: Figure l, used as the example in Section 2 shows a decision tree for the function 
f = xax2 + x3x4 and the decision graph that results from the application of this technique, 
assuming the ordering used is (xl,  3::2, X3, X4). [] 

4.1.2. Initialization Using a Constructive Induction Algorithm 

Constructive induction algorithms create new complex attributes by combining existing 
attributes in ways that make the description of the concept easier. Thefulfringe constructive 
induction algorithm (Oliveira & Vincentelli, 1993) identifies patterns near the fringes of the 
decision tree and uses them to build new attributes. The idea was first proposed by Pagallo 
and Haussler (1990) and further developed by other authors. A constructive induction 
algorithm of this family, dcfringe (Yang et al., 1991) identifies the patterns shown in the 
first two rows of Figure 3. Fulfringe identifies all the patterns used by dcfringe but also 
identifies additional ones that correspond to functions poorly correlated with the input 
variables. These additional patterns are listed on the third row of Figure 3. In this figure 
nodes not marked with squares can be either terminal or non-terminal nodes. This means 
that the patterns in the second row are more specific than the patterns of the first row. 

Note that the creation of a function or its complement is equivalent, from a constructive 
induction point of view. The constructive induction algorithm dcfringe can be reformulated 
in such a way that only conjunctions of existing attributes are created. Similarly, the patterns 
in the last row of Figure 3 can all be associated with the exclusive-or function of existing 
attributes. We opted, however, for a formulation closer to the one that was used by other 
authors in this field. 

The new composite attributes are added (if they have not yet been generated) to the list of 
existing attributes and a new decision tree is built. The process is iterated until no further 
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Figure 3. Fringe patterns identified byfulfringe. Each partial subtree shown corresponds to the Boolean function 
of two variables described below it. Nodes without squares can be either terminal or non-terminal. 

reduction in the decision-tree size takes place or a decision tree with only one decision node 
is built. 4 

Since the composite attributes are Boolean combinations of  existing attributes, the RODGs 
for them are created in a straightforward way using the Boolean operations between existing 
functions provided by the RODG package. Expression (1) can still be used to derive the 
RODG implemented by a decision tree defined over this extended set of variables, but the 
variable vi  will not refer, in general, to a primitive attribute. This is handled in a transparent 
way by the functions available in the RODG package, as described in Appendix A. 

Note that even though the successive decision trees are defined using composite attributes, 
the RODGs that correspond to any one of  these trees are still defined over the original set of 
variables. In this way, the constructive induction algorithm is used only to derive a simpler 
Boolean function to initialize the RODG reduction algorithm, not to add new variables as 
in standard constructive induction approaches. 

Example :  Figure 4 shows the successive decision trees obtained using this algorithm for the 
function used in the previous example. The first decision tree created is the same as before. 
Using the patterns listed in Figure 3 the algorithm creates the two following attributes: 
x5 = XlX2 and x6 = x 3 x 4 .  RODGs for these new attributes are also created, as they will 
be needed in the next step. 
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Figure 4. In this example, the composite attributes x5 = XlX2, x6 : x3x4 and x7 = x5 + x6 are created by 
the constructive induction algorithm. The top half of the figure shows the successive decision trees created by 
fulfringe while the bottom half shows the decision graphs created for each one of the newly created attributes. The 
decision graph for x7 is the one returned by the procedure. 

A smaller decision tree is then built using these attributes (together with the primitive 
ones, in general) and the new attribute x7 = x~ + z6 is created, as well as the RODG for 
zv  as a function of ( z l  • . .  x4).  The RODG created for the new composite attribute x7 is 
the same as the RODG for the final function, because the last decision tree created has only 
one node. In this case, the final RODG is the same as the one obtained using the initial 
decision tree although, in general, this is not the case. [ ]  
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4.1.3. Initialization Using the Restrict Operator 

The third way to initialize the algorithm is to use algorithms for RODG reduction like the 
restrict operator (Coudert et al., 1989). This RODG operator can be used to obtain a more 
compact RODG representation for an incompletely specified function. 

The restrict operator belongs to a family of heuristics (Shiple et al., 1994) that generate 
a small RODG by merging, in a bottom-up fashion, nodes in an RODG. The merging of 
nodes is performed in a way that keeps the RODG consistent with the training set data. 

Two RODGs are required to apply the restrict heuristic: an RODG that describes the 
function f to be restricted and an RODG that describes the care set, i.e., the points in 
the input space where the value of the function is relevant. The first RODG is created by 
considering a function that is 1 for all positive instances and 0 otherwise. The care set 
consists off all the points in the input space that are present in the training set, either as 
positive or negative instances of the target concept 5. The restrict heuristic is then applied 
to obtain a small RODG that is consistent with the training set, but is, in general, much 
smaller than the RODG for the original function f .  

Although a full description of this algorithm is outside the scope of this paper, we will use 
Figure 5 to provide a simple illustration on how the procedure works. In that figure, terminal 
nodes marked with a cross are points in the input space that do not belong to the care set. 
The value of the function for these points can therefore be chosen as to minimize the size 
of the resulting RODG. The algorithm works as follows: starting at the bottom, each node 
is examined to check if its children can be merged. In this example, the algorithm verifies 
that it can merge, in a pairwise manner, the children of nodes 5, 6 and 7. In the second step, 
it verifies that the children of node 3 can also be merged. Since no more children can be 
merged, the algorithm stops and returns the last RODG shown as the result. 

It is clear that by deciding prematurely which nodes can be merged, the algorithm can 
make the wrong choices, as happens in this example. Variations on this method and a 
complete analysis of alternative methods to chose mergings are analyzed in depth by Shiple 
(1994). 

The restrict heuristic is remarkably fast and obtains, in some cases, RODGs that are much 
better solutions than the ones obtained by the much slower decision tree algorithms. How- 
ever, in problems that have many attributes and where the positive and negative instances 
can be separated by a small subset of the available attributes this heuristic tends to generate 
RODGs that depend only on a small subset of the attributes, namely the ones that come first 
in the ordering selected (Oliveira, 1994). 

4.2. Reducing an RODG 

After creating the initial RODG using one of the methods described above, a local opti- 
mization algorithm will be used to reduce its size. The search for an RODG of minimum 
total description length is performed in steps. Each step decreases the description length 
of the RODG, possibly at the expense of decreased accuracy in the training set. A step 
is accepted if the total description length after applying that step is less than the previous 
description length. 
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Figure 5. The restrict heuristic illustrated. At each step, the restrict heuristic examines if the two children of a 
given node can be merged without altering the value of the function for any point in the care set. 

At each step, one or more nodes are removed from the RODG. We associate with each 
node ni in the RODG a Boolean vector wi that is 1 in position j iffthe j th instance defines a 
path in the RODG that goes through node ni. The j th position of vector w~ is denoted by w~. 
Since all instances need to go through the root node, ns, w j = 1 for all j .  The remaining 
w~ vectors can be computed applying recursively the following Boolean expressions: 

j s. t .  ne j  = n  i j s.t .  'n t j  = ~ i  

The Boolean vectors wi define the set of instances that have to be taken into consideration 
if the function of node ni is to be changed. Changes to node n~ will only affect instances 
that have the corresponding bit set in vector wi. 

4.2.1. Removing One Node by Redirecting Incoming Edges 

The RemoveNode procedure reduces the description length by making one of the nodes in 
the RODG redundant. This is done by redirecting all its incoming edges. When node ni 
is under consideration, the algorithm goes through all incoming edges and selects, for each 
one of them, a different node nk that corresponds to a function as close to the target as 
possible (see Figure 6). 

The value of this function is only important for the instances that reach ni through the 
edge that is being redirected. The pseudo-code in Table 1 describes how this modification 
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Figure 6. Removing one node from the RODG. 

Table 1. Pseudo-code for the procedure that removes a node from the RODG. 

RemoveNnde(R) 

foreaeh ni  

foreach j s.t. nej  = 7~i 

w := w j V j  

Select nk such that I(Yk @ l)wl is minimal 

Modify RODG such that nej  = nk 

foreach j s.t. n t j  ----- ni 

"tt) := Wj Yj  

Select nk such that ](Yk @ l)w] is minimal 

Modify RODG such that nt j  = nk  

if Modified RODG has a smaller description length 

return Modified RODG 

else 

Undo changes 

return Failure 

For nodes that have the else edge pointing to n~ 

hlstances reaching ni through this edge 

Find a node with a fi4nction as similar 

as possible ]br the relevant instances 

For nodes that have the then edge pointing to ni 

Instances reaching ni through this edge 

Find a node with a function as similar 

as possible fi)r the relevant instances 

is accomplished. This algorithm takes as input one copy of the current RODG and tries, for 
each node, to redirect its incoming edges. If, for some node, the RODG that results from 
redirecting each one of these edges has a total description length smaller than the original 
one, the procedure returns the modified RODG. 6 

4.2.2. Replacing a Pair of Nodes by a New Node 

If the procedure RemoveNode fails to make one node redundant, the more expensive pro- 
cedure ReplacePair is called. ReplacePair removes a pair of nodes by creating a new node 
that implements a function as close as possible to the functions implemented by the pair of 
nodes under consideration (see Figure 7). The value of the new function is only relevant for 
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Figure 7. Replacing a pair of nodes by a new node. 

the instances that reach the nodes being considered for removal. The pseudo-code in Table 
2 describes how the new node is selected, by creating a new function that differs from the 
functions implemented by the nodes under consideration for as few instances in the training 
set as possible. 7 

Table 2. Pseudo-code for the procedure that replaces a pair of existing nodes by a newly created node. 

ReplacePair(R) 
foreach n~ 

foreach n j  For each pair of nodes 

w : :  wi + w j  w is 1 for all instances that reach nodes n~ or n j  

Create nk = W~f(na)  + v k f ( n b )  such that [(Yk • l)wl is minimal 
Modify RODG such that incoming edges into ni  and n j  point to nk 
if Modified RODG has smaller description length 

return Modified RODG 

else 
Undo changes 

return Failure 

4.3. Selecting the Best Ordering 

The selection of a good ordering for the variables is of  critical importance if the goal is to 
obtain a compact RODG. Regrettably, selecting the optimal ordering for a given function 
is NP-complete (Tani et al., 1993) and cannot be solved exactly in most cases. For this 
reason, and because it is a problem of high practical interest in logic synthesis, many 
heuristic algorithms have been proposed for this problem (Friedman & Supowit, 1990). 

In our setting, the problem is even more complex because we wish to select the ordering 
that minimizes the final RODG and this ordering may not be the same as the one that 
minimizes the RODG obtained after the initialization step. Our implementation uses the 
s i f t  algorithm (Rudell, 1993) for dynamic RODG ordering. It has been observed by a 
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number of different authors (Brace et al., 1989; Ishiura et al., 1991) that swapping the order 
of two adjacent variables in the RODG ordering can be done very efficiently because only 
the nodes in these two levels are affected. The s ~  algorithm selects the best position in the 
ordering for a given variable by moving that variable up and down (using the inexpensive 
swap operation) and recording the smaller size observed. This procedure is applied once 
to all variables and can be, optionally, iterated to convergence. This algorithm is extremely 
efficient since it was designed to be applied to very large RODGs. Therefore, it can be 
applied after each step in the RODG reduction algorithm. 

4.4. Implementation Considerations 

The complexity of these algorithms depends strongly on the approach used to evaluate the 
description-length reduction achieved by each operation. Because the effect of each change 
can be estimated locally, recomputing the overall description length of the RODG or the 
number of exceptions created by a local modification is not required. 

With careful coding, the RemoveNode procedure requires O(r2rn) operations, where, as 
before, r is the number of nodes in the current RODG and m is the size of the training set. 
The ReplacePair procedure is more expensive and requires O(r3m) operations. By using 
bit-packing techniques the algorithm can be used to reduce RODGs with hundreds or a few 
thousands of nodes. 

For very large problems the decision graph obtained from the initialization phase may be 
too large (Oliveira, 1994). In this case, the local optimization algorithm may take a long 
time to reduce this graph. For these problems, the algorithm can be run in a fast mode that 
initializes the graph with a decision tree that is not fully consistent with the training set 
data. This is obtained by stopping the growth of the decision tree when the entropy of the 
samples that reach a particular node is less than a given value. The larger this value, the 
smaller the decision tree obtained and the simpler the initial decision graph. However, if 
this threshold is set too high, the local optimization algorithm will not be able to improve 
the solution and the generalization accuracy obtained by the decision graph will not be any 
better than the one obtained by the decision tree that was used in the initialization. 

The algorithms described in Sections 4.1 through 4.3 are combined in a straightforward 
way as the pseudo-code in Table 3 shows. 

These algorithms were implemented in a system called smog (Selection of Minimal Or- 
dered Graphs) that uses the CMU RODG package (Brace et al., 1989) to perform the stan- 
dard RODG manipulations. 

5. Experiments 

To evaluate the effectiveness of the approach presented here, we tested the algorithm on a 
set of problems that have been addressed previously in the machine learning literature and 
that are either widely available or easily reproducible. We also present a brief summary of a 
comparison performed using another benchmark developed by an independent group for the 
purpose of comparing learning algorithms in problems that require complex descriptions. 
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Table 3. The main loop of the smog algorithm. 

MainLoopO 
S := InitRodg 0 
r e p e a t  

R : = S  

R := Reorder(R) 
S := RemoveNode(R) 
if S = Failure 

S := ReplacePair(R) 
until S = Failure 
return R 

Store the current RODG 

Select best ordering for current RODG 

RemoveNode operation failed 

5.1. Results on Problems From the Literature 

In this section, the comparison between different algorithms was made using three sets of 
problems with distinct origins: the set of 8 problems proposed by Pagallo and Haussler 
(1990), a set of 5 problems selected because they are known to accept small decision graph 
solutions but require comparably larger decision tree representations (Oliveira, 1994), and 
a set of 13 problems from the U.C. Irvine repository (Murphy & Aha, 1991). 

5.1.1. Experimental Setup 

For each of the problems selected, we compared the performance of C4.5, a popular deci- 
sion tree induction algorithm (Quinlan, 1993), with smog, the system that implements the 
algorithms described in Section 4. The comparison was performed using the commonly 
accepted lO-fold cross-validation methodology and the statistical significance of the results 
was evaluated using a one-tailed paired t-test (Casella & Berger, 1990). All problems with 
continuously valued attributes were discretized using the entropy-based method of Fayyad 
and Irani (1993). Recent results (Dougherty et al., 1995) have shown that the performance 
of induction algorithms and, in particular, of C4.5, does not degrade and may even improve 
if this discretization method is applied to problems with continuously valued attributes. 
Multi-valued attributes, either originally present in the problem or obtained after the dis- 
cretization step, were encoded using the binary encoding method described in Section 2. 

Table 4 lists the average generalization error for the C4.5 and smog algorithms on the set 
of problems selected. 

Typical learning curves for some of these problems are shown in figure 8. These curves 
were obtained by setting aside 20% of the data for the test set and generating increasing 
larger training sets. Each curve represents the average of 10 runs performed using this 
methodology. These curves show that the differences in accuracy observed suffer great 
variations from problem to problem. In some cases, an accurate hypothesis is discovered 
much more rapidly with decision graphs than with decision trees, leading to strongly distinct 
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Table 4. Average errors for C4.5 and smog. A circle in a given row 
marks the algorithm that obtained the lowest average error in the given 
problem. A filled circle means that the difference observed is statistically 
significant at a confidence level of 95%. The three groups of problems 
shown correspond to three different sets of concepts proposed in the 
machine learning literature (Pagallo & Haussler, 1990; Oliveira, 1994; 
Murphy & Aha, 1991). 

Problem Dataset size Average error 
smog C4.5 

dnfl 1000 o 18.10 4- 7.26 21.00 + 3.77 
dnf2 1000 • 2.70 4- 1.25 12.20 + 3.19 
dnf3 1000 • 1.90 4- 1.10 7.30 4- 3.83 
dnf4 1000 • 6.60 4- 2,27 31.10 4- 4.61 
mux6 200 o 0.00 4- 0.00 1.50 4- 4.74 
muxl 1 1000 • 0.00 4- 0.00 5.80 4- 5.09 
par4_16 1000 • 0.00 4- 0.00 18.30 4- 12.27 
par5_32 1000 • 0.00 4- 0.00 50,50 + 5.54 

kkp 2000 • 0.00 4- 0.00 2.00 4- 1.39 
heel 1000 • 0.00 4- 0.00 22.40 4- 5,70 
heel9 1000 • 0.00 4- 0.00 1.00 4- 1,05 
sml2 1000 • 0.00 4- 0.00 4.80 4- 1,69 
strl8 1000 • 0.30 4- 0.67 9.10 4- 2,73 

krkp 3196 o 0.31 4- 0.26 0.52 + 0.45 
monkl 432 0.00 4- 0.00 0.00 ± 0.00 
monk2 432 • 0.00 4- 0.00 32.83 ± 10.66 
monk3 432 0.00 4- 0.00 0.00 4- 0.00 
vote 435 5.29 4- 2.64 o 4.63 4- 3.05 
tictactoe 958 • 2.82 4- 1.97 7.07 ± 1.82 
breast 699 6.72 4- 2.44 o 5.85 4- 3.32 
credit 690 19.57 4- 5.08 • 14.03 4- 3.28 
ion 351 o 7.71 4- 4.48 8.57 4- 6.45 
diabetes 768 23.56 5= 3.67 o 22.93 4- 3.98 
german 1000 34.40 4- 5.25 • 28.70 4- 6.96 
glass 214 o 7.49 ± 7.10 8.88 + 6.77 
vehicles 846 o 12.88 4- 4.27 13.24 4- 4,45 
heart 270 o 23,33 4- 9.73 24.05 4- 7.24 

learning curves. On the other hand, in the majority of the problems where C4.5 performs 
better, qualitatively similar learning curves are observed with a roughly constant difference 
favoring the decision tree algorithm. 

5.2. Results on the Wright Laboratory Benchmark Set 

The results obtained in this Sections's set of problems were obtained by the Pattern The- 
ory Group at the Air Force Wright Laboratory. This group tested smog in a benchmark 
assembled for the purpose of evaluating the effectiveness of a set of  learning algorithms 
(Goldman, 1994). The reader is referred to this reference for a complete description of 
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Figure 8. Learning curves for the problems krkp, muxl l, ion and breast. 

the methodology adopted and the set of problems addressed. Each one of the problems 
is defined by a noise-free concept defined over a space of eight Boolean attributes. The 
majority of the problems represent relatively complex concepts defined over this space. For 
each of the problems, 10 independent runs with training sets of size 125 were performed 
and the results were tested in the full dataset for each problem. 

The plots in Figure 9 show the compared performance of these two algorithms in graphical 
form, together with the performance of two alternative approaches for induction: 

• Nearest neighbor: an instance is classified as belonging to the same class as the nearest 
neighbor found in the training set. 

Minimal consistent DNF: the minimum DNF expression consistent with the training set 
data is found using a two-level logic minimizer (Brayton et al., 1984), espresso. This 
expression is then used to classify unseen instances. 

For these problems, the generalization accuracy was tested on a set of instances that also 
includes the instances used for training. This evaluation methodology puts algorithms like 
smog and C4.5 at a disadvantage because, unlike nearest neighbor or minimal consistent 
DNF, they are not guaranteed to perform perfectly in the training set data. 
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5.3. Analysis 

The results presented in the two previous sections show that, for problems in the first two 
groups shown, the algorithm developed for the induction of decision graphs outperforms 
a commonly used algorithm for the induction of decision trees. For problems in the third 
group (those taken from the UCI repository), there is no clear advantage from either the 
decision tree or the decision graph algorithms. 

The decision graph approach tends to outperform decision tree algorithms for problems 
that either exhibit regularities (and therefore require subtree replication) or are highly dis- 
junctive, i.e., are represented by the union of many separate regions of the inputs space. This 
behavior was observed for all problems that are related with game domains (tictactoe, krkp, 
kkp) and for the majority of problems that are defined by compact Boolean expressions. 

The decision graph algorithms presented are also very effective for problems where the 
selection of the appropriate ordering is important and this ordering can not be easily obtained 
using the greedy approach commonly adopted by decision tree algorithms. For instance, 
the muxl 1 problem s accepts a minimum representation that is, in fact, a tree, but the right 
ordering is hard to find. In this case, the gain is caused not so much by the use of decision 
graphs as the underlying representation but by the application of reordering algorithms that 
are effective in selecting the right ordering. Figure 10 depicts the decision graph obtained 
from a decision tree after the initialization phase and the final decision graph for one run 
of the algorithm on the muxl 1 problem. This comparison shows the effectiveness of the 
algorithms for graph reduction, and of the reordering algorithm in this particular case. 
The reduction of the description size observed in this problem is typical of the reduction 
observed in the majority of the cases where smog outperforms C4.5 (Oliveira, 1994). 

For problems that are defined by sets of continuous attributes, little or no gain was 
obtained by the use of the decision graphs. This may be due to the fact that these problems 
are inherently less disjunctive, thereby making little use of the ability of decision graphs to 
find repeated patterns in the input space or may be due to other limitations of the algorithms. 

For the set of problems in the Wright Laboratories benchmark, which require, in the av- 
erage, more complex descriptions, the decision graph algorithms performed systematically 
better than the alternatives tested. It is known that many of these concepts are highly dis- 
junctive and require very complex decision surfaces. Smog and C4.5 did better than the two 
other alternatives, despite the fact that the evaluation methodology was biased against these 
two algorithms. Smog exhibited a highly desired robustness for very disjunctive concepts 
that tend to disrupt the other algorithms. 

In problems that require exponentially large decision trees, the improvements in perfor- 
mance obtained by the use of decision graphs can be radical. However, as the dimension 
of the problems grows, the high time complexity of the decision graph algorithms makes 
them less useful. Given the above results, these algorithms seem specially well adapted for 
the induction of concepts that require relatively involved descriptions and are defined over 
discrete spaces with a limited number of dimensions. 
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Figure 10. Decision graph obtained after initialization from a decision tree and final decision graph after redundant 
node removal and reordering was performed. 

6. Conclusions and Future Work 

We presented an algorithm (smog) for the induction of reduced ordered decision graphs 
from data and evaluated the effectiveness of this approach against alternative approaches. 
The approach described uses RODGs to represent both intermediate functions and the final 
hypothesis. 

The experimental results have shown that for an interesting class of  problems the bias 
for small RODGs is appropriate and the generalization accuracy observed is better than the 
one obtained with alternative techniques. Problems that involve highly disjunctive concepts 
(i.e., concepts represented by many disconnected regions in the input space) stand to benefit 
most from this approach. For concepts defined by at least partially smooth surfaces over 
continuous spaces, the approach presented here exhibited little or no gain when compared 
to standard decision tree algorithms. 

The algorithms described in this paper are considerably slower than standard decision 
tree algorithms. This slowdown may be acceptable in many applications, but intolerable 
in others. Ultimately, the user has to decide if the increased generalization accuracy is 
important enough to offset the extra CPU time. We believe this will be the case in many 
practical applications. 
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The algorithms manipulate the representation internally using binary RODGs. This makes 
it necessary to map multi-valued attributes to Boolean valued ones before induction is 
performed. It is unclear, at this point, how important is the ability to use multi-valued 
RODGs directly, but this topic deserves further investigation. Multi-category tasks can, 
in principle, be handled within the current framework. All the algorithms described in 
this paper can be extended to the case where more than two types of terminal nodes exist. 
Furthermore, this functionality can be obtained with the currently used RODG package, 
requiring only relatively minor changes in the algorithms. 

Finally, although the algorithm based on incremental modifications outlined in Section 4 
is reasonably fast and efficient, it is possible that alternative solutions to this problem can 
yield even better results. In many cases, the local optimization algorithm did not obtain 
solutions close to the known optimal solutions and other approaches that are not based on 
greedy local changes may yield better results. The study of these approaches is left as future 
work. 

In the present version, smog can be used as a direct replacement for popular decision tree 
algorithms like c4 .5 ,  with continuously-valued attributes being discretized internally by 
the system before the decision graph algorithms are applied, smog was implemented in 
C++ and runs in a wide variety of platforms. A copy of the program can be obtained by 
contacting one of the authors. 
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Appendix A 

Algorithms for RODG Manipulation 

This appendix gives a brief overview of the algorithms that were developed for RODG 
manipulation and follows closely in form and content the work of Brace (1989). For 
a much more complete description of the algorithms used, the interested reader should 
consult this reference. This exposition is uniquely concerned with RODGs defined over 
Boolean spaces. 

Each non-terminal node n~ in the RODG represents a Boolean function denoted by 
f ( n i )  = vi f (nt~)  + ~ f ( n e , )  ==- (vi, f(nt~), f(ne~)),  where vi is the variable tested at 
node hi, and nt, and n~, are the nodes pointed to by the then and else edges of node ni, 
respectively. 
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The fundamental operation implemented by the RODG package is the Ite operator, defined 
as:  

Ire(f, g, h) = fg + 7h (A.l) 

It is a simple exercise to verify that all the basic Boolean operations of two variables 
can be defined using the lte operator with appropriate arguments. For example, f = ab is 
equivalent to f = Ire(a, b, 0) and f = a ® b is equivalent to f = Ire(a, b, b). 

Shannon's decomposition theorem (Shannon, 1938) states that 

f = v f ,  + ~f~ (A.2) 

where v is a variable and fv and fv  represent f evaluated at v = 1 and v = 0, respectively. 
Let w be a variable and f (n i )  = (vi, f (nt i ) ,  f(ne~)) and assume that either w comes 

before vi in the ordering or that v/ = w. Finding the cofactors of f with respect to w is 
trivial because, in the first case, f is independent of w: 

{ f if v~ ¢ w f_~ = { f if v~ ¢ w (A.3) 
fw = f(nt~) i f v i = w  f(ne~) i f v i = w  

The following recursive definition gives a simple algorithm for the computation of the 
function z = Ire(f ,  g, h). Let v be the top variable of f ,  9 and h. Then, 

z = VZv + ~z~ 
= v ( fg  + -fh_), + ~( fg  + -fh)~ 
= v ( f . 9 .  + f . hv )  + V(fvgv. + -fvhv) (A.4) 
= Ite(v, Ite(f~, 9~,, h~), Ite(f~-, g-+-, hT)) 
= (v, I te(fv,  g~, hv), Ite(f~-, g-c, h~-)) 

The terminal cases for this recursion are: 

Ire(l ,  f ,  9) = Ite(0, g, f )  = I te(f ,  1, 0) = f (A.5) 

This procedure would have exponential complexity even for functions with small RODGs 
if the recursion is used all the way down to the terminal cases in every call of the Ite 
function. This exponential complexity is avoided by keeping a table of existing functions. 
Each element in the table is a triple (v, 9, h) and each node in the RODG corresponds to an 
entry in this table. Before applying the recursive definition (A.4), the algorithm checks if 
the desired function already exists. 

Example: Figure A. 1 shows an example of the application of the recursive definition in the 
computation of the function z = I te(f ,  9, h), where the functions f ,  g, and h are shown in 
the left side of the figure. 

For clarity, several copies of the terminal nodes are shown. The reader should keep in mind 
that only one copy of each function is kept at any time. This is true for the terminal nodes and 
also for the nodes that implement the functions c and d, but depicting only one copy of these 
nodes would make the diagram too complex to be useful. In this example, the nodes that 
correspond to the functions c and d already exist and do not need to be created from scratch. 

[] 
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X 
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X 
2 

X 
3 

X 
4 

f g 

/ 

Z 

C 

= I t e ( f ,  g, h) 
= (Xl,  I t e ( f ~  a , gxa, h~l ), I t e ( f ~7 ,  g~i;, h~-i'~ )) 
= (xl ,  Ire(l ,  c, h), Ite(b, 0, h)) 
= (xl ,  c, (x2, Ite(bx~, 0 ~ ,  h ~ ) ,  Ite( ~b~-~, 0~z2, h~-7))) 
= (Xl, c, (x2, Ite(1, 0, 1), Ite(0, 0, d))) 
= (z l ,  c, (x2,0,  d)) 

(A.6) 

Figure A.1. Computation of I te(f ,  g, h) 

Notes 

1. The reader should not be surprised that a complex problem such as function-equivalence check can be solved 
in constant time once the RODGs for the functions are known. The process of building the RODGs involved 
may require, in itself, exponential time. 

2. Strictly speaking, this result is only valid in spaces with an infinite number of concepts, because it is based on the 
dominance of the Solomonoff-Levin distribution over all semi-computable distributions. In this formalism, 
each concept can be defined by a string of symbols. The description length of a string (its Kolmogorov 
complexity) can be defined as the size of the smallest input to a three-tape Turing machine that causes it to 
write that string in the output tape. This result does not, therefore, contradict Schaffer (1994) or any other 
work that addresses the equivalence of all biases in spaces with a finite number of concepts. In practice, 
the description length as described above is not computable and one has to resort to less powerful languages 
to describe the concept. The underlying assumption is that, in many cases, the encoding scheme chosen is 
reasonably efficient and the computed complexity is a good approximation to the real value of the Kolmogorov 
complexity. 

3. As pointed out by Quinlan and Rivest, the minimization of different linear combinations of dg and dd is also 
consistent with a Bayesian interpretation of the MDLP and may be chosen according to different beliefs about 
the concepts distribution. The algorithm can be set to minimize any linear combination of d 9 and dd, if that 
improves the performance in a particular set of problems. This choice of a different linear combination can 
be viewed as a way to compensate for inefficiencies in the encoding schemes chosen. 

4. The first condition is only necessary to ensure the algorithm will terminate in a reasonable time. In most 
problems, a decision tree with a single node will always be obtained. 



DECISION GRAPHS OF MINIMAL DESCRIPTION LENGTH 49 

5. If there exists conflicting information in the training set, i.e., instances with the same values of the attributes 
but conflicting labels, these points are also considered as belonging to the don 't-care set. 

6. In the simplified description of Table 1, the procedure returns the first change that creates a decrease in the size 
of the RODG. As an alternative, the algorithm has the possibility of looking for the locally best incremental 
change. Very little difference in behavior was observed in the two modes and the mode described in table 1 is 
usually slightly faster. 

7. Again, the procedure can be used in a slightly different form and return the best local change instead of the 
first one found. In this case, there is a significant performance penalty ifa complete evaluation of the changes 
is performed instead of returning the first one with positive gain. 

8. In this problem, the first 3 variables (the control variables) select which one of the following 8 (the data 
variables) defines the value of the output. Most algorithms for the generation of decision trees will test first 
the data variables, as they typically contain more information than the control variables. This results in a final 
decision tree that is much larger than the optimum solution. 
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