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A b s t r a c t .  This paper describes a heuristic approach to the discovery of useful 
macro-operators (macros) in problem solving. The approach has been implemented 
in a program, MACLEARN, that has three parts: macro-proposer, static filter, and 
dynamic filter. Learning occurs during problem solving, so that performance im- 
proves in the course of a single problem trial. Primitive operators and macros are 
both represented within a uniform representational framework that is closed under 
composition. This means that new macros can be defined in terms of others, which 
leads to a definitional hierarchy. The representation also supports the transfer of 
macros to related problems. MACLEARN is embedded in a supporting system that 
carries out best-first search. Experiments in macro learning were conducted for two 
classes of problems: peg solitaire (generalized "Hi-Q puzzle"), and tile sliding (gen- 
eralized "Fifteen puzzle"). The results indicate that MACLEARN'S filtering heuristics 
all improve search performance, sometimes dramatically. When the system was given 
practice on simpler training problems, it learned a set of macros that led to successful 
solutions of several much harder problems. 

1. Introduct ion  

In many  domains, problem solving involves considering alternative sequences 
of operators. For such tasks, it is often profitable to gather certain subse- 
quences into clusters or chunks, since it enables a speedier and more efficient 
search for a correct or desired solution. Such subsequences of operators are 
called macro-operators, or macros; each macro may be treated as a whole and 
may be regarded as just another operator to be used in problem solving. 

There are two general approaches to improving search. One is to decrease the 
branching factor of the search tree, the other is to shorten the effective length 
of the solution path.  Macro-operators implement the second idea by allowing 
the application of operator  sequences as single steps. However, defining new 
macros also increases the branching factor of the search, which suggests that  
some selectivity should be exercised in their acquisition. 
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The discovery of macros may be regarded as a form of learning by compo- 
sition, as in Iba (1986). The present paper explores macro discovery in the 
context of puzzle solving, a class of domains in which it proves very useful. A 
heuristic approach to the discovery of macro-operators has been implemented 
in MACLEARN, a program that solves problems by searching for operator se- 
quences that achieve a desired goal. These operators may be primitive (e.g., 
the basic moves in board puzzles) or they may be macros defined by the system 
itself. 

MACLEARN's macros are abstracted versions of compiled move sequences, 
which it proposes using variants of the peak-to-peak heuristic described in 
Iba (1985). The system also employs several types of static filtering, including 
checks for redundancy (equivalence) of macro-operators, limits on the allowable 
expanded lengths of macros, and a test on the post-conditions of macros. In 
addition, dynamic filtering deletes those macros which are never used as part of 
a solution. By default, MACLEARN exhibits within-trial learning, since macros 
are discovered in the course of a problem-solving trial, and macros learned 
early on may prove useful at later stages of the search. In an alternate mode, 
the system does post-trial learning, in which newly defined macros are not used 
during the current trial, but only on subsequent problem trials. 

In order to test this approach to macro learning, MACLEARN was applied 
to two classes of puzzles: peg solitaire and tile sliding. The principal results 
were that the system successfully learned macros which enabled it to solve 
the full "Hi-Q" puzzle (peg solitaire) and the "Fifteen puzzle" (tile sliding), 
as well as variations; that some simple heuristics for static and dynamic fil- 
tering improved search for macros; and that within-trial learning was better 
than post-trial learning. MACLEARN was able to solve difficult Hi-Q puzzles 
after learning macros while solving simpler training puzzles. Without those 
macros, it could not solve the difficult problems directly. Thus, the system 
demonstrates a kind of development of expertise, in which training on simpler 
problems leads to macros that are useful in solving more difficult problems. 
That is, MACLEARN can take advantage of transfer to other problems. 

Subsequent sections of this paper describe details of the learning system, and 
experiments carried out to test its effectiveness. Section 2 describes the general 
framework for learning macro-operators. Section 3 presents its application to 
and the results for peg solitaire, including the controlled studies of various 
filtering heuristics, and a comparison of within-trial and post-trial learning. 
Section 4 explores the generality of the approach by examining its application 
to the domain of tile sliding. Section 5 discusses the approach used, compares 
it with related work, and provides a summary of conclusions. 

2. A g e n e r a l  f r a m e w o r k  f o r  l e a r n i n g  m a c r o - o p e r a t o r s  

MACLEARN learns by defining new macros and adding them to the search 
system's operator set. The objective is to improve that set so the system 
can solve problems faster or more economically. Viewing problem solving as 
a search in the space of operator sequences, macros let the program consider 
much longer sequences by representing them as shorter ones. This is equivalent 
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Figure 1. Performance element and learning model. 

to decreasing the effective distance to the goal in the search space. MACLEAt~N 
also at tempts to improve its performance by deleting less useful operators from 
the set, thus reducing the branching factor of the search. 

Figure i summarizes the relations between the system's performance element 
and its three learning components the macro proposer, the static filter, and 
the dynamic filter. A more detailed description of each system component 
follows below. 

2.1 The performance element: Bes t - f i r s t  s ea r ch  

The performance element employs best-first search to find a sequence of 
operators that  transforms a given starting state into a goal state. Problem 
solving proceeds by expanding nodes of the search tree. A node consists of 
a problem state (position) paired with the operator sequence leading to that 
state. In expanding a node, each available operator is applied in turn to 
the node's state, generating a list of successor nodes. In best-first search an 
evaluation function determines the order in which the search tree is expanded, 
assigning a value to each node of the tree according to the estimated promise 
of its current position. Higher values are assigned to nodes that  appear more 
promising. At each step of the search, an unexpanded node with maximal 
value is chosen for expansion~ hence the term "best-first" search. 

Several pieces of information must be supplied to the performance element: 

• an evaluation function; 

• a specification of the initial state; 

• a specification of the goal; 

• a specific initial operator set (the primitive operators); and 

• a uniform mechanism for applying operators to states. 

The details of these specifications differ according to the domain, and examples 
of each are given in Sections 3 and 4. 
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2.2 Representa t ion  of  states ,  goals,  and operators  

For a problem-solving system to search, it must first be able to represent the 
states it will consider. This representation should allow easy matching against 
operators' conditions and easy computation of the states that  result from op- 
erator application. Moreover, it should be easy to ascertain the equivalence of 
states. In the experiments reported in this paper, states are represented as two- 
dimensional arrays. The equivalence test is based on an element-by-element 
comparison of two arrays, taking into account rotations and reflections. 

A goal is represented as a condition that  must be satisfied by a state in order 
to qualify it as a goal state. One very simple condition is membership in a set 
of explicitly designated desirable states. In general, the goal condition may be 
any predicate, which implicitly defines the goal states as those for which the 
predicate is true. 

In order to generate new states, the performance element must apply op- 
erators. Following Vere (1978), operators are represented as relational pro- 
ductions, which specify the conditions under which an operator can be applied 
(the before part), and the changes that  result from application (the after part). 
Sometimes an operator may be applied to a state in more than one way; for 
example, if an operator jumps one piece over another, in some states more 
than one piece may be able to make such a jump, or the same piece may be 
able to jump in more than one direction. To resolve this ambiguity, binding 
information is paired with the operator to specify how it should be applied to 
a state. The operator, together with its binding information, is termed an op- 
erator instance. An operator instance is legal in a given state when the before 
part of the operator matches the partial current state specified by the binding 
information. Application involves substituting the after part of the operator 
for the partial state matched by the before part, thus generating a new state. 

MACLEARN'S operator set initially includes just the primitive operators, but 
it can expand this set by adding new macros, which it defines in terms of 
primitive operators or other macros. Macros are represented in the same way 
as primitive operators, but in addition to a before and after part, they have 
an expansion component, which defines the macro in terms of other operators. 
This leads to a hierarchy of macro definitions. By recursive expansion, any 
macro can be expressed as a sequence of primitive operators. The uniform 
representation of primitive operators and macros means that  MACLEARN c a n  
use the same procedures to test and apply both of them. Thus the system can 
invoke a new macro immediately after adding it to the operator set. 

2.3 Pr op os in g  new macros 

The process of proposing macro-operators includes the following four steps: 

1. triggering of macro proposal during search; 

2. delimiting a sequence of operator instances; 

3. composing and abstracting the delimited sequence; and 
4. defining a new macro and passing it to the static filter. 

Macro proposal is triggered during the search process whenever the system 
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detects a peak in the evaluation function along a path of the search tree. A 
peak is defined (relative to a given path) as a node whose value is greater than 
each of the two adjacent nodes along the given path. The following sections 
describe the processes of delimitation, abstraction, and composition which are 
employed in the macro proposer. 

2.3.1 Delimiting operator sequences by the peak-to-peak heuristic 

The macro proposer uses a peak-to-peak heuristic (Iba, 1985) to delimit 
sequences of operator instances for defining new macros. Recall that the macro 
proposer is invoked when the search system notices a peak at the end of the 
current search path (the one from the root to the most recently expanded 
node). This search path is now traversed backwards toward the root of the 
tree until the immediately preceding peak is located. If no such peak is found, 
then the root of the tree itself is used as a peak. The two peaks thus identified 
serve to delimit a specific sequence of operator instances. This sequence is then 
abstracted and composed to define a new macro, as described in Section 2.3.2. 

The motivation behind the peak-to-peak heuristic is to smooth the search 
space by remembering operator sequences that helped in getting past "valleys". 
A good set of macros will tend to make the fixed evaluation function more 
monotonic; i.e., guide search on more of a steady uphill climb, with fewer 
descents into valleys. If the evaluation function is already monotonic, then the 
peak-to-peak heuristic will never be invoked, and no macros will be learned. 

2.3.2 Composition and abstraction of operator sequences 

The delimited sequence of operator instances is next composed into a sin- 
gle relational production. This is accomplished by defining before and after 
conditions that are equivalent to the transformation carried out by the entire 
sequence. Vere (1978) has described a very general method for composition 
of relational productions. His method has the important property of closure 

- that the composition of a sequence of relational productions is itself a rela- 
tional production. This property is desirable so that MACLEARN can test the 
legality of macros and apply them using the same mechanisms as for primitive 
operators. Similar approaches to composition have been discussed by Daw- 
son and Sikl6ssy (1977), Lewis (1987), and Neves and Anderson (1981) in the 
context of production systems. 

MACLEARN takes a composition method as one of its procedural parameters. 
The experiments of this paper used simplified composition methods that were 
tied to the specific domains of peg solitaire and tile sliding. These were used 
for the sake of efficiency, but a more general mechanism would have served as 
well in principle. 

The operator instance sequence, in addition to being composed, is abstracted 
by generalizing the associated binding information for each of the operator in- 
stances. Variables can be introduced for constants where that is appropriate, as 
in the tile-sliding procedures of Section 4.1. The abstraction process produces 
both a generalized operator sequence, and a generalized composite relational 
production. The resulting macro will apply in many more settings than the 
one in which it was proposed. 
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The process of composing and abstracting a sequence of operator instances is 
similar to that  of goal-regression in explanation-based generalization (Mitchell, 
Keller, & Kedar-Cabelli, 1986), in that it constitutes a search for the weakest 
preconditions under which a given transformation is possible. The instantiated 
operator sequence plays the role of the example that  drives generalization. The 
domain theory is the model of the operators and the state transformations they 
accomplish. 

Once composition and abstraction are complete, the macro proposer defines 
a new macro. The before and after pa~s  of the new macro are simply the before 
and after parts of the generalized composite relationM production~ whereas the 
abstracted operator sequence becomes the expansion part  of the macro. The 
new macro is given a unique name and passed on to the static evaluator. 

2.4 Static filtering o f  m a c r o s  

As already mentioned, it is important to be selective in generating new 
macros, since each one increases the branching factor of the search. Therefore 
MACLEARN passes each new macro through its static filter, which performs 
a heuristic analysis of the macro description to decide whether the macro is 
likely to be useful. If the decision is positive, the macro is retained; otherwise 
it is discarded. Retained macros are immediately added to the operator set in 
the case of within-triM learning, whereas they are placed on a reserve list in 
post-trial learning. 

The static filter uses three tests. First, a redundancy check screens out any 
macros that  axe equivalent to primitive operators or to previous macros. Since 
any given macro may be proposed more than once, this criterion helps to keep 
the operator set from growing needlessly. Next, a length test eliminates any 
macro whose expanded length exceeds a given threshold. The expanded length 
of a macro is just the number of prilnitive operators in its full expansion. This 
test is motivated by the intuition that a macro with greater expanded length 
will tend to have more complex preconditions and thus would be less often 
applicable. Finally, a domain dependent test allows for the specification of 
static criteria that depend on the specific domain and features of the chosen 
representation. Section 3.5 discusses a simple domain-dependent criterion used 
in peg solitaire, which is related to the evaluation function used in that domain. 
No domain dependent test was used in the tile-sliding domain. 

2.5 D y n a m i c  filtering of  macros  

The dynamic filter serves as an empirical counterpart  to the static filter. The 
latter may occasionally pass macros that  are not useful. The dynamic filter 
detects such cases by examining statistics on how macros have been used. 
Currently, the static filter pays attention only to whether or not a macro has 
appeared in the solution sequence in any of the solved problems. Credit for 
appearing in solution sequences is only assigned to the top-level macros in the 
solution; it is not inherited by macros that  appear in the definitious of those 
macros. Thus, when a macro is removed from the operator set by the dynamic 
filter, its definition is retained in case it. is needed to expand the definitions 
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of other macros still in use. Primitive operators are never removed from the 
operator set, since this could make certain problems unsolvable. 

At present the dynamic filter is invoked manually, typically after a training 
sequence has been completed. This is to insure that  macros have a reasonable 
opportunity to help solve several problems before being tested. If the filter 
were automatically invoked after every trial, it might remove potentially useful 
macros before they had an opportunity to prove their usefulness on other 
problems. 

3. Application to peg solitaire 

The first domain on which MACLEARN was tested is peg solitaire, a class of 
problems that includes the board puzzle sold commercially as Hi-Q. This is an 
appropriate domain not only because it includes some difficult prob]ems, but 
also because it provides a useful point of comparison with the macro-learning 
technique of Korf (1982, 1983, 1985a, 1985b), which requires that  a problem be 
operator decomposable. 1 Since peg solitaire is not operator decomposable, it 
demonstrates that MACLEARN's heuristic approach can be applied to a larger 
class of problems than Korf's method. Section 3.1 presents an example to 
illustrate the nature of peg-solitaire puzzles and how the system deals with 
them. Sections 3.2 through 3.5 describe how various parts of the MACLEARN 
system are specialized for application to peg solitaire. Section 3.6 describes 
experiments with peg solitaire and presents the results for this domain. 

3.1 MACLEARN on  a simple peg-solitaire problem 

The following simple example serves to introduce peg-solitaire puzzles, and 
illustrates how macros can aid the solution process by shortening the effective 
solution path. The initial state is: 

0 0 0 

• 0 0 

• 0 0 

Here and subsequently "o" represents a peg and " ."  represents a hole. The 
single operator (jump) consists of moving one peg horizontally or vertically 
over an adjacent peg into a hole. The peg jumped over is then removed from 
the board. The goal is to reach a board state that contains only one peg. Since 
each jump removes one peg, any solution has exactly six primitive steps. 

The primitive jump operator can be represented as a relational production: 

0 0 • ) • . O 

This operator can be applied in any location of the board and in any of four 
directions, subject to obvious boundary constraints. The binding information 

1A problem is operator decomposable if its states can be represented as vectors of state 
variables in such a way tha t  the ei~ect of each operator on any state variable depends only 
on the value of that  s tate variable, and not on the values of any other state variables (see 
Korf, 1983), 



292 G . A .  IBA 

Prim. Op. Macro Prim. Op. 

o o o  . 0 0 0  . 00 . 
• 0 0 . ~ . 0 0 . " )  . 0 . ) . 

. O 0  . . 0 . o .  . 

Macro 

• 0 o . 

0 ° ,  ) . . . .  

0 ° °  ° . . *  

Figure 2. Solution of a simple peg-solitaire problem. 

in an operator instance specifies the position and orientation in which the 
operator is matched against the board. In the initial state above, there are 
five legal operator instances. 

Shortly into its search on this puzzle, MACLEARN encounters a peak that  
triggers macro proposal. Together with a previous peak, this delimits a se- 
quence of two moves or primitive operator instances. The macro proposer 
defines a macro with the following before and after parts: 

O - -  - -  

Before: . o o After: • . 

0 - - 

The dashes ..... mean "don't care"; they are needed because macros are repre- 
sented using rectangular arrays. The system uses this macro twice in the first 
solution it finds, which appears in Figure 2. In this figure, uppercase "O"'s 
indicate the pegs to which an operator is applied. The advantage of using the 
macro is that the solution sequence is only four steps long instead of six. This 
means that the search takes less time, even though more operators are applied 
at every move. 

3.2 R e p r e s e n t a t i o n  a n d  m a t c h i n g  i n  p e g  s o l i t a i r e  

Board states for the peg-solitaire domain are represented as rectangular ar- 
rays. The elements of a board array are either pegs, holes, or voids. Voids 
represent locations of the array where pegs are not permitted, such as the cor- 
ners of the Hi-Q board (see Figure 3). The before and after parts of operators 
(both primitives and macros) are also represented as rectangular arrays. The 
elements of these arrays can be pegs, holes, or don't-cares. Voids do not ap- 
pear in operator representations since they are generalized to don't-cares. The 
before and after arrays of any given operator must have identical dimensions. 
Furthermore, don't-cares always appear in the same positions in the before 
and after arrays. 

The legal move generator finds all legal instances for each operator in the 
current operator set. The binding information of an operator instance speci- 
fies its position and orientation (including possible reflection) relative to the 
board. Each operator is paired with every possible binding specification to 
obtain the set of candidate operator instances, and each candidate instance is 
then tested for legality. An operator instance is legal if its before part matches 
the board according to the position and orientation specified by its binding 
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ooo 
ooo 

• O . . . .  

.... 000 

000 

0.0 

Number of separated peg groups: 2 

Number of separated hole groups: 3 

Number of pegs: 15 

Figure 3. A board state whose evaluation function value is (-2, -3, -15). 

information. The match with the board is just an element-by-element com- 
parison of corresponding elements in the arrays, and is successful only if each 
of the individual elements match. Don't-cares match against anything in a 
board array, including voids. 

The best-first search system applies legal operators to board positions to 
generate successor positions. Applying a legal operator instance consists sim- 
ply of copying the after array of the operator into the part of the board array 
specified by the operator binding. Don't-cares are ignored during this copy 
process; i.e., nothing is changed at the corresponding board location. 

3.3 T h e  e v a l u a t i o n  f u n c t i o n  for peg  sol i ta ire  

The peg-solitaire version of MACLEARN uses the component-hole-peg metric. 
Briefly, this is a three-element vector whose elements specify the number of peg 
groups, the number of hole groups, and the number of pegs. Groups are defined 
here by horizontal and vertical adjacency, with voids being treated as holes. 
The additive inverse of each score is used, since in each case smaller absolute 
values are considered more desirable. The first criterion prefers states with 
fewer groups of pegs, the second prefers those with fewer groups of holes, and 
the third prefers fewer pegs. Figure 3 shows a sample state and its evaluation. 
Note that  the voids in the lower right corner contribute a third hole group. 

Evaluation vectors are ordered by lexicographic comparison. If the first 
elements of two vectors are unequal, those elements determine the order of 
the vectors, and all subsequent elements are ignored. If the first elements are 
equal, then the second elements are compared, and so on, until a difference is 
encountered. The first difference always determines the ordering of the vectors. 
If no difference is found, then the vectors are equal. 

3.4 T h e  m a c r o - p r o p o s e r  for p e g  sol i ta ire  

In peg solitaire, MACLEARN invokes the macro proposer when the current 
node (the one being expanded) becomes a peak because one of its child nodes 
has a lower value. This is referred to as the possible-peak triggering condi- 
tion. It contrasts with the more restrictive selected-peak condition used in 
earlier work (Iba, 1985), in which one proposes a macro only when the previ- 
ous node is a peak; i.e., when the search was forced to take a downhill step 



294 G.A. IBA 

from the previous node. The possible-peak criterion is less restrictive and leads 
to the proposal of more macros, thus placing a greater burden on the filtering 
mechanisms, which must weed out the larger number of poor macros that are 
generated. The possible-peak condition was chosen for peg solitaire in order 
to provide a greater test of the filtering heuristics. Once invoked, the macro- 
proposer uses the peak-to-peak heuristic discussed in Section 2.3.1 to delimit 
a sequence of operator instances. This sequence is composed and abstracted 
by the procedure described below. 

MACLEARN uses a domain-specific procedure to accomplish composition and 
abstraction in the peg-solitaire domain. This procedure runs much more ef- 
ficiently than the more general procedures referenced in Section 2.3.2. The 
steps are as follows: 

1. Find the smallest rectangular window that includes all locations referenced 
by any operator instance in the sequence being composed. 

2. Create a dummy array with the dimensions of this window, and initialize 
it entirely with don't-cares. 

3. Renumber or relativize the bindings of each operator instance so that they 
are relative to the dummy array rather than to the larger board. 

4. Copy the after array of each (relativized) operator instance into the dummy 
array in the position and orientation that are specified by the relativized 
operator instance bindings. This occurs in the order in which the operator 
instances appear in the sequence. The result becomes the after part of 
the macro. 

5. Transform (a copy of) the after array by making backwards moves in 
the reverse order of the sequence. A backwards move is accomplished by 
reversing the roles of the before and after arrays. The result becomes the 
before part of the macro. 

6. Set the expansion of the macro-operator to be the relativized sequence of 
operator instances. This sequence transforms the before array into the 
after array. 

The composition part of this procedure merges the individual before and after 
conditions. The resultant after array is a compilation of the individual after 
arrays, and the before array is a reverse compilation of the individual before 
arrays. 

Generalization takes place in two ways. By narrowing the window of refer- 
ence and using don't-cares for unreferenced locations within the window, the 
procedure only retains those conditions that  are necessary for applying the 
operator sequence. The second form of generalization occurs across positions 
and orientations. This is supported explicitly by narrowing the window and 
implicitly by the way operators are applied (automatic translation, rotation, 
and reflection). Since macros can apply with different bindings than the origi- 
nal sequence from which they were generated, the relativization of bindings is 
necessary to facilitate correct expansion of macro instances at a later time. 
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Figure 4. Peg-solitaire problems used in the experiments. 

3.5 T h e  s t a t i c  a n d  d y n a m i c  f i l ters  in p e g  so l i t a i r e  

The static filter for peg solitaire includes all three types of tests discussed in 
Section 2.4. In the redundancy check, two operators are considered equivalent 
if there is some rotation and reflection for which the before and after arrays 
correspond exactly. In all of the peg-solitaire experiments, the threshold for 
the length test was seven. 

The domain-specific criterion used for peg solitaire is a connectedness test, 
which requires that  the after side of a proposed macro have its pegs connected 
in just a single component. The motivation is that the evaluation function 
places highest emphasis on keeping the number of connected components of 
pegs to a minimum. The notion is that  macros leaving their affected pegs in 
a single connected component will be more likely to contribute positively to 
such an evaluation function. The experiments reported in Section 3.6 seem to 
bear this out. 

The dynamic filter applies the tests discussed in Section 2.5, filtering out 
any macro that never appears in a solution sequence. Such unused macros are 
removed from the operator set, but their definitions are retained. 

3.6 E x p e r i m e n t s  w i t h  peg  so l i t a i re  

In order to evaluate the behavior of MACLEARN in the peg-solitaire domain, 
a number of experiments were carried out. The first experiment compared 
problem-solving performance on individual test problems with and without the 
learning of macros. The second study explored the value of cumulative experi- 
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Figvre 5. Run-time comparisons with and without macro learning (Experiment 1). 

ence over a sequence of problem-solving trials. The third experiment compared 
the value of alternative static filtering conditions, and the fourth examined the 
value of dynamic filtering. The final experiment compared within-trial and 
post-trial learning. 

The primary performance measures used to evaluate MACLEARN'S problem- 
solving behavior were total run time and success at solving problems. Other 
data collected during the experiments include the number of nodes expanded, 
the number of operator instances considered, the number of macros proposed, 
the number of macros passed by the static filter, and the length of the solution 
sequence (in both primitive and macro steps). A derived statistic is the average 
branching factor, which is the total number of generated nodes divided by the 
total number of expanded nodes. 

Figure 4 shows the initial states for the peg-solitaire problems used in the 
experiments. In each case, the goal is to reduce the board to a single peg. In 
Experiment 1 these problems were each attempted separately. In the remaining 
experiments the problems were presented in sequence (Medium-Edge, Partial- 
Hi-Q~ Hi-Q-I~ Hi-Q-2, Hi-Q) as a series of training problems, roughly graded 
from easier to more difficult. 

All static filtering was done using the complete static filter (redundancy, 
length, and domain-specific tests), except for Experiment 3, in which the var- 
ious static filtering tests were compared. When the length test was used in 
static filtering, the length threshold was set to seven. The domain-specific 
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Figure 6. Average branching factors with and without macro learning (Experiment 1). 

test for peg solitaire was the connectedness test described in Section 3.5. The 
default for macro learning was within-trial learning, except for Experiment 5, 
which compared post-trial and within-trial learning. 

3.6.1 Experiment 1: Testing the value of macro learning 

This experiment compared search performance with macro learning to the 
baseline case without macro learning. Each of the five peg-solitaire problems 
was a t tempted first without macro learning and then with macro learning. 
When the problem was successfully solved with macro learning, the set of 
learned macros was used to re-solve the problem. This allowed macros pro- 
posed in later stages of the first search to be available from the beginning of 
the search. It also gave all the operators a fair chance to appear in a solution 
before the dynamic filter was invoked. The final step in this experiment was to 
apply the dynamic filter to the operator set resulting from the retry attempt. 
The resulting filtered operator set was used to solve the problem one last time. 

Two of the problems (Hi-Q-1 and Hi-Q) were not solved either with or with- 
out macros, so no results are reported for them. Of the remaining problems, 
Hi-Q-2 without learning ran for 20,000 seconds without finding a solution. All 
the other searches were successful, and the run-time measures appear in Fig- 
ure 5. The main results are that  macro learning led to initially increased run 
time for the easier problems (Medium-Edge and Partial-Hi-Q), but  that for 
the harder Hi-Q-2 problem, learning led to a solution whereas none was found 
without macros. Even on the easier problems, the retry at tempts led to run 
times comparable to those without macros, and the application of the dynamic 
filter led to significant run-time improvements, roughly halving the time spent 
on the retry attempt.  
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As discussed earlier, one view of macro learning is that it trades breadth 
against depth in the search tree, accepting an increase in breadth in order to 
achieve a reduction in depth. One measure of a tree's breadth is its average 
branching factor. Figure 6 graphs the average branching factors for each con- 
dition on the Medium-Edge, Partial-Hi-Q, and Hi-Q-2 problems. As expected, 
the branching factor increases as more macros are learned. The dynamic filter, 
by eliminating certain macros, leads to a decrease in branching factor. Figure 7 
graphs the macro solution lengths for each condition on the same problems. 2 
As expected, the acquisition of macros consistently leads to shorter solutions. 

3.6.2 Experiment 2: Cumulative learning - training and transfer 

Although Experiment 1 suggests that  macro learning can lead to improve- 
ment over search without macros, the method was not sufficient to solve the 
Hi-Q-1 and Hi-Q problems. One approach to these harder problems is to take 
advantage of macros learned while solving simpler problems. Experiment 2 
explores the issues of training and transfer by treating the peg-solitaire prob- 
lems as a five-step training sequence, with macros learned on earlier problems 
being available to help solve later problems. During the first pass through the 
training sequence, no dynamic filtering was invoked. At the end of this pass, 
the dynamic filter was invoked on the final operator set, causing 15 of the 
26 macros to be discarded. The remaining operators are shown in Figure 8. 

2Note that although MACLEARN was unable to solve Hi-Q-2 without macros, all solutions 
of this problem take exactly 31 primitive steps. 
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Figure 8. Operators left after dynamic filtering. Numbers in parentheses indicate 
how many times operators have appeared in solutions. Donk-cares have 
been omitted in the operator descriptions. 

Starting with this filtered set of 11 operators, a second pass was made through 
the training sequence• This time, dynamic filtering was invoked between each 
problem trial in the sequence. 

Figure 9 shows the run-time comparisons on each problem with no macro 
learning, the first pass through the training sequence (macro learning with 
experience accumulating over trials), and the second pass through the training 
sequence (using the dynamic filter before each trial). The main result is that 
cumulative learning led to successful solutions for all the problems, including 
Hi-Q-l, Hi-Q-2, and Hi-Q, which went unsolved without learning. A somewhat 
negative result was that  the transfer of macros from Medium-Edge to Partial- 
Hi-Q actually slowed down the search• The run time of 179 seconds when 
experience was transfered is much greater than the 15 second run time of 
Experiment 1, in which Partial-Hi-Q was solved using macro learning but 
without any transferred experience. On the second pass, dynamic filtering 
led to a dramatic reduction in run time for the Partial-Hi-Q problem, and to 
roughly a halving of run time on the remaining problems. On all problems, the 
run time after dynamic filtering was less than when no macros were learned at 
all. Figure 10 shows the solutions to the Hi-Q-l, Hi-Q-2, and Hi-Q problems 
that MACLEARN found during the dynamic filtering pass through the training 
sequence. The searches for Hi-Q-1 and Hi-Q-2 were completely monotonic, 
meaning that  no backtracking was required and the solution was found in a 
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Figure 9. Run times for learning with cumulative experience (Experiment 2). 

straight-line fashion. The Hi-Q search was nearly monotonic, having just a 
single instance of backtracking; eight nodes were expanded to find the final 
seven-step solution. 

3.6.3 Experiment 3: Testing the static filtering heuristics 

Section 3.5 described the three static filtering tests employed in MACLEARN. 
In order to assess the value of each of these tests, the following five combina- 
tions of tests were evaluated as static filters: 

1. No tests 

2. Redundancy test 
3. Redundancy + domain-dependent (connectedness test) 

4. Redundancy + expanded length 
5. Redundancy + expanded length + domain-dependent (connectedness test) 

This list includes all combinations of the tests except length, domain, and 
length + domain-dependent tests. These were omitted to simplify the study, 
since the redundancy test was so obviously desirable. Note that in the "no 
tests" condition, all macros pass the static filter by default. In this experiment, 
each combination of tests was evaluated by using it as the static filter while 
doing cumulative learning on the entire five-problem training sequence. 
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Figure 10. Solutions found with dynamically filtered macros. 

Figure 11 shows the cumulative run-time data ~ over the training sequence 
for each of the static filters. The data show a consistent improvement as 
additional tests are included in the static filter, with the complete static filter 
performing best of all. The Hi-Q problem was only solved with the third and 
fifth combinations. In the other conditions (1, 2, and 4), an examination of the 
Hi-Q search tree revealed that the search started off on a bad track because of 
some unhelpful macros~ which increased the branching factor without usefully 
advancing the search. In filters 3 and 5 the domain-dependent test excluded 
these macros, leading to a successful solution for Hi-Q. 

Figure 12 shows how the various static filters selectively limited growth of the 
operator set. Again the complete static filter provided the greatest selectivity, 
leading to the slowest growth. The slower growth of the operator set with 
stronger filtering conditions accounts for the improvements in run time. An 
examination of search statistics shows that very often the same number of 

3See M i n t o n  (1988)  for a d i s c u s s i o n  of  t h i s  d e p e n d e n t  m e a s u r e .  
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Figure 11. Cumulative run-time comparison of different static filter tests 
(Experiment 3). 

nodes were expanded in corresponding searches, but the reduced branching 
factor resulted in faster search. 

3. 6.4 Experiment 4: Dynamic filtering 

The first two experiments gave some indication of the value of dynamic fil- 
tering. In order to further assess dynamic filtering, a separate experiment was 
conducted in which MACLEARN was first trained on the five-problem training 
sequence, and then the training sequence was solved again. The purpose of 
this was to give each operator ample opportunity to demonstrate its useful- 
ness by appearing in solution sequences. A final pass was made through the 
training sequence, invoking the dynamic filter before each problem trial. The 
design of this experiment combines the "retry before dynamic filtering" ap- 
proach of Experiment 1 with cumulative learning over a training sequence, as 
in Experiments 2 and 3. 

Figure 13 shows the cumulative run-time graphs for the three passes through 
the training sequence. There is a noticeable improvement for the retry pass, 
which is due almost entirely to the dramatic reduction in solution time for 
the Partial-Hi-Q problem. No additional macros were learned during the retry 
phase, but two new macros were used in solutions and thus earned the right to 
survive the dynamic filter. The dynamic filter removed 13 operators, compared 
with 15 at the comparable point of Experiment 2. Due to the consequent 
reduction in branching factor, run times during the dynamic filtering phase 
were further reduced on all problems. 
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Figure 12. Growth of the operator set for different static filters (Experiment 3). 

3. 6.5 Experiment 5: Within-trial and post-trial learning 

In order to test the value of within-trial learning, the training sequence of 
five problems was solved using post-trial learning. In this paradigm, macros 
were proposed as before, but they were not available for use until a subsequent 
problem was worked on. The cumulative run-time graphs of Figure 14 compare 
post-trial and within-trial learning on these problems. As the figure shows, 
within-trial learning resulted in consistently lower run times. This suggests 
that the value of having macros immediately available for use is greater than 
the disadvantage of increased branching factor. 

Note that within-trial learning also resulted in slower growth of the operator 
set, as illustrated in Figure 15. This can be explained by the fact that the 
search trees were consistently smaller in the within-trial condition, and so 
there were fewer opportunities for additional macros to be proposed. Also 
note that all the growth occurred on the first two problems, with the operator 
set remaining constant thereafter. 

An interesting feature of within-trial learning is that  a single problem-solving 
trial can lead MACLEARN to define macros in terms of other macros, taking 
advantage of the hierarchical nature of macro definition. Figure 16 shows the 
definition," macro hierarchy generated on the Medium-Edge problem using 
within-trial learning and the complete static filter. The specifications for some 
of these macros (numbers 1, 2, 4, 6, and 7) are shown in Figure 8, and it is 
easy to see how each is defined in terms of simpler macros in accordance with 
the hierarchy of Figure 16. 
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4. Application to t i l e  s l i d i n g  

In order to test the generality of the methods and heuristics embodied in 
MACLEARN, it was applied to a second domain called tile sliding, which is a 
generalization of the well-known "Eight puzzle" and "Fifteen puzzle". In tile- 
sliding problems a set of numbered tiles are arranged in a rectangular grid, 
such that exactly one grid space remains blank. If a tile is adjacent to the 
blank, it can be moved by sliding it into the blank space. Typically the tiles 
start out scrambled, and the puzzle is to unscramble them into some canonical 
pattern (e.g., numerically increasing order). Both Korf (1985a, 1985b), and 
Laird, Rosenbloom, and Newell (1986) have studied macro-learning in this 
domain. 

Figure 17 shows the set of problems used in the tile-sliding experiments 
reported in Section 4.4. These initial states were chosen at random, but were 
then fixed so that comparative studies could be undertaken. The problems 
are ordered by difficulty (Simple, Eight puzzle, Fifteen puzzle, Twenty-four 
puzzle), and the most successful learning occurred when the problems were 
solved in that order, with the accumulation of macros over the whole sequence 
of trials. The following sections describe the application of MACLEARN tO the 
tile-sliding tasks, along with the results of experiments in this domain. 
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Figure16. Hierarchy of macro definitions resulting from within-trial solving of 
Medium-Edge with complete static filter. Macros are represented only 
by their number to save space. 

4.1 Representation and matching in tile sliding 

As with peg solitaire, states in tile sliding are represented by rectangular 
arrays. Instead of pegs and holes, the elements in tile-sliding arrays are num- 
bered tiles, with each tile having a unique number. The array also contains 
exactly one special element that  represents the blank. Rectangular arrays are 
used to represent the before and after parts of primitive operators and macros. 

In peg solitaire there is no distinction between one peg and another, and so 
it is sufficient to represent primitive operators and macros in terms of before 
and after arrays whose operators are simply pegs and holes. In tile sliding 
the identities of tiles are distinct, and so it is necessary to keep track of their 
individual positions. This is done by introducing pattern variables into the rep- 
resentation of both primitive operators and macros. Variables bind to specific 
tiles, and the movements of tiles are reflected in the movements of variables 
between the before and after arrays of the operators. Tiles whose positions 
remain unchanged by an operator are treated as don't-cares (signified by ..... 
in the figures). Figure 18 shows the primitive operator for tile sliding and some 
useful macros. 

Except for the addition of variables that match to any tile (but not the 
blank), the generation of legal operator instances is the same as in peg solitaire 
(Section 3.2). Also as in peg solitaire, the mechanism for applying operator 
instances automatically handles translations, rotations, and reflections. In the 
application of an operator instance, when the after part is being copied into 
the board state, each variable in the after part is replaced by the tile of the 
board state which matches that  variable in the before part. 
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Figure 17. Initial states for tile-sliding problems. For each problem, the goal is to 
arrange the tiles in numerical order with the blank in the lower right. 

4.2 The evaluation function for tile sliding 

The evaluation function used in tile sliding takes two arguments, a current 
state and a goal state, each represented as a two-dimensional rectangular array. 
It returns a vector with the following three components: 

1. The number of consectutive tiles already in their goal locations. Counting 
starts in the upper left-hand corner, and proceeds row by row until the 
first mismatch is encountered. 

2. Minus one times the Manhat tan distance 4 between the current and goal 
positions for the next tile to be placed; i.e., the tile belonging in the first 
grid position not matching the goal. 

3. Minus one times the Manhat tan distance of the blank from the next tile 
to be placed. 

Informally, these three components encode a set of subgoa]s to guide the search. 
The first component of this evaluation function corresponds to the subgoal 
of placing each tile in its correct position in row-major order. The second 
component corresponds to the subgoal of getting the target tile (the next tile 
to be placed) closer to its goal position. In order to be able to move the target 
tile, the third component represents a subgoal of getting the blank adjacent to 
that  tile. As an illustration of the evaluation function, the initial state for the 
Simple puzzle in Figure 17 evaluates to ( 0 , - 3 , - 1 ) .  As in peg solitaire, the 
vectors returned by the evaluation function are compared lexicographically. 

4The M a n h a t t a n  distance between two points is just the number of grid steps it takes to 
go from one to the other. Formally, M D ( x l , y l , x 2 , y 2 )  --- ]xl - x21 + lYl - y 2 ] .  
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Figure 18. The primitive operator and some useful macros for tile sliding. Letters 
bind to any tile; the symbol "-" denotes a tile unchanged by a macro. 

4.3 P r o p o s i n g  a n d  f i l ter ing  macros  in t i le  s l iding 

In tile sliding, macros were again proposed according to the peak-to-peak 
heuristic. In order to compare the possible-peak and selected-peak conditions 
(see Section 3.4) for determining when to propose macros, each was tried under 
identical conditions. 

The processes of composition and abstraction are almost identical to those 
described for peg solitaire. Composition proceeds using fixed identities of 
tiles, then abstraction replaces the fixed tiles with pattern variables so the final 
macro can match different configurations of tiles. Strictly speaking, don't-cares 
are not needed in tile-sliding operators, since they can always be represented 
by a variable which is left in the same position. MACLEARN introduces them 
merely to improve readability. 

The static filter used only the redundancy and length tests. No domain 
dependent test was used in tile sliding. Redundancy checking was done as 
in peg solitaire~ with the additional feature of checking for correspondence of 
pattern variables. Throughout the tile-sliding experiments, the length test of 
the static filter used a threshold of 30 for the maximum allowable expanded 
length of macros. 

4.4 E x p e r i m e n t s  w i t h  t i le  sl iding 

In Experiments 6 and 7, MACLEARN was run on each of the tile-sliding 
problems in Figure 17 under the following three conditions: 

1. No macro learning (just problem solving using the primitive operator); 

2. Macro learning without prior experience; and 
3. Macro learning with cumulative experience from previous problems. 

Experiment 6 tested the possible-peak proposal method fro" each of these con- 
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Figure 19. Run-time comparisons with and without macro learning in the tile-sliding 
domain using the possible-peak macro proposer (Experiment 6). 

ditions. Without macro learning, this version of MACLEARN solved only the 
Simple and Eight-puzzle problems. With macro learning but no prior expe- 
rience, it was also able to solve the Fifteen puzzle, but it still failed on the 
Twenty-four puzzle. Solving the problems as a training sequence with cumu- 
lative learning did not provide much help. 

Figure 19 shows the run-time results for this experiment. Learning macros 
led to consistently lower run times than problem solving without macros. Prior 
experience on simpler training problems led to a slight reduction in the run 
time on the Eight puzzle compared with macro learning without prior experi- 
ence, but it led to a significant increase in the run time for the Fifteen puzzle. 
Experiments with other starting states for the Fifteen puzzle suggest that the 
short run time encountered in this experiment (for the "no prior experience" 
condition) was serendipitous and not very representative. None of the con- 
ditions led to successful solutions for the Twenty-four puzzle within the time 
limit of 10,000 seconds. 

Experiment 7 repeated the format of Experiment 6 but used the selected- 
peak method rather than the possible-peak technique. Note that  since the 
selected-peak method defers proposal of macros until a lower-valued node is 
actually selected as the best to expand, it is more restrictive and results in 
fewer proposals. This could be viewed as an additional form of selectivity, 
over and above the static filter. 
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Figure 20. Run-time comparisons with and without macro learning in the tile-sliding 
domain using the selected-peak macro proposer (Experiment 7). 

Figure 20 shows the run-time data  for this experiment. The Simple puzzle 
and Eight puzzle were solved in all three conditions. The more difficult Fifteen 
puzzle and Twenty-four puzzle were solved only in the case of macro discovery 
with prior experience from earlier trials. The failure to solve Fifteen puzzle 
without prior experience is more representative than the success in the previous 
experiment. 

A comparison of the first two conditions (no learning and learning without 
prior experience) illustrates the value of macro discovery within the course of 
a single problem-solving trial. The data  indicate that  macro learning leads 
to consistently greater search efficiency. The only disadvantage seems to be a 
tendency towards longer (expanded) solutions in the macro conditions. Nev- 
ertheless, the macro solutions are shorter (in macro steps) and can be viewed 
as a higher-level (chunked) representation of these solutions. 

Macro learning with experience accumulating over problem trials provided 
the most dramatic success. Only in this case was MACLEARN able to solve 
the more difficult problems. In fact, by the time the system had solved the 
Fifteen puzzle, it had discovered a complete set of macros and no additional 
ones were needed to solve the Twenty-four puzzle. Note that  the time to solve 
the Twenty-four puzzle was actually less than for the Fifteen puzzle, since the 
solution was found in monotonic fashion, with no backtracking. The number 
of nodes expanded was equal to the macro-length of the solution sequence. 
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The 11 operators in the final operator set which accomplished this are shown 
in Figure 21. These macros were also sufficient to solve twenty randomly 
generated variations of the Twenty-four puzzle (with the same size board but 
different starting configurations). In each of these additional problems, the 
goal was still to get the tiles arranged in numerically increasing order with the 
blank in the lower right. 

A comparison of the results of Experiments 6 and 7 indicates that selected- 
peak did better on these problems. This is particularly true for the cumulative 
learning case,in which the Twenty-four puzzle was solved so successfully and in 
which the learned operator set was able to solve additional random problems. 

5. D i s c u s s i o n  

MACLEARN represents a combination of empirical and analytic techniques 
for discovery of macro-operators. The empirical component arises from the in- 
terplay of the macro proposer with the static and dynamic filters, and can be 
viewed as a generate-and-test search applied to the space of macro-operators. 
The macro-proposer does the generation, whereas the static and dynamic filters 
carry out the testing. The ultimate test is whether the behavior of the per- 
formance element is improved. This can also be viewed as a credit-assignment 
problem, in which macros receive credit or blame for their influence on system 
performance. The dynamic filter eventually removes those macro-elements that 
do not receive sufficient credit over time. The analytic component lies in the 
methods by which macros are composed, abstracted, and defined in terms of 
before and after conditions. These analytic methods are essentially equivalent 
to the weakest pre-condition analysis that is commonly used in explanation- 
based approaches. 

5.1 Advantages  and disadvantages of the approach  

The approach to macro discovery embodied in MACLEARN has several ad- 
vantages. Learning and performance are integrated, proceeding hand in hand 
so that macros learned in the early stages of problem solving may aid the 
later stages. The approach to representation (closure under composition of 
sequences into pre- and post-conditions) enables the learning of new macros in 
terms of previously learned macros. The representation also has the important 
advantage that it lets the system use macros without reference to their actual 
expansion. Macros function in a kind of planning capacity, suppressing un- 
necessary details until a solution plan is found. The generalization of macros 
supports transfer to larger and more difficult problems. 

These advantages were born out in the experiments on both peg solitaire and 
tile sliding. Macro-learning generally outperformed solving without macros, 
especially on more difficult problems. Within-trial learning proved very ben- 
eficial, leading to shorter run times and slower growth of the operator set. 
Static and dynamic filtering were useful in selectively limiting the growth of 
the operator set, resulting in greater search efficiency. Cumulative learning 
over a sequence of increasingly more difficult training problems also proved to 
be worthwhile. 
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Figure 21. Full tile-sliding operator set after training on first three problems. Num- 
bers in parentheses indicate the expanded length of each macro. Letters 
bind to any tile; the symbol "-" denotes a tile unchanged by a macro. 

The principal difficulty encountered in these applications of MACLEARN 
was due to the choice of best-first search as the performance element. Since 
best-first search applies every available operator when expanding a node, the 
branching factor of the search increases as more macros are learned. A second 
difficulty is that  the search is not goal-directed, except in the sense that  goals 
are implicit in the evaluation function. Thus the system's behavior exhibits 
a lack of focus, illustrated in what might be termed a mesa phenomenon; in 
some cases, the program spends considerable time exhaustively searching a 
large number of nodes, all having equal values, before considering any nodes 
with lower values. This partly explains the importance of training on sim- 
pler examples. For smaller problems, the combinatorics of searching mesas are 
more manageable. This lets the program reach the point where lower-valued 
nodes must be selected and propose macros that  may be useful in similar (but 
combinatorially more complex) situations. 
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Both these issues - increased branching factor and lack of search focus - 
can be addressed by moving to a goal-based performance element such as 
means-ends analysis (Newell ~z Simon, 1963). The introduction of explicit 
subgoals should provide a focus of attention, while the table of connections 
should reduce the branching factor of the search, insuring that operators are 
applied only when they are relevant. 

5.2 Genera l i ty  of the  learning methods  

Several issues arise with respect to the generality of MACLEARN. The first 
involves the range of problems to which the system can be applied within the 
domain of problem solving. The current implementation, which uses best- 
first search, should handle any problem that can be specified in terms of initial 
state, goal condition, and operators, provided these operators can be composed 
to form macros represented in the same format as primitive operators. An 
evaluation function must also be supplied. This paper has focused on the 
domains of peg solitaire and tile sliding, but MACLEARN has also been applied 
to Tower of Hanoi, slide jump, and telecommunications network control. 

A second issue involves the value of the system's learning component when 
used in conjunction with different performance elements. Goal-directed search 
has already been mentioned as one important alternative. With a new perfor- 
mance system, it may be necessary to employ different heuristics for proposing 
and filtering macros. Further work is needed to explore alternative perfor- 
mance systems and to determine heuristics that are effective with them. 

The learning mechanisms of MACLEARN can be abstracted and viewed as 
embodying a general empirical approach to the task of learning by composition, 
which is a type of chunking. These mechanisms might be incorporated into any 
system that uses elements to generate behavior, provided those elements can 
be composed to define macro-elements. The learning task is then to discover 
a set of macro-elements that improves performance. The notion of a macro- 
element proposer combined with static and dynamic filters may prove to be a 
powerful one. 

Problem solving is one domain that fits within this general framework. A 
search system generates performance and the composable elements are the 
operators. Other domains that exhibit a similar compositional structure in- 
clude theorem proving, automatic programming, design, and natural language 
parsing. In theorem proving, the basic elements are axioms and composition 
involves assembling axioms (and theorems) into new theorems. A theorem 
prover serves as the performance element. Once a theorem is proved, it can 
function as though it were an axiom, as far as the theorem prover is concerned 
(O'Rorke, 1987). The other domains fit within this compositional framework in 
a similar fashion. Future work should explore the extent to which MACLEARN 
can be extended to apply across these domains. 

5.3 Re la ted  work 

It is useful to compare 1V[ACLEARN to related work on the discovery of macro- 
operators. Fikes, Hart, and Nilsson (1972) carried out some of the earliest work 
in this area, applying their STRIPS problem solver to the domain of robot 
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planning. Macros (which they called 'Macrops') were represented in terms of 
triangle tables, which abstracted robot plans to their most general pre- and 
post-conditions. In this respect, MACLEARN'S representation is similar. One 
difference is that triangle tables simultaneously abstract all sub-sequences of 
a plan (sequence of steps), whereas the current system's macros abstract only 
entire sequences. The latter approach leads to a simpler representation and 
a reduced branching factor relative to triangle tables, but it does not capture 
as many possibilities. Another difference is that STRIPS was a goal-directed 
problem solver, whereas MACLEARN USeS best-first search. 

Korf (1982, 1983, 1985a, 1985b) has also done important work on macro 
learning. The learning in his program takes place during an initial phase of 
explicit search for macros to fill in a table of connections, whereas MACLEARN'S 
discovery of macros is integrated (interleaved) with problem solving. As noted 
in Section 3, Korf's approach requires operator decomposability, which is not 
a limitation for MACLEARN. Another difference is that his macros are sim- 
ple sequences of primitive operators that apply only in particular circum- 
stances, whereas the ones used here are abstracted so as to apply in more 
general settings. Moreover, Korf's macros do not build on others to form a 
hierarchy. One can view his approach as learning a large number of rather 
special-purpose macros, whereas MACLEARN aims for a smaller number of 
more general-purpose macros. However, Korf's method has the important ad- 
vantage of being algorithmic; one can prove that a macro table exists under 
certain assumptions, and that the learning algorithm will eventually find this 
table. This contrasts with the heuristic approach taken in MACLEARN. 

Another appealing aspect of Korf's method is that once a macro table has 
been learned, it can be used to solve all variants of the puzzle having the same 
size and goal state. However, if the goal changes, a new macro table is required. 
In contrast, MACLEARN'S macros are not tied to specific goals. Another limi- 
tation is that Korf's macros do not generalize naturally to related problems of 
different size. For example, the macros that solve the 2 x 2 × 2 Rubik's Cube do 
not help solve the 3 × 3 × 3 version of the cube, nor do macros learned for the 
Eight puzzle help solve the Fifteen puzzle. The present approach overcomes 
this difficulty through the process of composing and abstracting macros, which 
lets the macros apply in new circumstances, such as larger-sized problems with 
similar structure. This occurred in both the tile-sliding and peg-solitaire do- 
mains, where macros learned from simpler problems proved useful in solving 
harder problems. 

Laird, Rosenbloom, and Newell (1986) have taken yet another approach in 
their work on learning by chunking in SOAR. Both the current system and 
SOAa use within-trial learning, so that macros from early stages of search can 
lead to improvements later on. One difference is that SOAR can use goal- 
directed search, whereas MACLEARN uses best-first search. Another difference 
is that SOAR explicitly chunks control knowledge having to do with subgoals 
and methods, whereas MACLEARN'S control knowledge (the evaluation func- 
tion) is separate from the representation of macros. MACLEARN merely dis- 
covers macros that one can apply, but makes no suggestions about when  to 
apply them. This latter question is certainly important, but it can be treated 
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as a separate issue, rather than having it bound up with the macro discovery 
process. There is a suggestive analogy with the discovery of theorems in math- 
ematics, which are similar in many respects to the macros discovered here. A 
theorem states that  it is possible to draw a conclusion from premises, but it 
makes no commitment as to when the conclusion should be drawn. A math- 
ematician certainly develops control knowledge that suggests when to use a 
theorem, but this knowledge can stand separately from the statement of the 
theorem itself. A final difference between the two systems is that  SOAR does 
not address the issues of selectivity in what should be learned and what should 
be forgotten. These issues are directly addressed in MACLEARN by means of 
the static and dynamic filters. SOAR has been applied to a number of tasks, 
including the Eight puzzle and Tic-Tac-Toe. 

Minton (1985) has explored another interesting approach to macro discovery 
in his MO~tRIS system, which uses a combination goal-directed and best-first 
search. MORRIS and MACLEARN are similar in that  they both use heuristics 
that  explicitly address the need for selectivity. Minton's system learns macros 
of two types - S-macros and T-macros. The S-macros (script macros) are cre- 
ated from common sub-sequences shared by different solution paths. MORRIS 
places a limit on the number of allowable S-macros. When the number of S- 
macros exceeds this limit, the system determines which ones have been used 
least often, and removes them one by one until the number of macros is within 
the bound. This stratagem is similar to dynamic filtering. MORRIS is also 
selective in forming T-macros (trick macros), which are only proposed when 
a solution path contains a step or steps that run counter to the evaluation 
function. This is similar to the peak-to-peak heuristic, but his system applies 
it only to solution paths, rather than to partial search paths. Thus MORRIS 
does not learn within a single trial, but only from examination of solution 
sequences once a problem has been solved. Minton's system does not seem 
to have a mechanism for selectively forgetting T-macros once they have been 
learned. Tests of MORRIS were conducted in the domain of robot planning. 

In other work, Cheng and Carbonell (1986) have studied the discovery of 
iterative and conditional macros in their FERMI system. This is an important 
and novel extension of previous macro-learning work. FERMI employs a rep- 
resentation that  is an extended form of production rules, in which right-hand 
sides of productions may have special rule sets called buckets. A bucket is 
essentially a subroutine of rules that  is repeatedly called until none of its rules 
applies, thus achieving iteration. There can be more than one bucket on the 
right-hand side of a rule, leading to conditionality. As in SOAR, the FERMI sys- 
tem incorporates control knowledge as part of its learned macros, rather than 
keeping control knowledge separate. Also, since the system does not compile 
macros into pre- and post-conditions, it can only predict the effect of a macro 
by actually executing it in expanded form. Learning in FERMI involves ana- 
lyzing solution traces, so the system learns only after it has found a complete 
solution, rather than during a problem trial. This contrasts with both SOAR 
and MACLEARN, which learn within a single trial. However, one should be 
able to extend FERMI SO it proposes macros when it satisfies subgoals, and 
thus achieve within-trial learning. 
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5.4 S u m m a r y  and conclus ions  

This paper has described a heuristic approach to the discovery of macro- 
operators. The program MACLEARN, which implements the approach, was 
tested in the two problem-solving domains of peg solitaire and tile sliding. The 
tests demonstrated successful learning, leading to the solution of some diffi- 
cult problems. Experiments with several selective filtering mechanisms showed 
improvements of overall search efficiency. Within-trial learning proved to be 
beneficial in limiting growth of the operator set and in discovering solutions 
more efficiently. 

Perhaps the greatest problem with the current work is that the best-first 
search applies every available operator at each node of the search tree. Thus, 
as more macros are learned, the search process slows down because of the 
increased branching factor. A goal-directed search might remedy this defect, 
since it would selectively consider only operators that are relevant to the cur- 
rent subgoal. 

Although the basic framework has proved useful for discovering macros in 
problem solving, it should also apply to other problem categories. Future work 
should examine domains such as theorem proving and automatic programming, 
in order to test its full generality. 
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