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EDITORIAL 

Toward a Unified Science of Machine Learning 

Diversification and unification 

Machine learning is a diverse discipline that acts as host to a variety of re- 
search goals, learning techniques, and methodological approaches. Researchers 
are making continual progress on all of these fronts - tackling new problems, 
formulating innovative solutions to those problems, and devising new ways to 
evaluate their solutions. Such variety is the sign of a healthy and growing field. 

However, diversification also has its dangers. Subdisciplines can emerge 
that focus on one goal or evaluation scheme to the exclusion of others, and 
similarities among methods can be obscured by different notations and termi- 
nology. Thus, it is equally important  to search for basic principles that  unify 
the different paradigms within a field. Just as the twin forces of gravity and 
pressure hold a star in dynamic equilibrium while generating energy, so the 
joint processes of diversification and unification can hold a science together 
while fostering progress. 

In this editorial, I examine seven dichotomies that have emerged in recent 
years to partit ion the field of machine learning. I begin with three issues 
related to research goals and evaluation methodologies, then turn to four more 
substantive issues about learning methods themselves. In each case, I argue 
that  long-term progress will occur only if we can find ways to unify these 
apparently competing views into a coherent whole. 

Accuracy and efficiency 

Learning involves some change in performance, 1 and one of the main goals 
of machine learning is to develop algorithms that  improve their performance 
over time. However, there are many different aspects of performance. For 
instance, early work on empirical methods emphasized classification accuracy 
on training sets, while more recent work has focused on transfer of accuracy 
to separate test sets. In contrast, most work on analytical learning has been 
concerned with increasing the efficiency of the performance system. 

In principle, researchers could continue to pursue these goals independently, 
but a broader view may lead to deeper insights about the nature of learning. 
In cognitive psychology, accuracy and efficiency have been two of the main 
performance measures for decades, and experimental studies have revealed a 
variety of empirical laws. One of the most interesting relations states that  there 

1Here I am borrowing psychology's distinction between p e r f o r m a n c e  - an agent's behavior 
at a given time - and l e a r n i n g  - the changes in that behavior over time. In this framework, 
the phrase 'learning performance' is a contradiction in terms. 
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is a tradeoff between the speed at which one executes a skill and the accuracy 
with which one carries it out. Not all relations take the form of tradeoffs, but 
they are natural candidates in the search for regularities. 

The same notion can be applied to the behavior of intelligent artifacts. 
Rather than examining performance measures in isolation, one can look in- 
stead for relations between these measures. For instance, Ellman (1988) has 
noted a tradeoff between efficiency and accuracy in constructing approximate 
explanations for analytical learning. Many more such studies will be necessary 
before we can achieve a unified theory of learning. One need not limit this 
approach to performance measures; it can be applied equally well to other as- 
pects of learning, such as efficiency of the learning algorithm and complexity 
of the acquired knowledge structures (Iba, Wogulis, & Langley, 1988; Clark 

Niblett, 1989). Researchers should not hesitate to borrow tools and con- 
cepts from other fields, such as cognitive psychology and complexity analysis, 
in pursuing these issues. 

Incremental and nonincremental learning 

A second goal-related issue involves the distinction between incremental and 
nonincremental learning. Researchers who explore the former approach are 
typically concerned with developing plausible models of human learning, with 
agents that must interact with a dynamic environment, or with the efficiency of 
the learning mechanism. In contrast, those who employ nonincremental learn- 
ing methods are typically concerned with automating the process of knowledge 
acquisition for expert systems. 

Despite these differences in motivation, researchers in both paradigms have 
much to learn from each other. Incremental and nonincremental systems often 
use the same basic learning operators and produce similar results. In many 
cases, one can create incremental variants of nonincremental algorithms, as 
Schlimmer and Fisher (1986) have shown for Quinlan's (1986) ID3 system. 
Presumably, many incremental learning methods also have nonincremental 
counterparts. 

In this view, the dichotomy is not between different methods, but between 
different versions of the same method, and the interesting questions involve 
the behavioral differences between these variants. Does the incremental version 
always acquire the same knowledge structures as the nonincremental one? How 
many instances does each version require to reach asymptotic behavior? How 
much total processing time does each use to reach this level of performance? 
As with accuracy and efficiency, these issues transcend machine learning, and 
researchers should apply results from complexity analysis and other fields as 
appropriate. Again, the answers to these questions may involve some form 
of tradeoff, but the exact relation between such methods is best answered by 
careful analysis and systematic experimentation. 

Theoretical and experimental studies  

In recent years, machine learning has made rapid strides along two method- 
ological fronts. New definitions of learnability (Valiant, 1984) and bias (Haus- 
sler, 1988) have led to wide-ranging formal results on inductive learning tasks 
and methods. Over the same period, experimental studies of learning algo- 
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rithms - on both natural and artificial domains - have led to tentative empirical 
laws of their behavior (Kibler & Langley, 1988). Both trends are encouraging, 
since they place the field on a more sound scientific footing. 

However, more mature sciences attempt to integrate theory and experiment. 
For instance, theoretical physicists make predictions that are tested by experi- 
mental physicists, and when prediction and observation differ, the theory must 
be revised. To date, such cooperation between theoretician and experimental- 
ist has been rare in our field, though such exchanges would be a positive 
development. 

Some may argue that machine learning is inherently different from the nat- 
ural sciences. Because it studies artifacts over which one has complete control, 
there is no need for experimentation, and formal analysis should suffice. But 
this view ignores the fact that all theories rely on assumptions that may or 
may not hold when applied to actual algorithms or real-world domains. Test- 
ing one's theoretical predictions through experiments lets one gather evidence 
in favor of correct assumptions, and it can point toward modifications in the 
case of faulty ones. Long-term progress in machine learning will depend on 
such interaction between the theoretical and experimental paradigms. 

Just i f ied and  unjust i f ied learning 

A more substantive issue concerns the nature of the learning process. Em- 
pirical learning methods extend a system's original knowledge base, leading it 
to behave differently on some situations than it did at the outset. Yet such 
methods involve an inductive leap from instances to general rules or schemas, 
and this leap is inherently unjustified. No matter how many days the sun rises, 
there is no proof that it will rise the next day. 

In contrast, many analytic methods simply compile the results of a proof into 
a different form. The resulting rule is justified, in that it does not change the 
deductive closure of the system's knowledge (Dietterich, 1986). As a result, 
most analytic techniques have no means for moving beyond the knowledge 
they are given. The rules they generate may alter their processing efficiency, 
but these rules do not change the system's external behavior, as do inductive 
learning methods. 

However, both of these criticisms break down on close inspection. At least 
for humans, very little knowledge of domains is deductively valid; most infer- 
ence rules are heuristic in nature, with some being more plausible and others 
less (Collins & Michalski, in press). Because plausibility is not transitive, a 
compiled rule that is based on many plausible ones may itself be quite im- 
plausible. Thus, in general one should empirically test the adequacy of rules 
learned through analytic methods, and this reduces their distinction from rules 
acquired through empirical techniques (Pazzani, 1987). 

The other claim - that analytic methods cannot lead to behavioral changes 
- also holds only under unrealistic assumptions. All performance systems 
have effective limits on their memory and processing time. As a result, the 
addition of rules that reduce memory load or increase efficiency can allow 
successful completion of tasks that were not possible before learning (Neves 

Anderson, 1981). Thus, analytic methods can lead to changes in external 
behavior, though in different ways than do empirical techniques. 
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These arguments do not reduce the very real differences between analytic and 
empirical learning methods, but they do show that neither approach is superior 
to the other in any basic sense. Moreover, they suggest that progress lies in 
the direction of attempts to unify these paradigms within a single framework, 
rather than in emphasizing one at the expense of the other. There is certainly 
value in identifying different learning methods and analyzing them in isolation, 
but such idealizations should be preludes to unified theories rather than ends 
in themselves. 

Knowledge-intensive and knowledge-free learning 

A related issue involves the role of knowledge in learning. Some researchers 
attempt to minimize the knowledge given to their learning systems, aiming 
for general methods that succeed in many domains. Others follow the expert- 
systems philosophy, arguing that domain knowledge can (and should) be used 
to constrain learning, just as it does performance. 2 Clearly, this is more of a 
continuum than a dichotomy. All learning systems start with some knowledge 
of their domain, even if this consists only of possible attributes and their values. 
On the other hand, no learning system begins with all knowledge of its domain, 
for there would be nothing left to learn. 

This continuum suggests a different set of research questions than the tradi- 
tional view. Rather than arguing whether the use of background knowledge is 
desirable, one can examine how learning varies as a function of such knowledge. 
The simplest approach would consider how the amount of domain knowledge 
affects learning rate and other behavioral measures. Theoretical results on in- 
ductive bias (Haussler, 1988) and experimental results with empirical methods 
(Drastal & Raatz, 1988) already exist, but more studies are needed for both 
empirical and analytical techniques. 

Another question involves the quality of domain knowledge and its effect on 
learning. Most work on knowledge-intensive learning has implicitly assumed 
that the background knowledge is both correct and relevant to the learning 
task. However, these assumptions will not always hold. We need to develop 
learning algorithms that can ignore irrelevant knowledge and recover from 
incorrect biases (e.g., Utgoff, 1986), and we need studies that measure these 
abilities. 

This goal suggests the possibility of learning systems that start with lit- 
tle knowledge and acquire their own domain theories. In fact, many existing 
methods are incremental, and thus alter their knowledge base after each train- 
ing instance (e.g., Schlimmer & Fisher, 1986). After an incremental induction 
system has seen a hundred instances, its 'background knowledge' may be quite 
different than at the outset, and this will affect its response to successive in- 
stances. Recent work on representation change (e.g., Schlimmer, 1987) and 
concept formation (e.g., Gennari, Langley, &= Fisher, in press) provide sim- 
ple examples of this point, but we are still far from methods that can induce 
the type of domain theories used by analytic techniques. Nevertheless, such 
approaches begin to blur the distinction between 'knowledge-intensive' and 
'knowledge-free' learning. 

2This second view can be applied both to analytic methods, which transform domain 
knowledge into some other form, and to empirical methods, which use domain knowledge to 
rewrite instances in another language. 



UNIFIED SCIENCE OF MACHINE LEARNING 257 

Cases and abstractions 

Yet another dichotomy revolves around the form of knowledge acquired dur- 
ing learning. Traditionally, most researchers have assumed that the learner 
should store some form of general rules or abstractions that summarize expe- 
rience. More recently, others have proposed the storage of individual instances 
or cases, combined with some form of partial matching scheme that lets one 
apply these cases to new situations (e.g., Kibler & Aha, 1987). This issue 
crosses the empirical/analytic boundary, since one can modify either approach 
to handle case representations. 

The case-based approach has highlighted some important concerns that ma- 
chine learning has historically avoided, including issues of indexing and re- 
trieval. However, the extreme version of this approach also ignores the real 
advances made over the years in methods for forming and using abstractions. 
A more interesting approach combines the two paradigms, storing certain cases 
but also using abstractions to index them and aid in retrieval. Recent work 
along these lines (Kolodner, 1983; Fisher, 1987) shows that apparently an- 
tithetical schemes can be reconciled with little effort, to the benefit of both 
frameworks. Such integrated approaches provide a good role model for the 
rest of machine learning. 

Symbolic and subsymbolic learning 

A final distinction concerns the level at which one represents instances and 
acquired knowledge. Many researchers in machine learning employ symbolic 
representations to describe both instances and rules. In some cases, these in- 
volve complex logical or relational expressions, but a significant fraction of the 
work on inductive learning has employed attribute-value or featural represen- 
tations of knowledge. However, inductive techniques also occupy a central role 
in other research paradigms, such as neural networks and genetic algorithms. 
Some researchers in these areas have argued that their methods employ sub- 
symbolic representations, which are finer grained and thus more flexible than 
symbolic schemes (Belew &= Forrest, 1988). 

However, on closer inspection, the differences between symbolic and subsym- 
bolic systems are more superficial than actual. In many cases, the inputs given 
to 'subsymbolic' techniques are equivalent to the inputs provided to 'symbolic' 
induction methods. The input nodes of a neural network correspond directly 
to the Boolean features often used to describe instances for rule-induction 
and decision-tree algorithms, and attribute-value representations can be easily 
translated into the same format. The feature vectors given to classifier systems 
(Belew ~ Forrest, 1988) can be mapped across in a similar fashion. 

Neither are the hidden units of a neural network any less symbolic than the 
internal nodes of a decision tree or a concept hierarchy. All can be viewed 
as functions over the space of instances, and thus represent concepts, which 
are inherently symbolic. The hidden units in a connectionist system need not 
correspond to English words, but this does not make them any less conceptual 
or any less symbolic. Similar arguments hold for the bit vectors generated 
internally by classifier systems. The presence of weights on links or rules does 
not distinguish these methods either, since many 'symbolic' methods employ 
them as well (Schlimmer, 1987; Fisher, 1987). 
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This does not mean that finer-grained representations are useless. Indeed, 
they may let one acquire concepts unattainable with coarser schemes, and they 
may lead to powerful emergent effects. However, the real issue is one of the 
grain size, and not whether the representation is 'symbolic.' Furthermore, 
there is no special property of 'subsymbolic' methods that make them better 
able to handle fine-grained representations; traditional 'symbolic' techniques, 
such as methods for inducing decision trees, can be run on them as well. 

There do exist substantial and interesting differences among neural net- 
works, genetic algorithms, and 'symbolic' induction methods. Their learning 
algorithms, performance elements, and representations of knowledge differ in 
significant ways, and their inductive biases also appear to be quite different. 
However, all can be applied to the same class of induction tasks, and they can 
be compared to one another both experimentally and analytically. Future re- 
search on induction should attempt to see beyond the notational and rhetorical 
differences that divide these paradigms, attempting to understand the relative 
abilities of each approach rather than claiming at the outset that they are 
inherently different. Such work may even lead to novel ways of combining the 
inductive biases of different methods (Utgoff, 1988). 

Toward a unified science of  machine learning 

In summary, research developments in machine learning have led to fuller 
understanding in many areas, but they have also led to paradigmatic splits 
within the field. Our emerging discipline has reached a crossroads. We can 
continue to pursue separate goals, invoke different methodologies, and develop 
disconnected theories, eventually leading to a wide array of subfields with few 
common concerns, concepts, or methods. This would not be a terrible fate, 
since progress would continue, though only in the narrow sense of that term. 

Alternatively, we can explore relations between various goals, attempt to 
combine methodologies, and search for integrated theories of learning that cross 
the paradigm boundaries which have formed in recent years. Not all learning 
researchers need devote full time to this endeavor, and in some cases, bridging 
the gap may involve little more than using new terminology or seeing methods 
in a new light. Some encouraging signs of cross-paradigmatic research have 
already started to emerge, but more remains to be done, and I invite experts 
and novices alike to join in the effort. This quest would result in a broader 
sort of progress, ultimately leading to a unified science of machine learning. 

Pat Langley 
University of California, Irvine 

LANGLEY@CIP.ICS.UCI.EDU 
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