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Abstract.  Research in cluster analysis has resulted in a large number of algorithms 
and similarity measurements for clustering scientific data. Machine learning researchers 
have published a number of methods for conceptual clustering, in which observations are 
grouped into clusters that have "good" descriptions in some language. In this paper 
we investigate the general properties that similarity metrics, objective functions, and 
concept description languages must have to guarantee that a (conceptual) clustering 
problem is polynomial-time solvable by a simple and widely used clustering technique, the 
agglomerative-hierarchical algorithm. We show that under fairly general conditions, the 
agglomerative-hierarchical method may be used to find an optimal solution in polynomial 
time. 

1. I n t r o d u c t i o n  

There is a wide body  of li terature in several fields concerned with the 
clustering problem. Roughly, this problem involves grouping observations 
into categories such that  members  of a category are alike in some interesting 
way and members  of different categories are different. Within artificial in- 
telligence and machine learning, the clustering problem has been classified 
as par t  of the general problem of learning from observation and discovery 
(Carbonell, Michalski, & Mitchell, 1983). 

Much of the work on the clustering problem has involved numerical or 
statistical techniques for clustering scientific data. Researchers in cluster 
analysis and numerical taxonomy have focussed on developing appropriate 
metrics for measuring similarity between points and clusters (groups of 
points), and on developing algorithms to minimize inter-cluster similarity 
as measured by some objective function. The literature on these techniques 
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is scattered through journals in statistics, pattern recognition, computer 
science, and various fields of application (biology, psychology, sociology, 
etc.). Summaries may be found in Anderberg (1973), Hartigan (1975), 
Duda and Hart (1973), and more recently in Romesburg (1984). 

In machine learning, work on the clustering problem has focussed on 
the notion of conceptual clustering, introduced by Michalski (1980). Con- 
ceptual clustering methods attempt not only to produce "good" classifica- 
tions based on some metric, but also to find a meaningful description of 
the classification. In contrast, cluster analysis techniques leave it to the 
human analyst to determine the meaning of a clusteringJ Researchers 
in conceptual clustering have not only produced a number of algorithms 
and metrics (e.g., Lebowitz, 1983; Michalski & Stepp, 1983; Fisher, 1985; 
Mogenson, 1987), but have also investigated employing clustering in prob- 
lem solving (Rendell, 1983; Fisher, 1987), incorporating problem-specific 
knowledge into the clustering process (Mogenson, 1987; Stepp & Michal- 
ski, 1986), and providing appropriate cluster description languages (Stepp, 
1984; Fisher, 1985). Fisher and Langley (1985) and Stepp (1987b) provide 
overviews of work on conceptual clustering, and develop characterizations 
of the problem. 

Instead of adding to the already large body of clustering algorithms and 
metrics, we have explored the properties of a simple, general, and well- 
known clustering method - the agglomerative-hierarchical or amalgamative 
algorithm. In particular, we are interested in characterizing the kinds of 
problems, metrics, objective functions, and concept description languages 
on which a given algorithm will succeed. We define success as the discovery 
of an optimal clustering in time polynomial in the number of data points 
to be clustered. Though introductory texts on cluster analysis sometimes 
attempt to explain how to choose an appropriate algorithm and metric, to 
our knowledge there has not been any formal exploration of the conditions 
under which particular algorithms are guaranteed to produce optimal so- 
lutions in polynomial time. 2 By specifying such conditions, we hope to 
simplify the problem of selecting an appropriate clustering technique. 

In the next section, we introduce a simple conceptual clustering problem, 
and use it to motivate general definitions for clustering problems, distance 
metrics, and objective functions. In Section 3, we use the example to 
introduce the agglomerative algorithm and to motivate some fairly general 
restrictions on conceptual clustering problems. In Section 4, we prove 

IHere, and throughout the remainder of the papers we use the term "cluster analysis" 
to refer to all clustering techniques in which the quality of cluster descriptions is not a 
factor in measuring the quality of the clustering. 

~Of course, there exist algorithms designed to produce an optimal solution for par- 
ticular metrics and objective functions. 
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these restrictions are sufficient to guarantee that  the algorithm finds an 
optimal solution. We also examine further properties of the agglomerative 
algorithm, as well as variations of the restrictions of Section 3. 

2. D e f i n i t i o n s  

We formally define a very general version of the clustering problem. The 
definitions are similar in spirit to the definition of the Abstract Cluster- 
ing Task given by Fisher and Langley (1985). However, we want to more 
carefully specify what is meant  by a "clustering quality function." We be- 
lieve the definitions are general enough to subsume the objective functions 
normally used in cluster analysis and conceptual clustering. 

We motivate the definitions, and the properties of the next section, 
with the following example of simplified conjunctive conceptual clustering 
(Michalski & Stepp, 1983), or monomial clustering. 3 For monomial clus- 
tering, the objects to be clustered are described with n Boolean attributes 
xl ,x2, . . . ,Xn.  Let Xn be the set of Boolean vectors over the attributes 
xl ,z2, . . . ,Xn.  Then the domain for the monomial clustering problem is 
X = 

Similarly, many other domains for clustering problems are best described 
as a parameterized family ~" = {Xn} of sets, where the parameter n is 
some appropriate value, typically reflecting the "size" of an element. For 
example, if we are interested in clustering objects in Euclidean space, then 
the domain )2 might be the collection {En}n>l, where En is n-dimensional 
Euclidean space. 

For some domains ,12 = {Xn}, we may allow Xn to be empty for some 
(or most, if no parameterization is desired) values of n. For example, if 
the only type of clustering problem that we wish to consider is clustering 
in 2-dimensional Euclidean space, then we would let 3/2 = E2, and Xi = 0 
for i -¢ 2. The above considerations motivate the following 

Definition 1 A domain Z is a parameterized family of sets {Xn}n>l. 

Our definitions will require that  a clustering algorithm work for all Xn that  
are nonempty, and that  the algorithm have run-time polynomial in n. 

In conceptual clustering, a cluster is described by a statement in some 
language, and not by the set of points in the cluster. For example, for 
monomial clustering, clusters are described by monomia]s over n Boolean 
attributes. Let Ln be the set of all monomials (pure conjunctive concepts) 
over the Boolean variables Xl, x2 , . . . ,  Xn. 

aThe formal definition of the monomial clustering problem will be given in Section 3.1. 
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Def in i t ion  2 A clustering description language £ is a parameterized fam- 
ily of languages {Ln}n>_l. 

The parameter n typically reflects the size or length of statements in the 
language Ln. 

Each statement c C Ln is a cluster. The meaning of a cluster is given by 
an interpretation: 

Def in i t ion  3 An interpretation ! = {In}n>1 of a language ~ to a domain 
X is a parameterized family of functions In : Ln --* 2 X~. (2 X" is the power 
set of Xn.) 

For each n, every cluster c E Ln describes a set of points of Xn given by 
In(c). 

For monomial clustering, the interpretation In of a monomial over the 
variables Xl, x2, . . . ,  xn is the standard logical one, i.e., the set of Boolean 
vectors of length n (over the same variables) that satisfy the monomial. For 
some applications, it is desirable to parameterize the family of languages 
differently than the domain ):. For example, if the goal is to cluster numer- 
ical data points based on their descriptions in a simple, limited language, 
then for each n and m there would be an interpretation In,m : Ln ~ 2 xm. 
For the sake of clarity, we will assume that the language and its domain 
have the same parameter n; the extensions required for the two parameter 
case are straightforward. 

A clustering C over Ln is a finite set of statements (clusters) of Ln. The 
size of a clustering C is the sum of the lengths of the statements in C. Let 
Kn denote the class of all clusterings over Ln. For monomials, a clustering 
is simply a finite collection of monomials. 

A cluster c covers a set S c_ Xn iff S C_ In(c). A clustering C covers a 
set S c Xn iff S C_ Uc~c In(c). The clustering C is a prime clustering of a 
set S iff C covers S and there is not a proper subset C C C such that C ~ 
covers S. A prime clustering is therefore one that contains no extraneous 
clusters. 

The goal of clustering is to find, given a finite subset S C Xn of elements, 
a (prime) clustering that covers S (and possibly other elements of Xn) such 
that each cluster of the clustering covers similar elements (i.e., is tight), and 
different clusters cover dissimilar elements (i.e., have large distance). The 
definitions of tightness and distance should depend only on clusters, i.e., 
on statements in the cluster description language, and not on the points 
covered by those clusters, thus fulfilling the primary condition of conceptual 
clustering (Michalski & Stepp, 1983; Fisher & Langley, 1985). 
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The tightness function will be parameterized by n in a manner similar 
to domains and clustering description languages. Since the clustering al- 
gorithm must employ this function, it is unreasonable to expect it to work 
for all n unless the tightness functions for each n are related to the extent 
that there is a single algorithm for evaluating them. For the same reason, 
the distance functions should be interrelated as well. 

Definit ion 4 A family Y = {Fn}n>l  of functions is uniformly computable 
iff there is an algorithm F such that for all n and x, F(n, x) = Fn(x). A 
family is uniformly polynomial-time computable iff F runs in time polyno- 
mial in the value of n and the size of x. 

The formal definitions for tightness and distance functions are thus: 

Definit ion 5 T = {Tn}n>I is a uniformly computable family of tightness 
functions, with Tn : Kn ---4 ~+, where ~?+ denotes the nonnegative real 
numbers. 

Definit ion 6 P = {Dn}n>_l is a uniformly computable family of distance 
functions, with Dn : Kn ~ ~+. 

Tn is a measure of tightness of clusterings over the language Ln. Note 
that Tn is a function of clusterings, and not of individual clusters. For 
monomial clustering, a natural measure of the tightness of a monomial 
is simply the number of attributes appearing in the monomial. A natural 
measure of overall tightness of a clustering (set of monomials) might be the 
minimum tightness of any monomial of the set. We define this tightness 
function T for monomials in the next section. 

Dn is a measure of distance of ctusterings over the language Ln. Note 
that Dn is a function of clusterings, not of pairs of clusters. In the next 
section, we define the distance Dn of a monomial clustering to be the min- 
imum number of literals on which any pair of monomials of the clustering 
differ. 

Numerical/statistical methods typically use a single metric that mea- 
sures either similarity or dissimilarity between points. The objective func- 
tion measures the overall quality of a clustering relative to that metric. For 
the sake of generality, we have assumed separate similarity (tightness) and 
dissimilarity (distance) measures, and allow the objective function (which 
we call "goodness") to be a function of these components. 

Def in i t ion  7 ~ = {Gn}n_>l is a uniformly computable family of goodness 
functions, with Gn : range(Tn) x range(Dn) --~ ~?+. 
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The goodness Gn of a clustering is a real number representing how well 
both tightness of clusters and distance between clusters has been achieved. 
We extend the domain of Gn to Kn with the natural interpretation that 
(VC E Kn) Gn(C) = Gn(Tn(C),Dn(C)). We are now ready to define 
clustering problems. 

Definit ion 8 

• A (conceptual) clustering problem is any six-tuple (X, £, J, T,  D, ~) 
with X, £, J, T, D, and ~ defined as above. 

• An instance of a conceptual clustering problem (X, £, J, T, D, ~) is 
a seven-tuple (Xn, Ln, In, Tn, Dn, Gn, S), where Xn C X, Ln C £, 
In E J, Tn G T, Dn E P, Gn E ~, ands  is any finite nonempty subset 
of Xn. 

• A solution to an instance (Xn, Ln, In, Tn, Dn, Gn, S) of a conceptual 
clustering problem is a clustering C E Kn (called a best clustering) 
such that 
1. C is a prime clustering of S. 
2. For all clusterings C' that satisfy 1. above, Gn(C') <_ Gn(C). 

• An algorithm A solves the conceptual clustering problem (X, ~, J, 
T, P, ~) iff for all n such that Xn is nonempty, and for any finite 
nonempty set S C_ Xn, the algorithm A, if given n and S as input, 
outputs a solution to the instance (Xn, Ln, In, Tn, D~, Gn, S). We 
also write that ( X, £, J, T, D, .~ ) is solvable. 

In what follows, the scope of the variable n will be all numbers such that 
Xn is nonempty. Thus the statement "for all n" is used to mean "for all n 
such that X ,  is nonempty." 

Note that if Xn is infinite; there may not exist a solution to (Xn, L~, In, 
Tn, D~, G~, S) because there may be an infinite sequence of clusterings 
for which Gn increases without bound. Also note that the solution (if it 
exists) of an instance of a clustering problem may not induce a partition of 
the points of S. There is no requirement that the clusters of the solution 
cover disjoint sets, though disjointness may be enforced by an appropriate 
choice of Gn. Further, the clusters may cover (possibly an infinite number 
of) points of Xn -- S. 

These definitions, and the results in the following sections, are easily 
applied to the case of cluster analysis: the concept description language is 
simply finite subsets of X~, and the interpretations J are identity functions 
Is. Thus a cluster is simply a finite set of points of Xn. 
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Since we are interested in feasible computations, we now define polyno- 
mial-time solvability of clustering problems. Recall that the parameter n 
typically reflects a natural measure of size or length of encoding of objects 

Definition 9 Let the families 7", P, and ,~ be uniformly polynomial-time 
computable. Then (X, ft., 7, T,  P, .~) is solvable in polynomial time iff 
there is an algorithm A and polynomial p such that 
1. A solves the clustering problem (X, £, I ,  7", D, ~); 

2. For any n (for which Xn is nonempty), and any finite S c Xn, the 
run-time of A on input n and S is at most p(n, ]SI). 

3. A restr ic ted  class of  c lus ter ing  problems  

The definitions in Section 2 are so general that it would be ridiculous 
to expect that all clustering problems are polynomially solvable (or even 
solvable, for that matter). In ore" framework, a main goal is to identify 
exactly those clustering problems that are (polynomially) solvable, and to 
give algorithms for solving them. Only by restricting the class of domains 
X, the languages £, and the objective functions T, D, and .~ under consid- 
eration, can we begin to make progress toward this goal. (As it turns out, 
we will not need to make any restrictions whatsoever on the domains X.) 

A natural algorithm for clustering is the following: Given a set of ele- 
ments S to be clustered, begin by forming a cluster for each element of 
S. Then, iteratively "merge" the two clusters that are "closest." Halt 
when there is only one cluster remaining (containing all of the points of 
S) and output the best clustering encountered during this process. This is 
essentially the agglomerative algorithm formally specified in Section 4. 

In Section 3.1 we illustrate the agglomerative algorithm using an instance 
of the Inonomial clustering problem. In Section 3.2 we use the example to 
motivate properties for £, T~ D, and ~ that guarantee that the agglomer- 
ative algorithm finds an optimal solution. 

3.1 An example using the agglomerative algorithm 

The monomial clustering problem, discussed informally in the last sec- 
tiom is defined by: 

• X = {Xn}n>_I, where Xn is the set of vectors over the variable set 
Z l ,  X2, • • • , Xn- 

• ~ = {Ln }n_>l, where Ln is the set of monomials over the same variables. 4 

4This is an example  of the ~ingle repre,sentation trick (Cohen & Feigenbaum, 1983). 
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• I = {In}n>1, where In is the standard logical interpretation, i.e., the 
interpretation of a monomial is the set of Boolean vectors that satisfy 
it. 

• T = {Tn}n>l, where, if C = { m l , m 2 , . . . , m k }  is a clustering of Ln, 

Tn(C) = min {tn(m{)}, 
i=l,...,k 

and tn, the tightness of a monomial, is the number of attributes (lit- 
erals) in the monomial. 

• P = {Dn}n>l, where, if C = {ml, m2, . . . ,  ink} is a clustering of L~, 

Dn(C) -- min l <i#j<k { dn ( mi, m j)}, 

and dn, the distance between two monomials, is the number of at- 
tributes that appear negated in one monomial and not negated in the 
other. If the clustering C has only one monomial, arbitrarily define 
On(C) =0. 

• ,.~ ~- {Gn}n>_l, where, if C C Kn, then Gn(C) = min{D,~(C),Tn(C)}. 

The above objective functions T, P, and ~ capture the following three 
goals: (a) a tight clustering should contain only monomials that cover few 
points (a difference of 1 in the value of tn corresponds to a factor of 2 
in the number of points of Xn covered); (b) all monomials found should 
be disjoint (a clustering C containing non-disjoint monomials ml and m2 
will have Dn(C) = 0, since dn(ml, m~) = 0) and should differ on as many 
attributes as possible; (c) a small value of T~ or Dn is equally undesirable, 
since the overall goal is to maximize the minimum of the two measures. 

To see how the agglomerative algorithm works on the monomial cluster- 
ing problem, we give a sample run using the instance (Xg, L9, I9, Tg, D9, 
G9, S), where the input set S consist of the points (events) e l , . . .  ,e5 as 
follows: 

e l  ~- X l 'X2X3X4XSX6XT"XS-X9 

e~ 2 ~ - ~ l X 2 X 3 X 4 X 5 X 6 ~ 7 X 8 2 C  9 

e 3 : X l ~ 2 x 3 x 4 x 5 x 6 x 7 ~ 8 ~ 9  

e 4 = - X l X 2 X 3 X 4 X 5 X 6 X 7 X S X  9 

e 5 -~ X l ~ 2 2 ~ 3 X 4 X 5 X 6 X 7 : t S X 9  

For the rest of this section, we will refer to Xg, Lg, /9, Tg, D9, Gg, tg, 
and d9 as X, L, I ,  T, D, G, t, and d, respectively. 
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Step  1. The agglomerative algorithm begins with the clustering 

C1 = { m i  = ei : 1 < i < 5 } .  

Note that this clustering is as "specific" as possible, in that each cluster is 
contained in some cluster of every monomial clustering that also covers S. 
The goodness of this clustering is 2, since all monomials have t ( m i )  = 9, and 
the minimum distance (between the pairs (ms, m3), (ml, ms), (m2, m 4 ) ,  

and (m3, ms)) is 2. 

S tep  2. The agglomerative algorithm chooses one of the minimally-distant 
pairs for merging. Assume it picks the pair (ml, ms). The obvious way to 
merge two monomials is to simply drop the attributes on which they differ. 
This results in a new clustering C2 = { m l , . . . ,  m4} where: 

m l  = X l X 2 X 3 X 4 X 5 X S X 9  

m 2  = e2 = X lX2X3X4X5X6-X7X8X9  

m 3  = e3 = X l - X 2 x 3 x 4 x s x 6 x 7 x 8 x 9  

m 4  = e4 = X l X 2 X 3 x 4 x 5 x 6 x 7 x 8 x 9  

The new cluster ml covers the events el and es, as well as other points of 
Xn. Its tightness t is 7 and the new minimum distance (between ml and 
m3) is 1. Therefore, the goodness of the new clustering is also 1. Note that 
this is less than the goodness of the initial clustering; the algorithm does 
not hill-climb on this objective function. 

S tep  3. The algorithm merges the monomials ml and rrt3. This results in 
a new clustering C3 = {ml, m2, m3} where: 

m l  = X l X 2 X 3 X 4 X s X 9  

m 2  = e2 = - X l X 2 X 3 x 4 x 5 x 6 - x 7 x 8 x 9  

m 3  = e4 = - X l X 2 X 3 X 4 x s x 6 x T x 8 X  9 

Step  4. The minimum tightness is 6 (ml) and the minimum distance 
is 2 (between m2 and m3). The algorithm therefore merges m2 and m 3 ,  

resulting in C4 = {ml, m2} where: 

rrt 1 = X l X 2 2 3 3 X 4 X 8 X  9 

m 2  = X l X 2 X 3 x 4 x 5 x 8 x  9 

This clustering h a s T = 6  and D = 6, so G = 6. In fact, this is a b e s t  
clustering of the events under the given objective function. 
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Step 5. The last step in the example merges the two remaining clusters 
into a single monomial to obtain the clustering C5 = {0} (the empty 
monomial) with G(Ch) = T(Ch) = D(C~) = 0. The algorithm therefore 
keeps C4 as the best clustering. 

3.2 Properties of clustering problems 

Now we will present some properties for clustering problems, using the 
example from the previous subsection to provide intuitive motivations. For 
a clustering problem (2~, £, I ,  T, D, ~), we state only the (more restric- 
tive) properties sufficient for polynomial-time solvability; corresponding 
properties for general solvability are trivially obtained by dropping the 
polynomial-time requirements. In Section 4, we will prove that a clustering 
problem possessing the properties is solvable in polynomial time because 
the agglomerative algorithm meets the requirements of Definition 9. 

In our example, the cluster description language and interpretation make 
it easy to determine whether a point x E Xn  is covered by a statement 
c c Ln. The ability to determine cluster membership is necessary if the 
agglomerative algorithm is to create prime clusterings - the merging opera- 
tion used in the agglomerative algorithm may produce a new cluster whose 
interpretation is a superset of (the interpretation of) some cluster not in- 
volved in the merge. To guarantee prime clusterings, we must be able to 
detect such extraneous clusters. The first property therefore requires that 
we be able to determine cluster membership in polynomial time. 

Property P1. There exists a polynomial-time algorithm that, when given 
as input any number n, any point x E Xn, and any cluster c C Ln, outputs 
"true" if x C In(c) and "false" otherwise. 

The membership algorithm may be used to obtain a prime clustering 
from a given clustering of a set S. In particular, let the polynomial-time 
subroutine PRIME(n, C, S) return a prime clustering C ~ of S, where C ~ 
contains a subset of the clusters of C. PRIME starts with C ~ = C, and iter- 
atively removes clusters from C until a prime clustering of S is obtained. 
(A cluster c is removed from C ~ iff every point in S that is covered by c is 
also covered by some other cluster of C~.) 

The next property is based on step 1 of the example. In this step, the 
algorithm created a single cluster for each point xi E S. Each cluster 
ci covered xi and as few additional points of X as possible. For some 
languages Ln and some sets S, there may not exist a clustering of individual 
points that is "most specific" in this sense. Property P2 asserts that the 
cluster description languages must be such that for any set of points in 
Xn,  there must exist a cluster (statement in Ln) that is the most specific 
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of any statement in Ln covering those points, and there must exist feasible 
(polynomial) means for finding this cluster. 

De f in i t i on  10 For a given clustering problem (X,  £, J, T ,  D, .~), and 
for any n, a maximally specific cover (MSC) for a set of points P C Xn is 
a cluster c E Ln such that c covers P,  and for any c r C Ln, if c t covers P,  
then In(c) C In(C~). 

P r o p e r t y  P2. Fox" any number n and finite S C_ Xn, there exists a unique 
MSC for S. Further, there exists an algorithm that,  when given as input 
n and S = {x~,x2,. . .x~}, outputs a clustering C = {cl,e2,. . . ,c.~} ¢ Kn 

S such that  for 1 <_ i <_ s, ci is the M,C for {zi}. The run-time of the 
algorithm must be polynomial in n and Isl. 

Property P2 implies that  the MSCs (descriptions) of the singleton point 
sets {ci} be at most of size polynomial in n and IsI. 

The next two properties are based on the merging operation in the ex- 
ample. The agglomerative algorithm assumes that  D(C) for a clustering is 
based on an inter-cluster distance measure d. 

P r o p e r t y  P3. There is a family of uniformly polynomial-time computable 
functions d = {dn}, where d,~ • Ln x L~ --+ ~+, such that  for all n, and 
C E Kn: 

(a) Dn(C) = min{dn(ci ,c j )  : ci, cj E C, ci 7 ~ cj}. When restricted to 
single-cluster clusterings, {Dn} may be any family of uniformly polyno- 
mial-time computable functions satisfying (b) below. 

(b) (~/Cl,C2,C3, C 4 C Ln) (In(Cl) C In(c2)) and (In(ca) C In(c4)) 
dn(cl, c3) _> dn(c2, c4). If C1 = {Cl} and 6'2 = {c2} are clusterings con- 
taining only single clusters, then In(Cl) C_ In(c2) => Dn(C1) >_ Dn(C2). 

Property Pa requires that  the distance D of a clustering really is the 
minimum inter-cluster "distance" d between any pair of clusters, where 
d has a monotone property: If two clusters have distance d and points 
are then added to each, the distance d cannot increase. In other words, as 
clusters "grow," the distance between them shrinks, and D is the minimum 
of all these inter-cluster distances. 

It is not clear what is meant by the "distance" of a clustering C when C 
contains only a single cluster. Generally, one is only interested in cluster- 
ings that  contain more than one cluster. A possible way to deal with this 
is to simply let the value of G be zero for any such clustering, or to let the 
value of D be zero. For the sake of generality, we have chosen a weaker 
requirement, which is to allow D to be defined arbitrarily for one-cluster 
ctusterings, but to require that  D be monotone under generalization. Per- 
haps more natural, but  also more restrictive, would be to require that  the 



382 L. PITT AND R. E. REINKE 

value of D be the same for all one-cluster clusterings, or to let G be defined 
as a function of T(C)  alone when C has only one cluster. 

In steps 2-4 of the example, the algorithm merged monomials in an ob- 
vious way to produce new clusters. Also, the clusters produced by merging 
monomials were always maximally specific covers (for the points covered 
by the merged clusters). Property P4 is related to P2. It requires that we 
be able to generate, in polynomial time, an MSC for the union of any two 
sets of points in the problem space described by clusters: 

P r o p e r t y  P4. There is an effective procedure M such that for any n, M 
"merges" any two clusters c, c ~ E Ln. For all n, M and Ln must have the 
following properties: 

(a) For all c, e' C Ln, there is a unique MSC c" for In(c) U In(c'), and 
M(n ,  c, c') = c". 

(b) M runs in time polynomial in n and in the lengths of the statements 
c and c ~. 

(c) There is a polynomial q such that for any finite subset S of X~, if c 
is obtained by any (finite) number of merges of MSCs of subsets of S, 
then c has size at most q(n, IS]). 

Since the agglomerative algorithm successively "merges" clusters, it is 
possible that at some point~ the description of a cluster is larger than any 
given polynomial in the size of S. Part (c) assures that this event will not 
occur. Note that no reasonable restriction on the size of the statement 
M(n ,  c, c') in part (b) is sufficient to prevent this event. For example, since 
there are at most ]SI iterations, even if we require that the length of the 
statement M(n ,  c, c 1) is at most the sum of the lengths of the statements 
c and c ~, it is possible that the final clustering obtained by the algorithm 
will have size exponential in ]S]. By requiring part (c) in addition to part 
(b), we guarantee that any statement produced by the algorithm has size 
at most polynomial in the size of S. 

In many cases (e.g., when clusters are conjunctive descriptions over any 
collection of attributes), the size of descriptions will decrease as clusters 
become more general. In other cases (e.g., axis-aligned rectangles in Eu- 
clidean spaces), description size will remain constant. In cluster analysis, 
property/)4 is trivially satisfied, since merging is done by union (of sets of 
points), and the largest statement is exactly S. 

Property P5 is based on the observation that, in the monomial exam- 
ple, clusters became less cohesive (more general or less tight) as merges 
occurred. We need the following definition: 

Def in i t ion  11 Given Xn,  L~, and In, the relation ~-n on Kn is defined 
by: For all C , C  I E Kn, C ~_~ C' iff (Vc C C)(3c t C C') In(c) C_ In(c'). 
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f f  C ~_n C' we say C is less general than, more specific than, and is a 
specialization of, C ~, and equivalently, that C ~ is more general than, less 
specific than, and is a generalization of, C. 

When restricted to prime clusterings with respect to a given set S, <3 n is 
a partial order on Kn. 

P r o p e r t y  Ph. The tightness functions T = {Tn} are a uniformly polyno- 
mial-time computable family of functions, and for all n, the function Tn 
is monotone nonincreasing under generalization, i.e., for all C, C r E Kn, if 
C <2n C' then T~(C) >_ Tn(C'). 

Property P5 asserts that if one clustering is a generalization of another, 
then the more general clustering is at most as tight as the less general 
one. Because we have defined tightness as a function of clusterings and 
not of individual clusters, it is not immediately clear that this is a natural 
property. However, observe that the definition of the relation ~n  states 
that each cluster of the less general clustering is contained in some clus- 
ter of the more general clustering. Thus if Tn somehow depends on the 
"tightness" of particular clusters (e.g., if tightness of individual clusters is 
inversely related to the quantity or variety of elements covered), then the 
more general clustering contains clusters at most as tight as the clusters of 
the less general clustering. We would then expect that the overall value of 
T~ would be greater for the less general clustering. 

Finally, property P6 simply states that goodness has a very natural prop- 
erty: If one increases either distance or tightness while holding the other 
constant, then goodness should not decrease. In other words, tight, distant 
clusterings are best. 

P r o p e r t y  P6. The goodness functions ~ = {Gn} are a uniformly polyno- 
mial-time computable family of functions, and for all n, the function G~ 
is monotone nondecreasing in Tn and Dn. That is, if xl >_ x2 E range(Tn) 
and Yl >_ Y2 C range(Dn), then Gn(xl ,y l )  >_ Gn(x2~yl) and Gn(Xl,yl) >_ 
On(X1, Y2). 

3.3 Example clustering problems 

The properties P1 through P6 hold for several interesting conceptual 
clustering and cluster analysis problems that fall within our framework. In 
this section, we present some of these, without proof that they do indeed 
satisfy the properties. 

Monomial clustering. The properties P1-P6 were motivated by, and are 
natural generalizations of, properties held by the monomial clustering prob- 
lem. It is easily verified that these properties are satisfied by the mono- 
mial clustering problem as defined in Section 3.1. The properties also 
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hold for conjunctive conceptual clustering using multiple-valued attributes 
and internal disjunction (Michalski & Stepp, 1983). 5 In this case, the ini- 
tial clustering is the same as for monomials and the "refunion" operator 
(Michalski, 1983) can be used for merging. Natural extensions of the dis- 
tance and tightness measures in the example satisfy P3 and Ps, and these 
may be used with any objective function satisfying P6. 

Geometric clustering. Another interesting group of languages that have 
these properties are some geometric languages over Euclidean spaces. For 
example, the agglomerative algorithm can solve the axis-aligned rectangle 
clustering problem, defined by: 

,, X = {Xn}, where Xn is n-dimensional Euclidean space. 

* £ = {Ln}, where Ln is the set of n-dimensional rectangles with sides 
parallel to the n axes. 

. I -- {Is} is the standard interpretation: In(r), is the set of points of 
Xn that are contained in r, where r is a rectangle of Ln. 

• T = {Tn}, where Tn(C) for a collection of rectangles C could be any 
of: 

1. The inverse of the area of the union of the rectangles of C. 

2. The inverse of the area of the largest rectangle of C. 

3. The inverse of the maximum distance between any two points 
within any cluster, i.e., the inverse of the length of the longest 
diagonal. 

,, D -- {Dn}, where Dn(C) is the minimum pairwise "distance" dn be- 
tween any pair of rectangles of C, and dn is any metric that gets smaller 
as clusters grow. 6 Let Dn (C) = 0 if C has only one cluster. 

• ~ = {G~} is any objective function satisfying P6- 

The critical condition for geometric languages is that there exist, and 
one can find, a description of the smallest set representable in the language 
that covers a given set of points. For example, if the language consists 
of descriptions of all convex polygons in 2-dimensional Euclidean space, 
then it is easy to see that the agglomerative algorithm may be success- 
fully applied, since the convex hull of a set of points (which may be found 
in polynomial time) is contained in every convex polygon containing the 
points. However, if g = {Ln}, where Ln consists of descriptions of convex 
polytopes in n dimensions (i.e., a list of ( n -  1)-dimensional hyperplanes), 

5Some of the metrics used by Michalski and Stepp, e.g., "simplicity" and "sparseness", 
clearly do not satisfy properties P3 and Ps. 

6Some metrics d~ that  do not have this property include d,(r l ,r2)  = maximum dis- 
tance between any pair of points of r l  and r2, or the distance between the centers of r l  
and rz. 
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then property P2 (and P4) do not hold, because the length of a description 
of the convex hull of a set of s points in n dimensions (i.e., the length 
of the description of the MSC of a set of points) can be as large as s[~J 
(Edelsbrunner, 1987). If one is willing to relax the requirement that the 
clustering found have size polynomial in the dimension, then the agglom- 
erative algorithm can be used to find an optimal clustering. The MSCs are 
obtained by applying any algorithm for finding the convex hull of a set of 
points in n dimensions. 
Cluster Analysis. Within our framework, any cluster analysis problem 
trivially satisfies properties P1, /)2, and Pd. Whether properties P3, Ps, 
and P6 are satisfied will depend on the particular choice of the objective 
functions. Single linkage clustering (Anderberg, 1973), in which the dis- 
tance between clusters (dn in our framework) is the minimmn distance 
between points in the clusters, clearly satisfies the monotone requirement 
for distance metrics in property P3. Complete linkage clustering (dn is the 
maximum inter-point distance) clearly does not. Most reasonable choices 
of ~ will satisfy property P6. 

4. T h e  a g g l o m e r a t i v e  a l g o r i t h m  

We now formally introduce the agglomerative algorithm and prove that 
it solves any clustering problem satisfying properties P1 through /)6. In 
Section 4.2 we examine further characteristics of the algorithm, and in 
Section 4.3 we present results concerning variants of the tightness and 
distance measures. 

4.1 Algorithm A 

The algorithm we consider is the Central Agglomerative Procedure as 
described by Anderberg (1973). Variants of this method constitute the 
majority of the work on hierarchical clustering (Romesburg, 1984). Hier- 
archical clustering techniques are normally used to produce a classification 
tree over the object set, where leaves are individual objects and internal 
nodes represent clusters. We will instead be concerned with whether the 
technique finds a single clustering that is best under the objective rune- 
tion. In this sense, we are using the agglomerative/hierarchical procedure 
as an optimization technique (Everitt, 1980), but without fixing the num- 
ber of clusters beforehand. We are also allowing the algorithm to produce 
non-disjoint clusters, as in clumping techniques (Everitt, 1980). 

Table 1 specifies the basic agglomerative algorithm A. Given n and a 
finite nonempty set S C X~, the algorithm produces t _< IS I different clus- 
terings C1, C2,... ,Ct, by starting with the maximally specific cluster for 
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Table 1. Agglomerative algorithm A. 

INPUT(n, S) 
FOR each xi E S, compute ci, an MSC for {xi} 
C', ~'~p ~ {c~: x, ~ S }  
C1 ~-- PRIME(n, C~ e'~p, S) 
IF ICl] = 1 THEN done ~-- TRUE, ELSE done ~-- FALSE 
i~--1 
WHILE done ~ TRUE DO BEGIN 

i *-- i+l 
compute d,~(cj,ck) for each cj,ck C Ci-~ 
let c,c' e Ci-1 be such that Dn(Ci-1) = d~(c,c') 

(c and c' are the two closest clusters of Ci-1.) 
C~ emp +- Ci-, - {c, c'} U M(n, c, c') 

(C~ ~mp is Ci-i with clusters c and c' merged.) 
Ci ~ PRIME(n, C~ ~np, S) 

(eliminate any extraneous clusters.) 
IF IC~[ = 1 THEN done ~ TRUE 

END 
t ~ i (index of final clustering formed) 
OUTPUT any C E {C1,... Ct} such that Gn(C) is maximum. 

each point in S and successively merging clusters with minimum distance 
until a single cluster covering all of S is obtained. After  each merge, extra- 
neous clusters are eliminated. The output  of the algorithm is the clustering 
among C1, C2 , . . .  Ct with the best value. We will prove that  the algorithm 
solves any clustering problem (Z,  £, I ,  T, P, .~) that  satisfies properties 
P1 through P6- (The algorithm itself implicitly assumes tha t  properties 
P1, P~, P3 (a), and P4 hold.) 

T h e o r e m  1 I f  ( Z ,  £,  I ,  T ,  P, ~ ) is any clustering problem for which 
properties P1 through P6 are satisfied, then algorithm A solves ( Z ,  ~, I ,  
7", P, ~) in polynomial time. 

(~ternp is found in polynomial time. PROOF: By property P2, the clustering "~l 
Note that  d = {dn}, D = {On}, T = {Tn}, and ,~ = {Gn} are uniformly 
polynomial-t ime computable families (propert ies/ '3 ,  Ps, and P6), and tha t  
the merge operation M never produces a s ta tement  of length greater than 
q(n, ISI) (property P4 (b) and (c)). Subroutine PRIME runs in polynomial 
time by the comments following the introduction of property P1. Since 
there are t < IS I iterations (because ICi+ll < Icil), the algorithm runs in 
time polynomial in ISI and n. We need only show that  the algorithm is 
correct. 
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L e m m a  1 Let (Xn, Ln, In, Tn, Dn, Gn, S) be an instance of a clustering 
problem that satisfies properties P1 through P6. Let C E Kn be a prime 
clustering of S, a specialization of some best clustering, and suppose that C 
itself is not a best clustering. Let e, e' E C be such that Dn(C) = dn(c, e'), 
and let C' = C - {c,c'} U M(n,c,c ' ) .  (In other words, C' is obtained 
from C by merging two clusters with minimum distance dn.) Then C ~ is a 
specialization of a best clustering, as is PRIME(n, C ,  S). 

We first show that Theorem 1 follows from Lemma 1, and then prove 
Lemma 1. To prove the theorem, we need only show that at least one of 
the clusterings {C1, C2, . . . ,  Ct} is a best clustering. 

Suppose by way of contradiction that  none of the Ci's is a best clustering. 
By the definition of the maximally specific cover (MSC) of a set of points 
P,  any cluster that  covers P must cover a superset of the points covered by 

I'~temp is ~ternp consists of the MSCs for each point in S. Thus, "~1 the M S C . . ~  
a specialization of every clustering of S and therefore of a best clustering. 
Trivially, C1 is a specialization of a best clustering and is a prime clustering 
of S. By Lemma 1 and its definition, g-+ternp "~2 is a specialization of a best 
clustering, as is 6'2. Iteratively applying Lemma 1 and our supposition 
that  none of the Ci's are best, we have that  each of C1,C2,.. .  ,Ct is a 
specialization of a best clustering. (Each is also a prime clustering of S.) 
But this is a contradiction, for Ct cannot be a specialization of a best 
clustering without being a best clustering: since Ct has only one cluster, 
and only prime clusterings are candidate solutions, any generalization Chest 
of Ct must have exactly one cluster that  contains the single cluster of Ct. 
Further ,  Tn(Cbe~t ) < Tn(Ct) and Dn(Cbe~t ) < Dn(Ct) by properties P5 
and P3 (b). By ['6, Gn(Cbe~t) < Gn(Ct), and thus Ct is in fact a best 
clustering. It follows that  our supposition was wrong, and at least one of 
{C1, C2, . . . ,  Ct} must be a best clustering. • 

We now prove Lemma 1. Let Chest be a best clustering, with C ~ n Cbest, 
and C a prime clustering of S, but not a best clustering. Then Gn(C) < 
Gn(Cbest). 

Let c, c', and C' be as defined in the lemma. (Thus d,+(c, c') = Dn(C).) 
Since C<lnCbe~t , there are clusters b, b' ~ Chest such that  In(c) C_ In(b) and 
In(d) C_ In(b'). There are now two cases: 

CASE 1: b =  b t. In this case, the only cluster o f C  ~tha t  is not also a 
cluster of C is M(n,  c, c'). Observe that  In(c) U In(C') C_ In(b), and by 
the definition of M(n,  c, c') as maximally specific, In(M(n, c, c')) C_ In(b). 
Thus C' is a specialization of Cb~+t. Trivially, PRIME(n, C ,  S) is also a 
specialization of Cb~t, and the lemma is proved. 
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CASE 2: b -~ b'. In this 
note that: 

Dn(C) 

Since Tn(C) >_ Tn(Cbest) 

case, Tn(C) >_ rn(Cbest ) by property Ps, and now 

= dn(c, c') (by choice of c, c') 
~_ dn(b, b') (by property P3 (b)) 
~ Dn(Cbest ) (by property P3 (a)). 

and D~(C) >_ Dn(Cbest), by property P6, Gn(C) >_ 
Gn(Cbest), contradicting the hypothesis of the lemma that C is not a best 
clustering. Thus case 1 must hold, completing the proof of Lemma 1 and 
Theorem 1. • 

4.2 Propert ies  of  a lgor i thm A 

It is interesting to note that algorithm A is not a hill-climbing method, 
in that the value of the objective function may increase and decrease as 
the sequence of clusters C1,C2, . . . ,Ct  is formed. (Recall the monomial 
example in Section 3.1.) However, it is true that the measure of tightness 
Tn is monotone nonincreasing as each new clustering is examined. The 
function Dn is not necessarily monotone, because it is possible for Dn 
to increase when two clusters are merged (since the minimum distance 
is eliminated), and also to decrease (since the new larger cluster may be 
very close to some other cluster). It is for this reason that the algorithm 
must continue generating clusterings rather than stopping once the value 
of Gn decreases. Under some objective functions, the algorithm may hill- 
climb. For example, single-linkage cluster analysis problems (Anderberg, 
1973) define dn as the minimum "distance" between points of two clusters 
(where "distance" is any metric). If such a problem satisfies properties 
P~ P6, then the agglomerative algorithm will hill-climb on the objective 
function. 

It is also worth noting that, for each k _< s, algorithm A finds the best 
clustering with at least k clusters. We will show that for 1 _< k <_ s, 
the best clustering with at least k clusters is in the set {C1, C2, . . . ,  Ct}. 
This is achieved by proving, for each fixed k _< s, the following variant of 
Lemma 1. Let bestk mean "best among all prime clusterings of S with at 
least k clusters." 

L e m m a  2 Let (X~, Ln, In, Tn, Dn, Gn, S) be an instance of a clus- 
tering problem that satisfies properties P1 through P6. Let C C Kn be a 
prime clustering of S containing at least k clusters. Further, let C be a 
specialization of some bestk clustering, and suppose that C itself is not 
a bestk clustering. Let c,c' E C be such that Dn(C ) = dn(c,c'), and let 
C' = C - {c, c'} U M(n,  c, c'). (In other words, C' is obtained from C by 
merging two clusters with minimum distance dn.) Then C' is a specializa- 
tion of a bestk clustering, as is PRIME(n, C', S). 
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Lemma 2 differs from Lemma 1 only in tha t  "best clustering" has been 
replaced with "bestk clustering" and the additional hypothesis that  C has 
at least k clusters has been added. The proof of Lemma 2 is nearly identical 
to the proof of Lemma 1. (One needs the fact that  C has at least k clusters 
to arrive at the contradiction in Case 2.) We can now prove 

T h e o r e m  2 If (~(, ~, I, T, D, ~) is any clustering problem for which 
properties P1 through P6 are satisfied, then for each k <_ IS], the set of 
clusterings {C1, C 2 , . . . ,  Ct} produced by algorithm A contains a bestk clus- 
tering (if one exists). 

P R O O F :  To prove Theorem 2, we assume that  for some k < ISI, a bestk 
clustering exists (one could fail to exist because every prime clustering 
could have fewer than k clusters), and that  none of the (prime) clusterings 
{C1, C 2 , . . . ,  Ct} is a bestk clustering. We then obtain a contradiction. 

{-~temp g-demp t~temp C l ,  "-J2 ,C2 ,  ~ Ct ,  Consider the sequence of clusterings "1 , . . .  "~t , 
produced during the run of algorithm A. Since C t~'tcrnp is such that. 

(a) C has at least k clusters and 

(b) C is a specialization of a bestk clustering, 

there is a rightmost element R of this sequence of clusterings that  satisfies 
(a) and (b). There are three cases, each resulting in a contradiction: 

CASE 1 : For some i, 1 < i < t, R = Ci. Since R is a prime clustering of S, 
by (a), (b), our assumption that  none of the Ci's is a bestk clustering, and 

• t~temp Lemma 2, we conclude that  ~.i+l is a specialization of a bestk clustering. 
T h e n  (~temp (~temp instead of ~'i+1 must have less than k clusters, otherwise R = "~i+l 

(uternp 
Ci. Since Ci and ' J i+ l  differ in number  of clusters by exactly one, it follows 
that  Ci has exactly k clusters. Let Cb¢~t be a (prime) generalization of Ci 
that  is a bestk clustering. Then Cb~..,t must have exactly k clusters, each a 
superset of a different cluster of Ci. Thus T,~(Ci) >_ Tn(Cb¢.~t), Dn(Ci) >_ 
Dn(Cbe.~t); and Gr~(Ci) >_ G~(Cbe.,t), contradicting the assumption that  Ci 
is not a bestk clustering. 

CASE 2: R -- Ct. Since Ct has exactly one cluster, k = 1. In other words, 
Ct has exactly k clusters, and the reasoning concluding case 1 above may 
be employed. 

ternp t.-demp CASE 3: For some i, 1 _< i _< t, R = C i . Since "~i is a specialization 
of some bestk clustering Cb~t, so is Ci. Then Ci must have less than k 
clusters, otherwise R = Ci. Both Ci and Cb~t are prime clusterings of S, 
so Chest can have at most the same number  of clusters as C-~ (one superset 
of each c E (7./). Therefore, Cb~t has less than k clusters, and is not a bestk 
clustering, a contradiction. 
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Since in each case we have arrived at a contradiction, our assumption 
that none of the clusterings {C1, C2 , . . . ,  Ct} is a bestk clustering must be 
false, completing the proof of Theorem 2. • 

A natural question is whether it is possible to find a best clustering with 
exactly k clusters. Certainly this is at least as difficult as finding a best 
clustering with at most k clusters, since an algorithm for the former prob- 
lem could be run k times to find best clusterings with exactly 1, 2, 3 , . . . ,  k 
clusters, and the best could be chosen as an answer to the latter problem. 
We show that there exists a clustering problem satisfying P1-P6 such that 
unless P = NP, no polynomial-time algorithm is guaranteed to find, for 
all instances of the problem, a best clustering with at most k clusters. 

It would appear that a simple reduction from the NP-hard CLUSTER- 
ING problem (Garey & Johnson, 1979) would be sufficient to show this. 
However, due to the definition of an "instance" for each problem, a straight- 
forward approach relating the "distance" function of CLUSTERING to any 
of our measures T, P, or ~ will not work. 

We sketch a proof that there is a clustering problem ():', £, I ,  T', P, 
~) satisfying P1 through P6 such that for each number k > 3, the problem 
of finding for all instances, (Xn, Ln, In, Tn, Dn, Gn, S), a best clustering 
among those with at most k clusters is NP-hard. Our example is a cluster 
analysis problem, thus for each n, L n  : {C : C is a finite subset of Xn}, 
and In is the identity function. As in all cluster analysis problems within 
our framework, properties P1, P2, and P4 hold immediately. 

Let k _ 3 be given, and let )C, T, P, and ~ be defined in the following 
manner. ~ = {X2v}, where X2v is the set of (even) length 2v strings. A 
given string of length 2v will represent a vertex in an undirected graph of 
v vertices if the first half of the string contains a single "1" b i t .  The single 
"1" among the first v bits indicates which vertex it is, and the remaining v 
bits give adjacency information with other vertices, i.e., a "1" in position 
v + j  indicates that the vertex is adjacent to vertex j .  Note that any graph 
with v vertices may be represented by a finite set of points of X2v, although 
not every finite subset of X2v represents a graph. For example, the graph 
of 5 vertices with edges (1, 2), (1, 3), (1, 5), (2, 3), (4, 5), (3, 5) corresponds to 
the subset of X10 given by the elements {Xl, x2, x3, x4, Xh} in Table 2. We 
have inserted a comma between the 5th and 6th bits and have parenthesized 
each element to aid the interpretation. 

Given as input any even number 2v and finite subset S of X2v, it is 
decidable in polynomial time whether S represents a subset of the vertices 
of some undirected graph of v vertices, or whether no undirected graph 
has a subset of vertices represented by the elements of S. (What must be 
checked is that (1) each string of S has a single "1" among the first v bits; 
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Table 2. A graph represented by bit strings. 

x~ = (10000,01101) 
x2 = (01000,10100) 
x3 = (00100,11001) 
x4 = (00010,00001) 
x5 = (00001,10110) 

(vertex 1 adjacent  to 2, 3, and 5) 
(vertex 2 adjacent  to 1 and 3) 
(vertex 3 adjacent  to 1, 2, and 5) 
(vertex 4 adjacent  to 5) 
(vertex 5 adjacent  to 1, 3, and 4) 

(2) for each i _< v, there is at most one string in S with a single "1" in 
position i; and (3) if a string representing a vertex numbered i has a "1" 
in position v + j ,  then the string representing vertex j (if it appears in S) 
has a "1" in position v + i.) 

For a clustering C, let T2v(C) = 0 if the union of the clusters of C is 
not a finite subset of X2v representing a subset of the vertices of some 
undirected graph, or if there is a cluster c c C such the representations 
of two vertices that are adjacent in the represented subgraph are both 
contained in c. Let T2v(C) = 1 otherwise. In the example in Table 2, 
Tlo({{Xl, x4}, {x2, xs}}) = 1, since the elements of the clusters are consis- 
tent with some 5 vertex undirected graph, and no two adjacent vertices 
appear in any single cluster. Oil the other hand, Tlo({{Xl, x2}, {x3}}) = 0, 
since in any graph that contains the vertices Xl,X2, and x3, Xl is ad- 
jacent to x2 and they appear in the same cluster. As a final example, 
Z4({ { 1001 }, {0100} }) = 0, because the adjacency information between ver- 
tex 1 and 2 in the two vertex graph represented is inconsistent. 

Let D2v be the constant function D2v(C) = 2v, and let G2v(C) = 
min(T2v(C), D2~(C)). Now it is easily verified that the clustering prob- 
lem (.~, £, J, T, D, .~) satisfies /2.3, P5 and /:'6- Since this is a cluster 
analysis problem, it also satisfies P1, P2, and P4. 

We reduce the NP-hard graph k-colorability problem (Garey & Johnson, 
1979) to the problem of finding a best solution among all clusterings having 
at most k clusters for the problem (2,  £, r T, P, ~). For each k _> 3, the 
graph k-colorability problem is to determine whether there is a coloring 
of the vertices of a graph using at most k colors, so that no two adjacent 
vertices have the same color. Given a graph ~q = (V, E) with v vertices, we 
form an instance (X2v, L2~, I2~, T2v, D2v, G2~, S) of the clustering problem 
above by letting the set S c Xzv to be clustered be exactly those elements 
of X~v that represent vertices V of the graph .4 with adjacency information 
given by E. A simple argument shows that the graph ~q is k-colorable iff 
there is a clustering C for this instance with at most k clusters such that 
G2v(C) = 1. (The clusters consist of representations of vertices to be 
colored with the same color.) Otherwise, any clustering for this instance 
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with at most k clusters has G2v(C) = O. It follows that for each k, any 
algorithm for solving (~,  £, I ,  T, P, ~) by finding the best clustering with 
at most k clusters can be used to solve the graph k-colorability problem. 
We have thus proved 

T h e o r e m  3 For all k > 3, there are clustering problems (Z, £, I ,  T, D, 
~) satisfying properties P1 through P6 for which, unless P = NP,  there 
exists no polynomial-time algorithm for finding a best clustering among all 
clusterings with at most k clusters for every instance (Xn, Ln, In, Tn, Dn, 
Gn, S). 

4.3 Variants  of T and D 
Although Theorem 1 shows that only very general assumptions on the 

functions ~ are needed, the results apply only when the functions T satisfy 
property P5 and the functions P satisfy property P3. Measures of tight- 
ness such as "density" of individual clusters allow the tightness to increase 
as a clustering is generalized, since "sparse" clusters may become "dense" 
when new points are added. Thus property P5 is violated for this type of 
measure. Similarly, if the distance functions {Dn} are defined as the maxi- 
mum intercluster distance dn, property P3 is no longer satisfied. Below we 
show that (assuming P ~= NP) P5 is necessary in the sense that properties 
PI, P2, P3, P4, and P6 alone are not sufficient for a clustering problem to be 
solvable in polynomial time. We conclude by observing that if the functions 
{Dn} are in fact the maxinmm intercluster distance, then the clustering 
problem is trivial (assuming P5 still holds). 

T h e o r e m  4 There is a clustering problem (Z, ~, I,  T, P, ~) satisfying 
P1, P2, P3, P4, and P6 that is not solvable in polynomial time unless P = 
NP.  

PROOF: We need only reduce INDEPENDENT SET, an NP-hard  problem 
(Garey & Johnson, 1979), to a cluster analysis problem satisfying prop- 
erties P3 and P6. An instance of INDEPENDENT SET is a graph A = (V, E) 
and a positive integer k _< ]V I. The problem is to determine if ,4 contains an 
independent set of size k or more, i.e., a subset V r c_ V such that IV' I _> k 
and such that no two vertices of V' are joined by an edge in E. 

Let the clustering problem (Z, £, I ,  T, P, ~) be defined as in the proof 
of Theorem 3, except that T2v has the modified definition given by: T2v(C) 
= 0 if the union of the clusters in C is not a finite subset of X2v representing 
all of the vertices of some undirected graph with v vertices, or if there is 
a cluster c E C such the representations of two vertices that are adjacent 
in the represented graph are both contained in c. T2v(C) = the number of 
elements in the largest cluster of C otherwise. 
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(2", £, J, T, D, .~) satisfies properties P1,/)2, Pa, P4, and P6, since only 
the definition of T has been changed from the proof of Theorem 3, and 
property/)5 has been dropped. Also note that for each C, D2v (C) = 2v >_ 
T2v(C), so G2v(C) = T2v(C). It is now easily shown that a graph ~ has 
an independent set of size k iff the instance (X2v, L2v, I2v, T2v, D2~, G2~, S), 
with S representing the graph ,4, has a solution C with G2v(C) = k. • 

Finally, suppose that we modify part (a) of property P3, so that Dn 
is now the maximum inter-cluster distance dn(c,e I) among all clusters 
c ,d  E C, where dn satisfies part (b) of property P3- Then any cluster- 
ing problem (X, £, J ,  T, P, ~) satisfying properties P2, Ps,/°6, and this 
modified definition of P3, is trivially solvable: the clustering given by C1 
in algorithm A must be a best clustering, since it is a specialization of ev- 
ery best clustering; tightness cannot increase under generalization, nor can 
distance, by the modified property P3. Thus Gn cannot, increase either. 

5. Conclusion 

In this paper we have examined the computational characteristics of an 
agglomerative clustering method. We can summarize the main results as 
follows: 

• The agglomerative algorithm will find a best (conceptual) clustering of 
a set of points if the similarity measure (for clusterings) and the dis- 
similarity (between clusters) are monotone with respect to generaliza- 
tion, the objective function is monotone with respect to similarity and 
dissimilarity, and the language is tractable. In this case, "tractable" 
means that the clusterings of the language are not too large, that it 
is possible to efficiently determine whether a point is in a cluster, and 
that there exists (and it is possible to find) the most specific clustering 
in the language satisfying certain conditions. The "identity" language 
for cluster analysis trivially has these properties. 

• Under these same conditions, the agglomerative algorithm will find a 
best clustering with at least k clusters for any fixed k less than the size 
of the sample set being clustered. 

• Finding the best clustering with at most k clusters is NP-hard under 
these conditions. 

• If the measure of similarity is not monotone with respect to generaliza- 
tion, then finding an optimal clustering is NP-hard, even if the other 
monotone properties and the language properties are satisfied. 

These results have several interesting implications. First, the agglom- 
erative algorithm is more widely applicable than one would expect from 
such a simple technique. Under straightforward and intuitively natural 
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conditions on the metric, the objective function, and the cluster descrip- 
tion language, it finds a best clustering in polynomial time. The language 
restrictions are satisfied by conjunctive, attribute-based languages, includ- 
ing those using internal disjunction. They also apply to several interesting 
geometric languages. They do not hold for the existentially-quantified con- 
junctive predicate calculus statements that are sometimes used to represent 
structured objects (Stepp, 1987a; Larson, 1977). 

Finally, as one would expect, it seems that finding a best clustering 
with a given number of clusters is hard. The implication is that clustering 
algorithms which try to find a best clustering of a certain size must be con- 
tent with sub-optimal results. It also confirms the intuition that heuristic 
techniques and domain knowledge are probably necessary to produce good 
solutions. 

We would like to extend the results to metrics that, for example, include 
notions such as density or average similarity over clusters. Additionally, 
it would be useful to be able to weaken the restrictions on distance (for a 
clustering) so that it need not be the minimum inter-cluster distance. 

One problem we have not addressed here is the notion of predictive 
clustering, along lines of learnability as described by Valiant (1984) and 
Blumer, Ehrenfeucht, Haussler, and Warmuth (1986). (See also Kearns, 
Li, Pitt, & Valiant, 1987). The idea is to develop a clustering that is "good" 
for an entire space X (under an unspecified probability distribution), given 
only randomly generated points from X. We have definitions that seem 
suitable for this problem, and we have some preliminary results indicating 
that this problem is significantly more difficult than nonpredictive cluster- 
ing. These results may be presented in a future paper. 
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