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A b s t r a c t .  The basic question addressed in this paper is: how can a learning algorithm 
cope with incorrect training examples? Specifically, how can algorithms that  produce 
an "approximately correct" identification with "high probabili ty" for reliable da ta  be 
adapted to handle noisy data? We show that  when the teacher may make independent 
random errors in classifying the example data,  the strategy of selecting the most con- 
sistent rule for the sample is sufficient, and usually requires a feasibly small number of 
examples, provided noise affects less than half the examples on average. In this setting 
we are able to est imate the rate of noise using only the knowledge that  the rate is less 
than one half. The basic ideas extend to other types of random noise as well. We also 
show that  the search problem associated with this strategy is intractable in general. 
However, for part icular  classes of rules the target  rule may be efficiently identified if we 
use techniques specific to that  class. For an important  class of formulas - the k-CNF 
formulas studied by Valiant - we present a polynomial-t ime algorithm that identifies 
concepts in this form when the rate of classification errors is less than one half. 

1. I n t r o d u c t i o n  

The ability to form general concepts on the basis of particular examples is 
an essential ingredient of intelligent behavior. If the examples may contain 
errors, the task of useful generalization becomes harder. In this paper 
we address the question of how to compensate for randomly introduced 
errors, or "noise", in the example data. The examples are assumed to be 
generated by a sampling procedure that first produces a correctly classified 
example; subsequently the example is subjected to a noise process before 
being presented to the learning algorithm. The noise affects each example 
independently. Our criterion for correct identification is that of "probably 
approximately correct identification," introduced by Valiant (1984). 



344 D. ANGLUIN AND P. LAIRD 

The main contributions of this paper are the introduction of a simple 
model of noise (the Classification Noise Process), a general upper bound 
on the size of a sample sufficient for learning in finite domains in the pres- 
ence of classification noise, and evidence that computationally feasible algo- 
rithms exist for learning in the presence of classification noise in non-trivial 
domains. In addition, we indicate how some of the ideas may be used in 
more general settings. In the remainder of this section we define the notion 
of "probably approximately correct identification," give an example of this 
process, and introduce our model of random noise in the data. 

1.1 Probably approximately correct identification 

Valiant (1984) has proposed a general criterion of correct identification 
of a concept from examples in a stochastic setting. The idea is that after 
randomly sampling examples and non-examples of a concept, an identifi- 
cation procedure should conjecture a concept that with "high probability" 
is "not too different" from the correct concept. 

For example, suppose a customs official requires the ability to recognize 
smugglers on sight. Her/his goal is to formulate a yes-or-no decision rule 
based on visual attributes (sex, hairstyle, nervousness, etc.), assuming that 
the attributes are sufficient to discriminate smugglers from non-smugglers 
exactly. Initially the new official goes through a learning phase in which 
each traveler's luggage and person is checked thoroughly, and a determina- 
tion is made as to whether the person is a smuggler or not. After a certain 
number of examples, the official formulates a classification rule. 

We do not expect the rule to be perfect (e.g., it might not apply to 
customs traffic elsewhere in the country), but it should be nearly correct 
for the typical distribution of travelers at this site. There is also some 
chance that, because of an unusual event (e.g., a sudden temporary drop 
in the local value of smuggled goods), the distribution of smugglers during 
the training phase is abnormal, and as a result the decision rule performs 
poorly under nornml conditions. However, the likelihood of this is small. 
Important issues about this procedure include the number of training ex- 
amples (detailed inspections) the official must conduct in order to refine 
the decision rule to within a specified accuracy and the computational 
complexity of the learning procedure for a given class of possible rules. 

The ideas illustrated by this example are made precise by the following 
definitions. Let L1, L2, . . .  be a countable family of subsets of a countable 
universe U, and let D be an unknown probability distribution on the el- 
ements of U. The task is to identify an unknown one of these sets, L,, 
given access only to a sampling oracle EX(). Each call to EX( ) randomly 
selects an element x from the universe U according to the distribution D 
and returns (x, +} if x E L,, and returns (x, - )  otherwise. 
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Let us relate this to our smuggling example. U is the class of all pos- 
sible travelers, as described by the attributes we have chosen to observe. 
The class of smugglers constitutes a subset of these people. In this case, 
the sampling oracle is realized by the arrival of travelers at the customs 
inspection site, with positive examples being those who are smugglers, and 
negative ones being those who are not. The identification procedure makes 
a number of calls to EX( ) and then conjectures one of the sets, Lh. The 
success of the identification is measured by two parameters,  e and 5, which 
are given as inputs to the identification procedure. 

The parameter  ¢ (the tolerance) is a bound on the "difference" between 
the conjectured set Lh and the unknown set L,.  Define 

d(S,T)= ~ PrD(x), 
xESAT 

where S and T are any subsets of U, S A T is the symmetric difference 1 
of S and T, and PrD denotes probability with respect to the distribution 
D. Thus, d(S, T) is precisely the probability that  in one call to EX( ) we 
will draw all element that  is in one but  not the other of the two sets. 

The parameter  5 is a confidence parameter.  Because the calls to EX( ) 
are random experiments, there is always the possibility of getting a wildly 
unrepresentative sample and drawing a ridiculous conclusion. The param- 
eter 5 is a bound on the likelihood of such all event. 

In terms of our example, it may be acceptable for the customs official 
to identify smugglers at least 80% of the time; in this case the tolerance 
is ~ = 0.2. Since training time is expensive (and quite irksome to the 
travelers), the officials want to be 98% sure that  a single training period 
will result in an adequate rule; given this goal, they should choose 5 to be 
0.02. 

The identification procedure is said to do probably approximately correct 
identification of L, if and only if 

Pr[d(L,,Lh) >_ ~] <_ 5, 

where the probability is taken over all possible runs of the procedure. We 
abbreviate "probably approximately correct identification" as pac-identifi- 
cation. Less formally, the requirement is that  the difference between the 
correct rule L,  and the conjectured rule Lh be small (less than ~) with high 
probability (greater than 1 - 5). 

IS £~ T = (S - T) U (T - S), the set of elements in S or in T but not both. 
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1.2 An example:  Fin i te  classes 

Let £ = {L1 , . . . ,  LN} be any finite set of N rules. A simple algorithm 2 
that  pac-identifies ~ requests m = (1/~)ln(N/~i) examples and then out- 
puts any rule that  agrees with all these examples. Since some rule L, in 
is correct, it is always possible to find such a rule. We can show that any 
rule agreeing with m or more randomly chosen examples has error greater 
than ( only with probability less than (~. 

Consider a rule L with error d(L, L,) >_ ~. This means the likelihood 
that  a random example agrees with L is less than (1 - e); hence for m such 
examples, the likelihood that  L agrees with all of them is less than ( 1 -  c) m. 
We can bound (1 - ~)m by e -~m. Substituting the value of m above, this 
in turn is bounded by ~5/N. Finally, there are at most N -  1 such rules 
with unacceptably large error; summing the probabilities that  any one of 
them agrees with all m examples, we have a probability less than 5. The 
requirements for pat-identification are therefore satisfied. 

Consider now what happens to this procedure when some of the examples 
may be incorrect: there may no longer be any rule in the class £ that  is 
consistent with all the examples. In the worst case this could happen even 
if a single example is erroneous. Thus this algorithm is unsuitable even for 
very low rates of noise in the training data. 

1.3 Related  research 

Many of the algorithms in the literature suffer similarly from a critical 
dependency on complete correctness in the training data, but there are 
noteworthy exceptions. 

A variety of heuristic techniques have been devised to handle particu- 
lar types of rules under special noise conditions. Recent examples include 
Schlimmer and Granger (1986) and Wilkins and Buchanan (1986). Also, 
Quinlan (1986) performed an experimental study of the effects of noise on 
learning classification rules. By independently varying the rates of noise af- 
fecting each at tr ibute and also by allowing rm~dom misclassification (errors 
in the sign), he was able to quantify the impact of the noise with respect 
to the importance of the attr ibute in the target rule. Generally speaking, 
classification errors were found to be more significant than attr ibute noise. 

For probabilistic identification, fewer results are available. Vapnik (1982), 
studying the statistical problem of choosing a rule that  best accounts for 
empirical data, defines a model incorporating random variations in the 
classification of examples, and presents a statistical algorithm for finding 

2Blumer, Ehrenfeucht, Haussler, and Warmuth (1986) present a more general version 
of this algorithm. 
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the most successful classification rule for an unknown population of data. 
Vapnik was not concerned with identifying the rule being presented, but 
despite the different nature of his objectives and his model of noise, his 
approach is similar to the one we describe below. 

Valiant (1984) gives an algorithm for pac-identifying an important  sub- 
class of Boolean formulas, and elsewhere (Valiant, 1985) he modifies the 
algorithm to handle a certain amount of error in the examples. If n and 
k are positive integers, CNF(n, k) denotes the class of all propositional 
formulas in conjunctive normal form over the variables zl,  z 2 , . . . ,  z~ with 
at most k literals per clause. For example, (z~ V z2) A (~ :c3 V z4 V zs) is 
in CNF(5, 3) but not CNF(5, 2). 

For fixed n, the universe U is the set of all t ru th  assignments a mapping 
each variable zl,  z2 , . . . ,  zn to the set {0, 1}. A formula 6 in CNF(n, k) is 
interpreted as representing the set of all assignments a from U that  satisfy 
6, i.e., such that  a(6) = 1. A sampling oracle EX( ) returns assignments 
(represented as vectors of length n of 0's and l's) marked either + or - 
according to whether they satisfy the unknown formula 6,. 

Valiant (1984) gives an identification procedure V that  takes n, k, e, and 
5 as input. V has access to a sampling oracle EX + ( ) for positive examples 
of an unknown formula 6, ,  runs in time polynolniaI in n k, I/c,  and log 1/& 
and does pac-identification of 6,,  for any 6, from CNF(n, k). 

The procedure V calculates from n, k, c, and 5 a number, m, of samples 
to draw, makes m calls to EX+(), and then outputs  the conjunction of 
all clauses over zl ,z2, . . .  ,zn with at most k literals per clause that  are 
satisfied by every positive example, i.e., by every assignment a such that  
some call to EX+( ) returned the value (a, +}. 

Valiant (1985) considers how this algorithm (and its dual for DNF(n, k) 
with EX-( ) )  can be extended to handle a small rate of errors in the exam- 
ples - errors possibly chosen in the most damaging way by an adversary. 
For each example, a biased coin is flipped, and if it comes up heads (with 
probability 1 - r / )  , an example a is drawn and correctly classified as before. 
However, if it comes up tails (with probability r/), an adversary is allowed 
to choose the example and classify it (perhaps incorrectly). This is called 
the malicious error model, since the algorithm must be guaranteed to work 
correctly for the worst possible set of choices by the adversary. 

Valiant's result shows that for a very low rate of error r/ << e, his al- 
gorithm can be modified to achieve pac-identification. He suggests that  
only low error rates in general can be permit ted if successful identification 
is to be possible. Kearns and Li (1987) show that this is the case for the 
malicious error model. In particular, for a very wide class of hypothesis 
spaces, if the rate of errors, rj, is greater than or equal to the desired accu- 
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racy, ~, then no learning algorithm can be successful at pac-identification. 
Their results show even more stringent bounds on the error rate in the 
case where only positive or only negative examples are used by the learn- 
ing algorithm. Our results show that a much larger rate of errors can be 
overcome for other, more predictable, models of errors in the data. 

2. Learning despite classification noise 

In this section we first define a simple model of random noise, and then 
consider how to modify the algorithm of Section 1.2 to accommodate errors 
of this type. We then consider in general the computational complexity of 
the solution. In the next section we show that the class CNF(n, k) can be 
pac-identified efficiently despite classification noise. 

2.1 A simple noise model 

We introduce a model of random errors, or "noise," in the sampling or- 
acle EX() ,  called the Classification Noise Process. We assume that the 
sampling oracle is able to draw elements from the relevant distribution D 
without error, but that the process of determining and reporting whether 
the example is positive or negative is subject to independent random mis- 
takes with some unknown probability r / <  1/2. Thus the experiment per- 
formed by EX( ) involves drawing a random element x from U according 
to the distribution D, and then flipping a coin that comes up heads with 
probability 1 - ~. If the coin comes up heads, one reports x with the cor- 
rect sign, otherwise, one reports x with the reverse of the correct sign. To 
indicate that the oracle is subject to errors of this type, we will denote it 
by EXv(). EXo( ) is the sampling oracle with no errors of reporting. 

We can interpret the Classification Noise Process using the example of 
the customs official learning to recognize smugglers. Every so often, a 
smuggler's stash is overlooked, or an ordinary traveler is mistakety nabbed 
because someone has hidden contraband in his or her luggage. With some 
probability r/, such a false identification occurs independently for each trav- 
eler. 

Why do we restrict ~ to be less than 1/2? Clearly, when ~ = 1/2, 
the errors in the reporting process destroy all possible information about 
membership in the unknown set L,, and no identification procedure could 
be expected to work. When ~ > 1/2, there is information about L,, but it 
is equally information about the complement of L, with the smaller error 
1 - ~. While in principle we might be able to recognize this situation in 
domains that are not closed under complement with respect to U, we have 
chosen not to pursue this possibility. 
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If r/ is very close to 1/2, how could an identification procedure be ex- 
pected to work? For purposes of exposition, we assume that  there is some 
information about r/ available as input to the identification procedure, 
namely an upper bound r/b such that  r/ _< ?]b < 1/2. (Later, we show 
that  this assumption is unnecessary.) Just as an "efficient" identification 
procedure is permit ted in the absence of noise to run in time polynomial in 
1/e and 1/5, in the presence of noise we will permit  the polynomial to have 
1/(1 -2r/b ) as one of its arguments. This quantity is inversely proportional 
to how close ~b is to 1/2, so the closer the upper bound on the error rate 
is to 1/2, the longer the identification procedure will be permit ted to run. 

How general is this model of noise? It seems appropriate to a setting in 
which there is an observable, reliable mechanism selecting examples, and a 
separate, noisy one classifying them. However, there are many situations 
for which this is not a reasonable assumption. For example, if correct 
examples are being transmit ted over a noisy line (say, with independent 
noise in each bit), then not only is the sign of the example subject to errors, 
but a given example x may be changed into another one x t. In this case, 
the examples x ~ reported by the sampling oracle may come from a different 
distribution D'. Even if our results were applicable in this situation, the 
"difference" of the hypothesis from the correct set would be measured with 
respect to the observed distribution D I instead of the true distribution D, 
which is not necessarily what is wanted. 

Note the difference between the classification noise model and that  treated 
by Valiant (1985). In the earlier study, the errors could be maliciously 
rather than randomly chosen. Valiant's results for CNF(n, k) hold only for 
a small rate of noise, and indeed we shall see that  this model can tolerate 
only a small rate of noise for any domain. However, the basic ideas behind 
the analysis of classification noise are applicable to other types of noise, 
and they can be used to derive estimates of the amount of tolerable noise 
and the number of examples required. 

2.2 How many noisy examples are enough? 

Forgetting for a moment  the question of computational feasibility, how 
can we be sure that  there is enough information in a certain number of 
samples drawn from a noisy oracle to determine the unknown set L.  to 
within e error with probability at least 1 - 5? We consider the simple case 
of a finite set of hypotheses, say, L~, L2,..., L.N. For the noise-free case, 
the result described in Section 1.2 can be summarized as follows. 
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T h e o r e m  1 (Blumer et al., 1986) If Li is any hypothesis that  agrees with 
at least 

samples drawn from the EXo( ) oracle, then 

Pr[d(Li, L,) >_ c] < 6. 

This result is simple but  significant. It says that  there is enough infor- 
mation in a feasibly small number of examples to pac-identify any finite 
domain. In this approach, the examples serve as a probabilistic filter to 
screen out unacceptably bad hypotheses. 

Note that  because of the dependence of the sample size on log N, large 
increases in the number of rules in the class £ cause only much smaller 
growth in the size of the sample required. For the same reason we can 
significantly decrease the confidence limit ~ with only a small increase in 
the sample size. To use this approach in a practical setting, we need to 
consider the computational complexity of searching for a hypothesis that 
is consistent with the samples drawn. For some domains this is known to 
be a hard problem (Blumer et al., 1986). 

In the presence of noise this approach may fail because there is no guar- 
antee that  any of the hypotheses will be consistent with all the examples. 
However, if we replace the goal of consistency with that  of minimizing the 
number of disagreements with the examples, and permit the number of 
samples to depend on the upper bound rib on the error rate, we get an 
analogous result, given by Theorem 2 below, s 

This theorem is most usefully interpreted as a simple, general result giv- 
ing an upper bound on the size of a sample sufficient for pac-identification in 
finite domains in the presence of classification noise. Minimizing the num- 
ber of disagreements with the examples can be a computationally difficult 
problem (see Theorem 4 for evidence of this), so this approach generally 
does not yield an efficient algorithm. More sophisticated approaches are 
possible in specific domains, as we show ill Section 3. 

Let a = {xl, sl), (x2, s2),. •. ,  {xm, sin) denote a sequence of samples drawn 
from an EX~( ) oracle, where each xi is in the universe U and each si is 
either + or - .  If Li is any possible hypothesis, let F(Li,~r) denote the 
number of indices j for which Li disagrees with {xj, 8j}, that  is, sj = + 
and xj is not in L~ or 8j = - and xj is in Li. 

SShackelford and Volper (1987) discovered this theorem independently. 



LEARNING FROM NOISY EXAMPLES 351 

T h e o r e m  2 If we draw a sequence a of 

m _> ~2(1 _ 2rib)2 In (1) 

samples from an EX n ( ) oracle and find any hypothesis Li that  minimizes 
F(Li, a), then 

Pr  [d(Li, L, ) k el <_ 5. 

PROOF: We analyze the expected rate of disagreement between any hy- 
pothesis Li and sample sequences produced by the oracle EXv( ) with 
unknown set L, .  Let 

di = d( Li, L, ). 

The probability that  an example produced by EX~( ) disagrees with Li 
is the probability that  an example is drawn from Li A L, and reported 
correctly (which is just di(1 - r l ) )  plus the probability that  an example is 
drawn from the complement of Li A L, and reported incorrectly (which is 
just (1 -di)r t . )  Let Pi denote the probability that  an example from EX~( ) 
disagrees with Li; then we have 

Pi = di(1 - rl) + (1 - di)~. 

In the case that  the hypothesis Li is equal to L,,  we have Pi = r/, since dis- 
agreements will only arise as the result of reporting errors. The expression 
for Pi may be rewritten as 

= v + d (1 - 2 7 ) .  

Since ~? < i /2 ,  this shows that  any hypothesis Li has an expected rate of 
disagreement of at least ~?. In particular, if we define a hypothesis Li to be 
e-bad if and only if di >__ ¢, then for any e-bad hypothesis Li we have 

Pi -> r /+  e(1 - 2r]). 

Thus we have a separation of at least e(1 - 2rl) between the disagreement 
rates of correct and e-bad hypotheses. By our assumptions, r~ is not known, 
but  an upper bound fib < 1/2 is known, so we have a known lower bound 
on the separation, e(1 -2rib).  

The problem is reduced to guaranteeing that  the number m of samples 
drawn from EXn( ) is sufficient to guarantee that  no e-bad hypothesis 
has a lower observed rate of disagreement with the samples than L,,  with 
probability greater than 1 - 5. 

At this point we must introduce some notation. Let p be a number be- 
tween 0 and 1, and suppose that  we have a coin Cp whose probability of 
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coming up heads on each toss is p. Let r be a number between 0 and 1, 
and let m be a non-negative integer. Then GE(p, m, r) will denote the 
probability of getting at least rm heads in a sequence of m independent 
flips of the coin Cp. (Formally, this is the probability of getting at least 
rm successes in m independent Bernoulli trials with probability p.) Anal- 
ogously LE(p, m, r) will denote the probability of at most rm successes 
in m independent Bernoulli trials with probability p. We present lemmas 
bounding these quantities in the Appendix. 

Let s = e(1 - 2rib), and let a denote a sequence of m examples drawn 
from the noisy sampling oracle EX~(). In order for some e-bad hypothesis 
Li to minimize F(Li, a), either 

> 'l + s/2 

or  

for some e-bad hypothesis Li, or both. 
pendix, 

F(Li, (7)/m <_ r I + 8/2 

Applying Lemma 10 in the Ap- 

Pr[F(L,,a)/m > ~7 + s/2] = GE( , m, + s /2)  

< 5/2N 
< 5/2, 

and if Li is e-bad then 

Pr[r(Li ,a)/m < ~ + s/2] < LE(~ + s,m,r I+ s/2) 
<_ 6/2N. 

Thus the probability that  any e-bad hypothesis Li has F(Li, a)/m < ~?+s/2 
is at most 5/2, since there are at most N - 1 e-bad hypotheses. Put t ing  
these two inequalities together, the probability that  some e-bad hypothesis 
minimizes F(Li, a) is at most 6. • 

Note that  the bound m on the number of examples is polynomial in log N, 
1/~, log(i /6) ,  and 1/(1 -2r/b). Thus the noise has increased the number of 
examples we must obtain, but not to an infeasible number. Laird (1987) 
has calculated a better upper bound than that  in Equation (1), as well as 
a lower bound; in particular, m depends only on e -1, and not on ~-2. 

Theorems 1 and 2 both depend on the fact that  the set £ of rules is 
finite, but suppose £ is a countable or even continuous class? We will 
not discuss this case in detail, but  Blumer et al. (1986) have shown that  
whether or not an infinite class can be identified by means of a finite set of 
reliable examples depends on a property of the class known as the Vapnik- 
Chervonenki~ dimension. Only classes with finite dimension d can be so 
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identified. Using their result, together with the ideas of Theorem 2, one 
can also show (Laird, 1987) that  classes with finite d are precisely those 
which can be so identified when the examples are afflicted by classification 
noise. The finite situation above is a special case, with d _< log N. 

Vapnik (1982), whose work we have already mentioned, suggests a sim- 
ilar statistical approach when the examples are independently subjected 
to random classifications that  may depend on the specific example. That  
is, instead of a uniform error rate r/ for all examples x drawn from D, 
the probability ~(x) of a classification error may depend upon the partic- 
ular example z. Let L0 be the hypothesis with the smallest expected rate 
of disagreement with the oracle EXv( ); Vapnik shows that  the sampling 
technique of Theorem 2 can be used to find (with probability greater than 
1 - 5) a hypothesis L such that  d(L, Lo) <_ c. 

With this procedure, the intent is to discover the best classification rule 
for describing the sample data from a noisy source EXv. By contrast, the 
intent of the above identification procedure is to discover L,,  the classi- 
fication rule underlying the data. These need not be the same; indeed, 
the rule L obtained with Vapnik's procedure may not satisfy the condition 
d(L, L,) <_ c, even when the mean rate of classification errors over the ex- 
amples is less than one half. For example, let U = {a, b} and L, = {a, b}, 
with examples distributed as follows: PrD[a] = 0.1,PrD[b] = 0.9, and 
r](a) = 0.6, r](b) = 0.48. Here the probability that  L,  disagrees with a ran- 
dom example is PrD[a]q(a) + Pro[bJrl(b) = 0.492, whereas the hypothesis 
L0 = {b} disagrees at a rate of PrD[a](1 -- r/(a)) +PrD[blrl(b ) = 0.472. Note 
that  L0 fails on average less often than the correct set L, ,  even though the 
mean rate of noise is 0.492 (less than half). So for this noise model, the 
procedure may propose an c-bad rule with unacceptably high probability. 

2.3 D e t e r m i n i n g  rib 

So far we have assumed that  the identification procedure is told an upper 
bound rib < 1/2 on the noise rate r/. We now show that this assumption is 
unnecessary. 

Continuing with the example of the customs official learning to spot 
smugglers, whereas before the person was (somehow) told that  at most 
5% (say) of the customs inspections will yield an incorrect classification, 
no such information is now provided. The only assumption is that  fewer 
than half the examples are wrong on average. Surprisingly, the official can 
estimate an upper bound (less than 1/2) on the rate of noise with a feasible 
number of examples. 

We have seen that  the rate at which a rule L disagrees with the examples 
is at least r/, and that  for the target rule L, this rate is precisely r 1. Hence we 
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Table 1. The algorithm E. 

Let £ = {L1, L2 , . . . ,  LN}, 

1. Initialize: r~b , -  1/4 and r ~- 1. 

2, (Round r) Repeat  until the halt  condition is fulfilled: 

2.1 Request mr(N, 5) examples. (The value of mr is given in the 
text.) 

2.2 For each rule Li C £, test Li against all the examples and 
determine ~i = Fi/m~, the proport ion of examples in dis- 
agreement with Li. Let ~rni, be the minimum such value. 

2.3 If pmin < ~b -- 2-(r+2), then halt  and output  ~b" 

2,4 Else, 

2.41 r ~--r + l. 
1 2-(r+z) 2.42 ~b ~ ~ - 

can use the minimum rate of disagreement over all the rules as an estimator 
for the noise ~. Once again this does not yield a feasible algorithm in 
general, since a direct implementation entails minimizing the number of 
disagreements over the whole hypothesis space. However, in Section 3 we 
see that  the basic method  can be adapted to be computationally feasible 
in a specific situation. 

We describe a procedure that  outputs  a value ~b such that  with proba- 
bility at least 1 - 5, ?Tb is between ~? and 1/2. Given this value, we can use 
Theorem 2 to find an acceptable hypothesis with probability at least 1 - 5. 
The probability that  either of these procedures fails is then less than 25. 

Our algorithms require that  ~?b be an upper bound for ~? and also be 
less than 1/2. One idea is to take enough samples so that  the empirical 
rate of disagreement for each hypothesis is "very close" to its average. 
However, we have no way in advance of knowing how close ~7 is to 1/2, 
and rib must squeeze in between them. Thus it seems that  we must use 
an iterative search procedure that  successively reduces the gap assumed to 
exist between ~ and 1/2. 

We begin by guessing that  ~ is less than 1/4, and take ?~b ~ - ~  1/4. If that  
value fails a certain test, we increase the guess to 3/8, then 7/16, etc., each 
time halving the distance between the previous guess and 1/2. For the 
test, we draw some examples and estimate the failure probability of each 
of the rules in ~. The smallest empirical failure rate [~i = F(Li ,  a ) / m  is 
compared to the current value of rib. If 15i <: ~b, we halt and output  ~]b as 
our bound. Otherwise we increase rib and repeat. The size of the sample 
drawn is increased at each iteration. 
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Table 1 presents a specific a lgor i thm E tha t  implements  this strategy. 
This  leads to the following theorem: 

T h e o r e m  3 Let 

mr(N, 6) = 22r+3 .1n (N~r+2)  . 

Then  with probabil i ty greater than  1 - 5, a lgor i thm E halts  on or before 
round r' = 1 + [ log~(1-  2r / ) - l l  and ou tpu ts  an est imate r) b such tha t  

< 45 < 1/2. 

P ROOF: 

and 

The  value of mr has been chosen so tha t ,  in mr examples, 

1 6/2 
GE(p, mr,p + 2 -(r+2)) < ~ • N2 r 

1 6/2 
LE(p, m r , p -  2 -(r+2)) _< 2"  N2 r" 

(Apply L e m m a  9 with 2 -(r+2) in place of s and 6 / ( N 2  r+2) in place of 
5.) Thus  if a rule Li is expected to disagree with a fraction Pi of the 
examples,  the probabili ty tha t  [/5i - pi[ > 2-(r+2) is at most  (6/2)/(N2r). 
After summing  over N rules and over all possible rounds,  we find tha t  the 
probabil i ty tha t  in any round r the empirical value iSi for some rule differs 
from its expected value Pi by as much as 2 -(r+2) is at most  6/2. We claim 
that ,  wi th  probabil i ty greater than  1 - 5/2, 

• the  a lgor i thm halts  on or before round r' = 1 + [log2(1 - 2r/)-l~. 

• when it halts,  ~b > r~. 

In round  r', r/ _< ½ - 1/2 r', and mr, is sufficient to ensure tha t  ;brain _< 

r / +  2-(r'+2), wi th  a probabili ty of more than  1 - 5/2. However, 

~b -- 2-(r'+2) 
1)  

= 2r1+1 2r'+2 

') , 
> 2r, 2r'+2 

> ~1 + 2-(r'+2) 

_> Pmi~. 

with probabili ty > 1 - 5/2. Thus  the a lgor i thm will halt  at or before round 
r' wi th  this probability. 
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Suppose the algorithm halts in round r. By choice of mr, Prnin > ~ -- 

2-(r+~) with probability more than 1 - (5/2. The fact that  it stops implies 
that  Pmin < ?)b - -  2-(r+2)" Thus 

1 1 
-- 2r+-----~ < ~b -- 2r+-----~, 

and hence r / <  Ob with probability > 1 - 5/2. 
Finally, the algorithm fails only if at least one of the above two conditions 

fails. Since each occurs with probability at most 5/2, failure occurs with 
probability at most 5. • 

Note that  with probability zero, the algorithm could fail to halt. Thus 
strictly speaking, it is not a finite procedure. Assuming it halts in round 
r0 = 1 + [log2(1 - 2 r / ) - l ] ,  the total number of examples required is O((1 - 
2r/) -2 .  ln[N/(1 - 2r/)5]). Thus asymptotically the process of determining 
rib increases the sample size only slightly. Also, we can accelerate the 
convergence by allowing r) b in each round to be the larger of the value 
obtained in step 2.42 and/Smm. 

2.4. How  hard is min imiz ing  disagreements?  

The approach suggested by Theorem 2 is to draw a feasibly small sample 
from EX~( ) and then find a hypothesis that  minimizes disagreements with 
the sample. We now show that this direct approach may be computation- 
ally infeasible even in very simple domains. Note that  this result concerns 
only this approach, and should not be confused with the stronger results 
of Kearns et al. (1987), which establish that  some learning problems in 
the Valiant model may be computationally intractable, no mat ter  what 
approach is taken. 

We will consider the domain of products of positive literals. Let n be a 
positive integer. Let PP(n) denote the set of all products of a subset of the 
literals xl ,x2, . . . ,xn.  There are 2 n such products; the empty product is 
interpreted as equivalent to "true." Each product  7r in PP(n) is interpreted 
as denoting the set of truth-value assignments that  satisfy it. PP(n) is a 
subset of the formulas in CNF(n, 1). 

A sample sequence ~r will consist of a finite sequence of ordered pairs 
of the form (aj, 8j), where aj is a truth-value assignment to the variables 
zl ,x2, . . . ,Xn and sj is either + o r - .  IfTr E PP(n) a n d a i s  a s a m p l e  
sequence, then F(Tr, a) is the number of pairs (aj, sj) in a such that  8j = + 
and aj(Tr) = 0 or sj = - and aj(rc) = 1. That  is, F(Tr, a) is the number of 
disagreements between 7r and the sample sequence a. 
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T h e o r e m  4 Given positive integers n and c and a sample sequence a, the 
problem of determining whether  there is an element 7r E PP(n)  such tha t  
F(Tr, a) _< c is NP-complete.  

PROOF: The proof is a polynomial-time reduction of the vertex cover prob- 
lem to the specified problem. The vertex cover problem is specified by an 
undirected graph G of n vertices and a positive integer c < n, and the 
question is whether  there exists a set C of at most c vertices of G such tha t  
every edge of G is incident to at least one vertex in C. (Such a set C is 
called a vertex cover.) The vertex cover problem is NP-complete.  

Let a vertex cover problem, (G, c}, be given. Suppose the vertices of G 
are Vl, v2, . . . ,  vn. There will be n variables: Xl, x2 , . . . ,  xn. For each vertex 
vi, define a t ru th  assignment ai that  maps xi to 0 and every other xj to 1. 
For each edge e = {vi, vj}, define a t ru th  assignment be that  maps xi and 
xj to 0 and every other Xk to 1. The sample sequence a consists of one 
copy of (ai, +) for each vertex vi and n + 1 copies of (be, - )  for each edge 
e in G. Then we claim that  G has a vertex cover of at most c vertices if 
and only if there is an element 7~ of PP(n)  such that  F(~,  a) _< c. 

Suppose G has a vertex cover C of at most c vertices. Let 7r denote 
the product  of those xi such that  vi is in C. How many examples from 
disagree with s?  For each vertex vi, the assignment ai assigns 0 to r if and 
only if vi E C. Thus, 7r disagrees with at most c positive examples from 
a. For each edge e -- {vi, vj}, the set C contains at least one of vi or vj, 
so the product  ~r contains at least one of xi or xj. Since the assignment 
be is 0 on both xi and xj, it must be 0 on ~. Thus, s agrees with all the 
negative examples in a. Hence F(~,  a) < c, as claimed. 

Now suppose that  there exists some ~ E PP(n)  such that  F ( ~ , a )  < c. 
Since c <_ n, this means that  ~r must  agree with all the negative examples 
in ~, since each one is repeated n + 1 times. Hence s can only disagree 
with positive examples in a, and at most c of them. Thus s must  contain 
at most c literals xi. Define the set C to be all those vertices vi such 
that  xi appears in the product  7r. Then C contains at most c vertices; it 
remains to see that  it is a vertex cover. If e = {vi, vj} is any edge in G then 
the assignment be must  assign 0 to ~, since ~ agrees with all the negative 
examples. But be assigns 0 to ~ if and only if ~r contains at least one of xi 
or xj. Thus C contains at least one of vi or vj, so C is a vertex cover of G. 

The computat ion of n, c, and ~ from (G, c) can clearly be carried out in 
polynomial time. • 

This result indicates tha t  even for a very simple domain the approach 
of directly trying to minimize the number  of disagreements with the sam- 
pie may not be computationally feasible. In the next section, we show 
that  a somewhat more sophisticated approach does permit  efficient pac- 
identification of k-CNF formulas from noisy samples. 
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3. Efficient pac-identification of k-CNF f o r m u l a s  in the  
presence  of  noise 

We now describe a procedure V' that  does pac-identification of k-CNF 
formulas in polynomial time. The main idea is that  instead of searching 
for the formula in CNF(n, k) with the fewest disagreements, one tests the 
clauses individually and includes those that  disagree least often on positive 
examples. Since there are exponentially fewer clauses than formulas, the 
procedure is much more efficient. Note that  this method does not solve 
an NP-hard problem: the resulting k-CNF formula may not be the best in 
terms of minimizing error on the examples. But it will (with high proba- 
bility) have error less than (. 

The inputs to the procedure are n, k, ~, 6, r/b, and a noisy oracle EXv( ) 
for an unknown formula ¢. from CNF(n, k), using an unknown distribution 
D to sample truth-assignments. The accuracy and confidence parameters 

and 6 must be between 0 and 1. And again, for expository purposes 
we assume that  a bound r/a on the rate of noise is provided such that  
0 < r] < ~b < 1/2. 

Once n and k are fixed, there is a set C of all possible clauses over the 
variables z l , . . . ,  xn with at most k literals per clause. Let M denote the 
cardinality of C. it. is easy to show that M is at most (2n + 1) k. 

Let ¢, be the target formula. Without loss of generality we may assume 
that  ¢, is maximally consistent - i.e., it includes every clause C with at 
most k literals such that  C is logically implied by ¢,. 

3.1 Motivation for the procedure V' 

Once D is fixed we define two probabilities for each clause C from C: 

;o(C) = pr = o] 

p,(C) = Pr[a(C)= i]. 

If qS, is also fixed, we may subdivide these probabilities into four cases, Pr~, 
for r = O, 1 and 8 = O, 1 as follows: 

prs(C)-- Pr [ a ( C ) = r  and a ( ¢ , ) =  s]. 

Note that  po(C) = Poo(C) + P0a(C). 

We use these probabilities to classify each clause as follows. A clause C 
is defined to be important if and only if 

p0(C) _> Qz, 
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where 
Q1 = e/16M 2. 

A clause C is defined to be harmful if and only if 

pol(C) >_ 
where 

QH = e/2M. 

Note that QH >_ Q1, so every harmful clause is important. Note also that 
no clause contained in ¢, can be harmful. 

The intuition is that a non-important clause is almost always assigned 
the value 1 by assignments chosen according to D, so it may be included or 
not in the final hypothesis without significantly affecting the outcome. On 
the other hand, a harmful clause is one for which a significant fraction of the 
assignments chosen from D make the clause 0 but the correct hypothesis 
1. If a harmful clause is included in the final hypothesis, it will cause a 
nontrivial probability of disagreement between the final hypothesis and the 
correct hypothesis. Thus, the strategy of the procedure V' is to attempt 
to include in the final hypothesis all the important clauses contained in ¢, 
and no harmful clauses. Our first lemrna shows that if V' succeeds in this 
attempt, then the final hypothesis is indeed an ~-approximation of ¢.. 

L e m m a  1 Let D and ¢, be fixed. Let ¢ be any product of clauses from C 
that contains every important clause in ¢, and contains no harmful clauses. 
Then d(¢, ¢,) < e. 

PROOF: We analyze the probability of an assignment a such that a(¢,)  = 
1 and a(¢) = 0 or vice versa. Let ¢ - ¢,  denote the set of clauses in ¢ but 
not in ¢,.  

Pr  [a(¢,) = 1 and a(¢) = 01 

For the other side, 

_< 5:  p0,(c), 
ce¢-¢,  

< MQH (no element of ¢ -- ¢, is harmful), 

= ~/2.  

Pr [a(¢) = 1 and a(¢,)  = 01 <_ vo(C), 
ce¢, -¢ 

< MQ,  (no element of ~b, - ~b is important), 

< e/2. 

Thus, Pr [a(¢) ~: a(¢,)] < c/2 + e/2. • 
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The procedure V ~ has no direct information about whether a clause is 
important  or harmful - it must rely on the noisy oracle EX,~( ) for its 
information about D and ¢,.  Since the oracle EXv ( ) reports assignments 
according to the distribution D, po(C) can be directly estimated by sam- 
pling the oracle and calculating the fraction of assignments that  assign 0 to 
C. The procedure V I uses this to construct a set I that,  with high proba- 
bility, contains all the important  clauses C from C. If this is accomplished, 
the remaining problem is to identify all the harmful clauses in I. (Note 
that  V' depends in an essential way upon the fact that ,  in this model, the 
distribution D is not perturbed by the presence of noise.) 

However, the definition of a harmful clause refers to the values of assign- 
ments on ¢, ,  which are subject to reporting errors and cannot be estimated 
directly. For each clause C we define one more probability: 

po+(C) = Pr[a  sample <a, 8) drawn from EX,( ) has a(C)= 0 and 8 = +] 

This may be directly estimated using calls to EX,() .  A sample (a, s} will 
have a(C) = 0 and s = + if and only if either a(C) = 0 and a(¢,)  = 1 and 
there was no reporting error, or a(C) = 0 and a(¢,)  = 0 and there was a 
reporting error. Thus 

po+(C) --  (1 - rl)pm(C) + ~TPoo(C) 

~- l](poo(C) + p01 ( C ) )  -~- (1 - 27~)p01(C ) 

= ~po(C) + (1 - 2 ~ ) p m ( C ) .  

If po(C) ~ O, then 

p0+(~ *) p01(C) (1 - 2?']). 
p0(c )  - ~ + p0(c---S 

Since ~/ < 1/2, this quantity is always greater than or equal to r/ and is 
equal to rl if C is contained in ¢,. Since po(C) < 1, for all clauses C such 
that po(C) :~ 0, 

po+(C) 
p0(c----7 -> ' + p01(c)(1 - 2,).  (2) 

Observe that  if C E ¢*, then the ratio po+(C)/po(C) = ~7. If C is a harmful 
clause, then Pm (C) > QH, so 

po+(C) 
po(C--~ > ~7 + Q H ( 1 -  2r/). (3) 
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The quant i ty  po+(C)/po(C) is the propor t ion  of those assignments falsi- 
fying C tha t  are repor ted  with a positive sign. The  preceding calculation 
shows tha t  there is a separat ion of at least 

8 = c2/ (1 - 2 7 )  

in the expected value of this quant i ty  between clauses tha t  are to be re- 
ta ined ( impor tan t  clauses in ¢ , )  and clauses tha t  are to be discarded (harm- 
ful clauses). Since r/b is an upper  bound  on r/, the m i n i m u m  separat ion is 
Sb = QH(1 -2r/b). Moreover, p0+(C)/p0(C)  can be es t imated  by sampling 
the oracle E X n ( ) .  (Recall tha t  I contains clauses falsified by a nontrivial  
number  of samples, so for elements of I this est imate will be sufficiently 
accurate.) 

The  procedure  V' calculates an est imate rl' of r / and  identifies as harmful  
all those clauses C E I whose es t imated value of po+(C)/po(C) is greater 
than  rl ~ + 85/2. The final ou tpu t  is the p roduc t  of all the other  clauses in 
I.  In order for this to work, V ~ needs a sufficiently accurate est imate r/' 
for 77. Where does this come from? If I contains any clause C in ¢, ,  then  
the est imate of P0+ (C)/po(C) will be close to r/. In this case, the m i n i m u m  
est imate of po+(C)/po(C) for all clauses C in I will be close to r/. 

However, it may happen  tha t  no clause in I is contained in ¢, ,  and this 
m i n i m u m  value may  not be a good est imate of r/. In this case, provided 
all the impor tan t  clauses are in I,  we know tha t  ¢ ,  does not  contain any 
impor tan t  clauses. This  means tha t  most  assignments drawn from D as- 
sign the value 1 to ¢, .  In this case, the observed overall rate of negative 
examples will be sufficiently close to 7. Thus,  the est imate of r 1 is taken to 
be the m i n i m u m  of two estimates: the es t imated  fraction of negative ex- 
amples and the m i n i m u m  est imated value of po+(C)/po(C) over all clauses 
C i n I .  

3.2 Concise description of V' 

Now let us summarize  the description of V r. From n, k, ~, 5, and r/b , the 
procedure V' calculates the following: 

C = { C :  C is a clause over n variables with at most  k literals}, 

M = [C], 

K = 21°~ 

r_ 
m = /e3( 1 _  2r/b)2 in 

Q H  = e/2M, 

Sb = QH(1 - 2~/b) = e(1 -- 2~Tb)/2M , 

Qs = Q H / 8 M  : ~/16M 2. 
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V' draws m samples from the oracle EXn(),  say a = {al, 81},. . . ,  (ara, Sm), 
where each ai is a truth-value assignment to the variables Xl , . . . ,  Xn and 
each si is either + or - .  The following quantities are defined using a: 

Z_ = I{J:s3 = - } l ,  
Zo(C) = ] { j : a j ( C )  =0}l ,  

Zo+(C) = I { J :  aj(C) =0 and sj = -t-}1. 

Z_ is the overall number of negative samples, Zo(C) is the number of 
samples that assign 0 to the clause C, and Z0+ (C) is the number of samples 
that assign 0 to C and are reported with the sign +. For each clause C in 
C such that Zo(C) ¢ 0, define 

h(C) = Zo+(C)/Zo(C) 

h(C) is the estimated value of the quantity po+(C)/po(C ). 
The procedure V ~ calculates one estimate of rj: 

'7i = Z_/m, 

which is just the observed fraction of negative examples. The procedure 
V' then forms the set I by including all those clauses C in C such that 

Zo(C)/m >_ QI/2. 

Note that I is non-empty, since if a clause consisting of a single variable is 
not in I,  then the clause consisting of the complement of the variable is in 
I. V' then calculates a second estimate of r / to  be 

r/2 = min{h(C):  C E I}, 

after which it calculates 

r / =  rain{r/l, r/2}. 

The final output ¢ of V' is the product of all those clauses C E I such that 

h(C) < + 8b/2. 

It is clear from this description that V' runs in time polynomial in n k, l /e ,  
log 1/5, and 1/(1 - 2rib). 

3.3 P r o o f  of correctness of  V' 

In this section we show that V' achieves pac-identification of the formulas 
in CNF(n, k). 
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T h e o r e m  5 For every ¢,  C CNF(n, k), V'  pat-identifies ¢, ,  t ha t  is, 

P r  [d(¢, 0,)  _> c] _< 6. 

PROOF: Consider how the a lgor i thm could go astray: 

• Some impor tan t  clause might  not  be selected for inclusion in I. 

• The  est imate r / c o u l d  be too large or too small. 

• Some harmful  clause could have an abnormally small number  of fail- 
ures on positive examples and thereby be included in the ou tpu t  ex- 
pression. 

• Some correct clause could have an abnormally  large number  of fail- 
ures on positive examples and thereby be excluded from the ou tpu t  
expression. 

The  series of lemmas 4 below show tha t  the second possibility has proba- 
bility at most  5/2, while the others each have probabili ty at most  5/6. In 
all, therefore, these mishaps have probabili ty at most  6, and by L e m m a  1 
the ou tpu t  expression will be e-good with high probability. • 

L e m m a  2 With  high probabili ty the set I includes all impor tan t  clauses 
--i.e., all clauses C such tha t  po(C) >_ QI. 

PROOF: For an impor tan t  clause C to be omit ted,  the value Zo(C)/m 
must  be less than  QI/2 - an amount  more than  Qx/2 below its expected 
value of at least Q~. With  the sample size rn, Lemma  8 can be applied to 
show tha t  LE(po(c), m, Q1/2) <_ 6/6M. Summing  this probabil i ty over M 
clauses completes the proof. • 

L e m m a  3 Let s = QH(1 - 2r/). Then  with high probabili ty ~/1 is not  "too 
small" - i.e., rll _> r] - s/4 with high probability. 

PROOF : Consider the probabil i ty p_ tha t  an example is classified negative 
by the noisy oracle. Wi thou t  noise this probabil i ty is P0(¢*). With  noise, 
this probabil i ty becomes 

p_ = (1 - ~])Po(¢*) + ~ ( 1  - p 0 ( ¢ * ) )  

= ~/+ po(¢*)(1 - 2 . )  (4) 
> r]. 

By Lemma  8, LE(r h m, • - s/4) <_ LE(rl, m, r] - Sb/4 ) < 6/6. • 

4In the following technical lemmas, "with high probability" means "with probability 
> 1 -5/6." 
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L e m m a  4 Given that  I contains all important  clauses, with high proba- 
bility r12 is not "too small" i.e., r/2 _> rl - s/4 with high probability. 

PROOF: rl2 will be too small iff, for some clause C, 

h(C) < r l -  s/4. 

But by Eq. (2) the expected value of h(C) is po+(C)/po(C) >_ r]. The 
sample size over which the ratio is being measured is at least mQi /2  since 
C E I. Using Lemma 8, LE(r], mQi /2 ,  r] - ~/4) _< LE(rh mQi /2 ,  rl - 
Sb/4) <_ 5/6M. Summing this probability over all M clauses ends the 
proof. • 

L e m m a  5 Given that  I contains all important  clauses, then with high 
probability either rll or r/2 is not "too large" i.e., either r/1 _< r / +  s/4 or 
rl2 <_ r I + s/4. Thus r/' = min{r/x, r/2} _< r /+  s/4. 

PROOF: There are two cases. 

CASE: There is a clause C in I tha t  is also in ¢, .  Then 

po+(C) 

po(C) - 

by Eq. (2). By Lemma S, LE(r], mQi/2 ,  rl + Sb/4) _< 5/6. Thus r]2 _< 
r] + s/4 with high probability. 

CASE: There is no clause C in I that  is also in ¢, .  rh estimates p_, and 
by Eq. (4) p_ depends on P0(¢*). We can bound the latter as follows: 

po(¢*) ___ p0(c), 
CE¢* 

< ~ QI, since no clause in ¢,  is in I 
cE¢* 

<_ MQI,  
= Q u / 8 .  

Thus p_ < r / +  QH(1 - 2r/)/8 = r / +  s/8, and by Lemma 8, GE(rl + 
s/8, m, rl + s/4) < eE(rl  + s/8, m, rl + s/8 + sb/8) < 5/6. Hence 
~ll ~ rl + S/4 with high probability. • 

L e m m a  6 Given that  I contains all important  clauses, with probability 
> 1 - 5/2, rl' is "close to" rl - i.e., [r/' - r/I _< s/4. 
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PROOF: Immediate from Lemmas 3 5. 

L e m m a  7 Given that  I contains all important clauses and that I t / - r / ]  _< 
s/4, with high probability no harmful clause will be included in the output 
¢ of V'. And with high probability, no important clause will be omitted. 

PROOF: A harmful clause C is included if 

h(C) < r I' + Sb/2, 

and given that r/_< r] + s/4, it certainly must be the case that 

h(C) < ~ + 3s/4 

if the clause is to be included. 

But for such a clause h(C) has an expected value of at least r / + s. To be 
included, it must therefore deviate from its expected value by at least s/4, 
in a sample of at least mQr/2 positive examples. And LE(rl+s, mQi/2, rl+ 
3s/4) < LE(rl + s, mQ~/2, tl + 3Sb/4) < 5/6M. Summing this probability 
over possibly M harmful clauses yields the first result. 

For a correct clause C, po+(c)/po(c) = rl, and it will be discarded only if 
the empirical value h(C) of this ratio exceeds rl by more than Sb/4. Lemma 
8 shows that this probability is _< 5/6M. Summing over possibly M correct 
clauses yields the result. • 

Taken together, these lemmas conclude the proof of Theorem 5. Note 
that one need not assume that V' is given an upper bound r]b. The al- 
gorithm can estimate such an upper bound efficiently, using a version of 
the method in Section 2.3; Laird (1987) provides details. Also note that 
the algorithm V' uses both positive and negative examples; Kearns and 
Li (1987) have shown that both kinds of examples are necessary in this 
setting. 

4. R a n d o m  noise  p r o c e s s e s  

So far we have considered errors resulting from a Classification Noise 
Process (CNP): 

Independently for each example, the sign s of the example (x, s} 
drawn from EXo( ) is reversed with probability r/. 

We have seen that the CNP preserves pac-identifiability, provided r /<  1/2. 
The CNP is just one example of a random noise process, in which with some 
fixed probability rl each example is independently given to the noise process 
for possible modification before presentation to the learning algorithm. 
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How do the above algorithms and ideas change when some other noise 
process is at work? Typically we find that the same basic idea choosing 
a rule that minimizes disagreements with the data - is effective. But the 
amount of data required for pac-identification may be different, and the 
maximum tolerable rate of noise will vary. 

To illustrate, consider the "worst case" Adversarial Noise Process (ANP): 

Independently for each example, the example is replaced, with prob- 
ability r/, by an arbitrary example, perhaps maliciously chosen. 

In selecting the replacement, the ANP adversary may have knowledge of 
the target L,, the entire past history of the run, and all parameters (c, 6, 
~, ~b, etc.), but it has the chance to do so only a fraction ~ of the time. 

For the hapless customs official still trying to identify smugglers, an 
adversarial band of smugglers will sometimes intentionally pass through 
customs without carrying contraband, or will plant contraband among the 
possessions of a non-smuggler, with the fiendish purpose of confusing the 
official during his or her training period. The question, then, is how much 
more difficult the learner's task becomes in such cases. 

Our approach is to distinguish by sampling the correct hypothesis L, 
from an C-bad hypothesis L~. We require that the expected rate of dis- 
agreement with the sample for L, be smaller than for L~. With the ANP 
the expected rate of disagreement for L, is at most U, while the expected 
rate of disagreement for L~ is at least ~(1-  ~). Thus, provided ~] < e ( 1 -  rl), 
or equivalently, ~ < e / ( l+~) ,  L, and L~ will be statistically distinguishable. 
Kearns and Li (1987) have shown this bound is tight. (Compare ~ < 1/2 
for the CNP.) 

As another example, consider the problem of identifying CNF(n, k) rules 
from positive examples that are subject to adversarial noise a problem 
first solved by Valiant (1985). Using the ideas developed in this paper, we 
give a simpler analysis. 

Let M be the number of clauses. For a given target formula ¢, the 
examples oracle EXo( ) selects satisfying assignments of ¢, from some dis- 
tribution D +. Before presentation, the example is subjected to an ANP 
that, with probability r / may replace the positive example by another as- 
signment. Clauses in ¢, can thus be falsified on average by at most a frac- 
tion ~ of the examples. By contrast, we denounce as harmful any clause 
C for which Pm (C) > (/M, as measured by the distribution D +. Despite 
the best efforts of an adversary, a harmful clause must fail at a rate of at 
least ~(1 - ~)/M. Our approach is to eliminate all harmful clauses while 
including all correct ones. Clearly the error in the resulting formula will 
then be at most e. 
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Provided r / <  c ( 1 -  r/)/M (or, equivalently, r / <  [ (M/c)+  1]-1), there is a 
separation of at least sb = ElM -- r/b(1 + e/M) between the rate at which a 
harmful clause is falsified and this rate for a correct clause. Also, harmful 
clauses are falsified on average by a proportion of at least ~(1 - r/b)/M of 
the examples. Therefore we use the following algorithm, V": 

1. Obtain a sample of rn = (2/sb 2) ln(M/5) positive examples. 

2. Output  the conjunction of all clauses falsified by no more than (r/b + 
Sb/2)rn examples. 

To see that  this works, consider first errors of omission (discarding a correct 
clause). For this to occur, the proportion of examples falsifying a correct 
clause must exceed its expected value (r/) by at least Sb/2; but  rn has been 
chosen so that  (Lemma 8) the likelihood of this is at most 8/M. 

Similarly, errors of commission (including a harmful clause) occur only 
when a harmful clause is falsified less than expected, by a deviation of at 
least Sb/2. The chances of this are less than 5/M. Summing the probabil- 
ities of both types of errors over at most M clauses gives a probability for 
error of at most 5. Thus we have shown the following theorem. 

T h e o r e m  6 There is an algorithm that  runs in time polynomial in l /c ,  
log l /5 ,  n k, and 1 / ( 1 -  2r/b) and pac-identifies CNF(n, k) formulas from 
positive examples subject to adversarial noise, provided the rate r /of  noise 
satisfies 

1 
r/__ r/b < 

(M/e) + 1' 

where M is the number of clauses. • 

We direct the reader to Laird (1987) for further results on pac-identifica- 
tion with other noise processes. 

5. R e m a r k s  

Summarizing, the basic idea of this paper is that  algorithms for pac- 
identification can often be generalized to handle a certain amount of ran- 
dom noise in the data. A feasible increase in the amount of data suffices 
to separate acceptable rules from ones with too much error, provided the 
rate of noise is within certain bounds that  depend on the noise process. 
As with pac-identification from noise-free data, a direct search for the best 
rule may not be computationally tractable for many domains of interest, 
but specially chosen algorithms may be found for some domains, as we 
illustrated for CNF(n, k). 
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A major open question is whether there exists any domain in which pac- 
identification is computationally feasible with no noise but computationally 
infeasible with some "reasonable" level of noise. It would be interesting 
to explore the effect of noise in a situation that calls for queries as well 
as random sampling. For example, could Angluin's (1987) polynomial- 
time procedure for identifying regular sets given a sampling oracle and 
membership queries be modified to compensate for random errors in the 
sampling and query responses? Other interesting directions include models 
of non-random noise and problems of approximate identification when none 
of the rules in the space are exactly equivalent to the rule being presented 
- a circumstance that  somewhat resembles noisy data for a correct rule. 
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Appendix: Bounding lemmas 

We establish some simple tools for bounding the accuracy of estimates of 
Bernoulli variables. For p and r between 0 and 1 and any positive integer rn, 
let LE(p, m, r) denote the probability of at most rm successes in m independent 
trials of a Bernoulli variable with probability of success p, and GE(p, m, r) the 
probability of at least rrn successes. Thus, 

and 

k= [rm] 

[rrnJ 

k=0 

It is not difficult to show that for p increasing, GE(p, m, r) is nondecreasing and 
LE(p,m,r )  is nonincreasing. We extend LE to have the value 0 if its third 
argument is less than 0, and sinfilarly GE has the value 0 if its third argument is 
greater than 1. 

The basic lemma we use is Hoeffding's Inequality (Hoeffding, 1963). 

L e m m a  8 If 0 _< p _< 1, 0 _< s _< 1, and m is any positive integer then 

L E ( p , m , p -  s) < e -2~2m, 

and 
G E ( p , m , p +  s) < e -2~2m. 

We apply this to obtain a simple bound on the number of samples required to 
assure that an estimate of p is within a distance s of the correct value with 
probability at least 1 - 6. 
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L e m m a 9  L e t O _ < p _ < l , O < s < l ,  a n d O < d < l .  If 

,(1) 
m >  ~-~s2 In 

then 

and 

LE(p,  m, p - s) <_ 5, 

G E ( p , m , p + s )  <_ 6. 

PROOF: This follows directly from Lemma 8 by setting e -2s2m _< 5 and solving 
for m. • 

Among the various bounds in this paper derived from the basic lemma is the 
following: 

L e m m a  10 Let N be a positive integer, 0 < ~ < 1, 0 < 5 < 1, and 0 _< r / <  % < 
1/2. Define s = e(1 - 2r/b) so that  0 < s < 1. If 

then 

and 

m > c2(1 _ 2r~b)2 in 

GE(,7, m, + <  /2N, 

LE(r~ + s, m, r] + s/2) < 6 /2N.  

PROOF: We apply Lemma 9 with s/2 in place of s and 5 / 2 N  in place of 5 to find 
the indicated lower bound on m. • 




