
Machine Learning 3: 285-317, 1989
~) 1989 Kluwer Academic Publishers - Manufactured in The Netherlands

A Heuristic Approach to the
Discovery of Macro-operators

GLENN A. IBA (GI01@GTE.COM)

GTE Laboratories, Incorporated, 40 Sylvan Road, Waltham, MA 02254, U.S.A.

(Received: September 30, 1986)

(Revised: November 30, 1988)

Keywords : Macro-operators, search, problem solving, composition,
empirical learning.

A b s t r a c t . This paper describes a heuristic approach to the discovery of useful
macro-operators (macros) in problem solving. The approach has been implemented
in a program, MACLEARN, that has three parts: macro-proposer, static filter, and
dynamic filter. Learning occurs during problem solving, so that performance im-
proves in the course of a single problem trial. Primitive operators and macros are
both represented within a uniform representational framework that is closed under
composition. This means that new macros can be defined in terms of others, which
leads to a definitional hierarchy. The representation also supports the transfer of
macros to related problems. MACLEARN is embedded in a supporting system that
carries out best-first search. Experiments in macro learning were conducted for two
classes of problems: peg solitaire (generalized "Hi-Q puzzle"), and tile sliding (gen-
eralized "Fifteen puzzle"). The results indicate that MACLEARN'S filtering heuristics
all improve search performance, sometimes dramatically. When the system was given
practice on simpler training problems, it learned a set of macros that led to successful
solutions of several much harder problems.

1. Introduct ion

In many domains, problem solving involves considering alternative sequences
of operators. For such tasks, it is often profitable to gather certain subse-
quences into clusters or chunks, since it enables a speedier and more efficient
search for a correct or desired solution. Such subsequences of operators are
called macro-operators, or macros; each macro may be treated as a whole and
may be regarded as just another operator to be used in problem solving.

There are two general approaches to improving search. One is to decrease the
branching factor of the search tree, the other is to shorten the effective length
of the solution path. Macro-operators implement the second idea by allowing
the application of operator sequences as single steps. However, defining new
macros also increases the branching factor of the search, which suggests that
some selectivity should be exercised in their acquisition.

286 G.A. IBA

The discovery of macros may be regarded as a form of learning by compo-
sition, as in Iba (1986). The present paper explores macro discovery in the
context of puzzle solving, a class of domains in which it proves very useful. A
heuristic approach to the discovery of macro-operators has been implemented
in MACLEARN, a program that solves problems by searching for operator se-
quences that achieve a desired goal. These operators may be primitive (e.g.,
the basic moves in board puzzles) or they may be macros defined by the system
itself.

MACLEARN's macros are abstracted versions of compiled move sequences,
which it proposes using variants of the peak-to-peak heuristic described in
Iba (1985). The system also employs several types of static filtering, including
checks for redundancy (equivalence) of macro-operators, limits on the allowable
expanded lengths of macros, and a test on the post-conditions of macros. In
addition, dynamic filtering deletes those macros which are never used as part of
a solution. By default, MACLEARN exhibits within-trial learning, since macros
are discovered in the course of a problem-solving trial, and macros learned
early on may prove useful at later stages of the search. In an alternate mode,
the system does post-trial learning, in which newly defined macros are not used
during the current trial, but only on subsequent problem trials.

In order to test this approach to macro learning, MACLEARN was applied
to two classes of puzzles: peg solitaire and tile sliding. The principal results
were that the system successfully learned macros which enabled it to solve
the full "Hi-Q" puzzle (peg solitaire) and the "Fifteen puzzle" (tile sliding),
as well as variations; that some simple heuristics for static and dynamic fil-
tering improved search for macros; and that within-trial learning was better
than post-trial learning. MACLEARN was able to solve difficult Hi-Q puzzles
after learning macros while solving simpler training puzzles. Without those
macros, it could not solve the difficult problems directly. Thus, the system
demonstrates a kind of development of expertise, in which training on simpler
problems leads to macros that are useful in solving more difficult problems.
That is, MACLEARN can take advantage of transfer to other problems.

Subsequent sections of this paper describe details of the learning system, and
experiments carried out to test its effectiveness. Section 2 describes the general
framework for learning macro-operators. Section 3 presents its application to
and the results for peg solitaire, including the controlled studies of various
filtering heuristics, and a comparison of within-trial and post-trial learning.
Section 4 explores the generality of the approach by examining its application
to the domain of tile sliding. Section 5 discusses the approach used, compares
it with related work, and provides a summary of conclusions.

2. A g e n e r a l f r a m e w o r k f o r l e a r n i n g m a c r o - o p e r a t o r s

MACLEARN learns by defining new macros and adding them to the search
system's operator set. The objective is to improve that set so the system
can solve problems faster or more economically. Viewing problem solving as
a search in the space of operator sequences, macros let the program consider
much longer sequences by representing them as shorter ones. This is equivalent

DISCOVERY OF MACRO-OPERATORS 287

DATA FLOW

(PRIMITIVE OPERA-

TORS AND MACROS)

Figure 1. Performance element and learning model.

to decreasing the effective distance to the goal in the search space. MACLEAt~N
also at tempts to improve its performance by deleting less useful operators from
the set, thus reducing the branching factor of the search.

Figure i summarizes the relations between the system's performance element
and its three learning components the macro proposer, the static filter, and
the dynamic filter. A more detailed description of each system component
follows below.

2.1 The performance element: Bes t - f i r s t s ea r ch

The performance element employs best-first search to find a sequence of
operators that transforms a given starting state into a goal state. Problem
solving proceeds by expanding nodes of the search tree. A node consists of
a problem state (position) paired with the operator sequence leading to that
state. In expanding a node, each available operator is applied in turn to
the node's state, generating a list of successor nodes. In best-first search an
evaluation function determines the order in which the search tree is expanded,
assigning a value to each node of the tree according to the estimated promise
of its current position. Higher values are assigned to nodes that appear more
promising. At each step of the search, an unexpanded node with maximal
value is chosen for expansion~ hence the term "best-first" search.

Several pieces of information must be supplied to the performance element:

• an evaluation function;

• a specification of the initial state;

• a specification of the goal;

• a specific initial operator set (the primitive operators); and

• a uniform mechanism for applying operators to states.

The details of these specifications differ according to the domain, and examples
of each are given in Sections 3 and 4.

288 G.A. IBA

2.2 Representa t ion of states , goals, and operators

For a problem-solving system to search, it must first be able to represent the
states it will consider. This representation should allow easy matching against
operators' conditions and easy computation of the states that result from op-
erator application. Moreover, it should be easy to ascertain the equivalence of
states. In the experiments reported in this paper, states are represented as two-
dimensional arrays. The equivalence test is based on an element-by-element
comparison of two arrays, taking into account rotations and reflections.

A goal is represented as a condition that must be satisfied by a state in order
to qualify it as a goal state. One very simple condition is membership in a set
of explicitly designated desirable states. In general, the goal condition may be
any predicate, which implicitly defines the goal states as those for which the
predicate is true.

In order to generate new states, the performance element must apply op-
erators. Following Vere (1978), operators are represented as relational pro-
ductions, which specify the conditions under which an operator can be applied
(the before part), and the changes that result from application (the after part).
Sometimes an operator may be applied to a state in more than one way; for
example, if an operator jumps one piece over another, in some states more
than one piece may be able to make such a jump, or the same piece may be
able to jump in more than one direction. To resolve this ambiguity, binding
information is paired with the operator to specify how it should be applied to
a state. The operator, together with its binding information, is termed an op-
erator instance. An operator instance is legal in a given state when the before
part of the operator matches the partial current state specified by the binding
information. Application involves substituting the after part of the operator
for the partial state matched by the before part, thus generating a new state.

MACLEARN'S operator set initially includes just the primitive operators, but
it can expand this set by adding new macros, which it defines in terms of
primitive operators or other macros. Macros are represented in the same way
as primitive operators, but in addition to a before and after part, they have
an expansion component, which defines the macro in terms of other operators.
This leads to a hierarchy of macro definitions. By recursive expansion, any
macro can be expressed as a sequence of primitive operators. The uniform
representation of primitive operators and macros means that MACLEARN c a n
use the same procedures to test and apply both of them. Thus the system can
invoke a new macro immediately after adding it to the operator set.

2.3 Pr op os in g new macros

The process of proposing macro-operators includes the following four steps:

1. triggering of macro proposal during search;

2. delimiting a sequence of operator instances;

3. composing and abstracting the delimited sequence; and
4. defining a new macro and passing it to the static filter.

Macro proposal is triggered during the search process whenever the system

DISCOVERY OF MACRO-OPERATORS 289

detects a peak in the evaluation function along a path of the search tree. A
peak is defined (relative to a given path) as a node whose value is greater than
each of the two adjacent nodes along the given path. The following sections
describe the processes of delimitation, abstraction, and composition which are
employed in the macro proposer.

2.3.1 Delimiting operator sequences by the peak-to-peak heuristic

The macro proposer uses a peak-to-peak heuristic (Iba, 1985) to delimit
sequences of operator instances for defining new macros. Recall that the macro
proposer is invoked when the search system notices a peak at the end of the
current search path (the one from the root to the most recently expanded
node). This search path is now traversed backwards toward the root of the
tree until the immediately preceding peak is located. If no such peak is found,
then the root of the tree itself is used as a peak. The two peaks thus identified
serve to delimit a specific sequence of operator instances. This sequence is then
abstracted and composed to define a new macro, as described in Section 2.3.2.

The motivation behind the peak-to-peak heuristic is to smooth the search
space by remembering operator sequences that helped in getting past "valleys".
A good set of macros will tend to make the fixed evaluation function more
monotonic; i.e., guide search on more of a steady uphill climb, with fewer
descents into valleys. If the evaluation function is already monotonic, then the
peak-to-peak heuristic will never be invoked, and no macros will be learned.

2.3.2 Composition and abstraction of operator sequences

The delimited sequence of operator instances is next composed into a sin-
gle relational production. This is accomplished by defining before and after
conditions that are equivalent to the transformation carried out by the entire
sequence. Vere (1978) has described a very general method for composition
of relational productions. His method has the important property of closure

- that the composition of a sequence of relational productions is itself a rela-
tional production. This property is desirable so that MACLEARN can test the
legality of macros and apply them using the same mechanisms as for primitive
operators. Similar approaches to composition have been discussed by Daw-
son and Sikl6ssy (1977), Lewis (1987), and Neves and Anderson (1981) in the
context of production systems.

MACLEARN takes a composition method as one of its procedural parameters.
The experiments of this paper used simplified composition methods that were
tied to the specific domains of peg solitaire and tile sliding. These were used
for the sake of efficiency, but a more general mechanism would have served as
well in principle.

The operator instance sequence, in addition to being composed, is abstracted
by generalizing the associated binding information for each of the operator in-
stances. Variables can be introduced for constants where that is appropriate, as
in the tile-sliding procedures of Section 4.1. The abstraction process produces
both a generalized operator sequence, and a generalized composite relational
production. The resulting macro will apply in many more settings than the
one in which it was proposed.

290 G.A. IBA

The process of composing and abstracting a sequence of operator instances is
similar to that of goal-regression in explanation-based generalization (Mitchell,
Keller, & Kedar-Cabelli, 1986), in that it constitutes a search for the weakest
preconditions under which a given transformation is possible. The instantiated
operator sequence plays the role of the example that drives generalization. The
domain theory is the model of the operators and the state transformations they
accomplish.

Once composition and abstraction are complete, the macro proposer defines
a new macro. The before and after pa~s of the new macro are simply the before
and after parts of the generalized composite relationM production~ whereas the
abstracted operator sequence becomes the expansion part of the macro. The
new macro is given a unique name and passed on to the static evaluator.

2.4 Static filtering o f m a c r o s

As already mentioned, it is important to be selective in generating new
macros, since each one increases the branching factor of the search. Therefore
MACLEARN passes each new macro through its static filter, which performs
a heuristic analysis of the macro description to decide whether the macro is
likely to be useful. If the decision is positive, the macro is retained; otherwise
it is discarded. Retained macros are immediately added to the operator set in
the case of within-triM learning, whereas they are placed on a reserve list in
post-trial learning.

The static filter uses three tests. First, a redundancy check screens out any
macros that axe equivalent to primitive operators or to previous macros. Since
any given macro may be proposed more than once, this criterion helps to keep
the operator set from growing needlessly. Next, a length test eliminates any
macro whose expanded length exceeds a given threshold. The expanded length
of a macro is just the number of prilnitive operators in its full expansion. This
test is motivated by the intuition that a macro with greater expanded length
will tend to have more complex preconditions and thus would be less often
applicable. Finally, a domain dependent test allows for the specification of
static criteria that depend on the specific domain and features of the chosen
representation. Section 3.5 discusses a simple domain-dependent criterion used
in peg solitaire, which is related to the evaluation function used in that domain.
No domain dependent test was used in the tile-sliding domain.

2.5 D y n a m i c filtering of macros

The dynamic filter serves as an empirical counterpart to the static filter. The
latter may occasionally pass macros that are not useful. The dynamic filter
detects such cases by examining statistics on how macros have been used.
Currently, the static filter pays attention only to whether or not a macro has
appeared in the solution sequence in any of the solved problems. Credit for
appearing in solution sequences is only assigned to the top-level macros in the
solution; it is not inherited by macros that appear in the definitious of those
macros. Thus, when a macro is removed from the operator set by the dynamic
filter, its definition is retained in case it. is needed to expand the definitions

DISCOVERY OF MACRO-OPERATORS 291

of other macros still in use. Primitive operators are never removed from the
operator set, since this could make certain problems unsolvable.

At present the dynamic filter is invoked manually, typically after a training
sequence has been completed. This is to insure that macros have a reasonable
opportunity to help solve several problems before being tested. If the filter
were automatically invoked after every trial, it might remove potentially useful
macros before they had an opportunity to prove their usefulness on other
problems.

3. Application to peg solitaire

The first domain on which MACLEARN was tested is peg solitaire, a class of
problems that includes the board puzzle sold commercially as Hi-Q. This is an
appropriate domain not only because it includes some difficult prob]ems, but
also because it provides a useful point of comparison with the macro-learning
technique of Korf (1982, 1983, 1985a, 1985b), which requires that a problem be
operator decomposable. 1 Since peg solitaire is not operator decomposable, it
demonstrates that MACLEARN's heuristic approach can be applied to a larger
class of problems than Korf's method. Section 3.1 presents an example to
illustrate the nature of peg-solitaire puzzles and how the system deals with
them. Sections 3.2 through 3.5 describe how various parts of the MACLEARN
system are specialized for application to peg solitaire. Section 3.6 describes
experiments with peg solitaire and presents the results for this domain.

3.1 MACLEARN on a simple peg-solitaire problem

The following simple example serves to introduce peg-solitaire puzzles, and
illustrates how macros can aid the solution process by shortening the effective
solution path. The initial state is:

0 0 0

• 0 0

• 0 0

Here and subsequently "o" represents a peg and " ." represents a hole. The
single operator (jump) consists of moving one peg horizontally or vertically
over an adjacent peg into a hole. The peg jumped over is then removed from
the board. The goal is to reach a board state that contains only one peg. Since
each jump removes one peg, any solution has exactly six primitive steps.

The primitive jump operator can be represented as a relational production:

0 0 •) • . O

This operator can be applied in any location of the board and in any of four
directions, subject to obvious boundary constraints. The binding information

1A problem is operator decomposable if its states can be represented as vectors of state
variables in such a way tha t the ei~ect of each operator on any state variable depends only
on the value of that s tate variable, and not on the values of any other state variables (see
Korf, 1983),

292 G . A . IBA

Prim. Op. Macro Prim. Op.

o o o . 0 0 0 . 00 .
• 0 0 . ~ . 0 0 . ") . 0 .) .

. O 0 . . 0 . o . .

Macro

• 0 o .

0 ° ,)

0 ° ° ° . . *

Figure 2. Solution of a simple peg-solitaire problem.

in an operator instance specifies the position and orientation in which the
operator is matched against the board. In the initial state above, there are
five legal operator instances.

Shortly into its search on this puzzle, MACLEARN encounters a peak that
triggers macro proposal. Together with a previous peak, this delimits a se-
quence of two moves or primitive operator instances. The macro proposer
defines a macro with the following before and after parts:

O - - - -

Before: . o o After: • .

0 - -

The dashes mean "don't care"; they are needed because macros are repre-
sented using rectangular arrays. The system uses this macro twice in the first
solution it finds, which appears in Figure 2. In this figure, uppercase "O"'s
indicate the pegs to which an operator is applied. The advantage of using the
macro is that the solution sequence is only four steps long instead of six. This
means that the search takes less time, even though more operators are applied
at every move.

3.2 R e p r e s e n t a t i o n a n d m a t c h i n g i n p e g s o l i t a i r e

Board states for the peg-solitaire domain are represented as rectangular ar-
rays. The elements of a board array are either pegs, holes, or voids. Voids
represent locations of the array where pegs are not permitted, such as the cor-
ners of the Hi-Q board (see Figure 3). The before and after parts of operators
(both primitives and macros) are also represented as rectangular arrays. The
elements of these arrays can be pegs, holes, or don't-cares. Voids do not ap-
pear in operator representations since they are generalized to don't-cares. The
before and after arrays of any given operator must have identical dimensions.
Furthermore, don't-cares always appear in the same positions in the before
and after arrays.

The legal move generator finds all legal instances for each operator in the
current operator set. The binding information of an operator instance speci-
fies its position and orientation (including possible reflection) relative to the
board. Each operator is paired with every possible binding specification to
obtain the set of candidate operator instances, and each candidate instance is
then tested for legality. An operator instance is legal if its before part matches
the board according to the position and orientation specified by its binding

DISCOVERY OF MACRO-OPERATORS 293

ooo
ooo

• O

.... 000

000

0.0

Number of separated peg groups: 2

Number of separated hole groups: 3

Number of pegs: 15

Figure 3. A board state whose evaluation function value is (-2, -3, -15).

information. The match with the board is just an element-by-element com-
parison of corresponding elements in the arrays, and is successful only if each
of the individual elements match. Don't-cares match against anything in a
board array, including voids.

The best-first search system applies legal operators to board positions to
generate successor positions. Applying a legal operator instance consists sim-
ply of copying the after array of the operator into the part of the board array
specified by the operator binding. Don't-cares are ignored during this copy
process; i.e., nothing is changed at the corresponding board location.

3.3 T h e e v a l u a t i o n f u n c t i o n for peg sol i ta ire

The peg-solitaire version of MACLEARN uses the component-hole-peg metric.
Briefly, this is a three-element vector whose elements specify the number of peg
groups, the number of hole groups, and the number of pegs. Groups are defined
here by horizontal and vertical adjacency, with voids being treated as holes.
The additive inverse of each score is used, since in each case smaller absolute
values are considered more desirable. The first criterion prefers states with
fewer groups of pegs, the second prefers those with fewer groups of holes, and
the third prefers fewer pegs. Figure 3 shows a sample state and its evaluation.
Note that the voids in the lower right corner contribute a third hole group.

Evaluation vectors are ordered by lexicographic comparison. If the first
elements of two vectors are unequal, those elements determine the order of
the vectors, and all subsequent elements are ignored. If the first elements are
equal, then the second elements are compared, and so on, until a difference is
encountered. The first difference always determines the ordering of the vectors.
If no difference is found, then the vectors are equal.

3.4 T h e m a c r o - p r o p o s e r for p e g sol i ta ire

In peg solitaire, MACLEARN invokes the macro proposer when the current
node (the one being expanded) becomes a peak because one of its child nodes
has a lower value. This is referred to as the possible-peak triggering condi-
tion. It contrasts with the more restrictive selected-peak condition used in
earlier work (Iba, 1985), in which one proposes a macro only when the previ-
ous node is a peak; i.e., when the search was forced to take a downhill step

294 G.A. IBA

from the previous node. The possible-peak criterion is less restrictive and leads
to the proposal of more macros, thus placing a greater burden on the filtering
mechanisms, which must weed out the larger number of poor macros that are
generated. The possible-peak condition was chosen for peg solitaire in order
to provide a greater test of the filtering heuristics. Once invoked, the macro-
proposer uses the peak-to-peak heuristic discussed in Section 2.3.1 to delimit
a sequence of operator instances. This sequence is composed and abstracted
by the procedure described below.

MACLEARN uses a domain-specific procedure to accomplish composition and
abstraction in the peg-solitaire domain. This procedure runs much more ef-
ficiently than the more general procedures referenced in Section 2.3.2. The
steps are as follows:

1. Find the smallest rectangular window that includes all locations referenced
by any operator instance in the sequence being composed.

2. Create a dummy array with the dimensions of this window, and initialize
it entirely with don't-cares.

3. Renumber or relativize the bindings of each operator instance so that they
are relative to the dummy array rather than to the larger board.

4. Copy the after array of each (relativized) operator instance into the dummy
array in the position and orientation that are specified by the relativized
operator instance bindings. This occurs in the order in which the operator
instances appear in the sequence. The result becomes the after part of
the macro.

5. Transform (a copy of) the after array by making backwards moves in
the reverse order of the sequence. A backwards move is accomplished by
reversing the roles of the before and after arrays. The result becomes the
before part of the macro.

6. Set the expansion of the macro-operator to be the relativized sequence of
operator instances. This sequence transforms the before array into the
after array.

The composition part of this procedure merges the individual before and after
conditions. The resultant after array is a compilation of the individual after
arrays, and the before array is a reverse compilation of the individual before
arrays.

Generalization takes place in two ways. By narrowing the window of refer-
ence and using don't-cares for unreferenced locations within the window, the
procedure only retains those conditions that are necessary for applying the
operator sequence. The second form of generalization occurs across positions
and orientations. This is supported explicitly by narrowing the window and
implicitly by the way operators are applied (automatic translation, rotation,
and reflection). Since macros can apply with different bindings than the origi-
nal sequence from which they were generated, the relativization of bindings is
necessary to facilitate correct expansion of macro instances at a later time.

DISCOVERY OF MACRO-OPERATORS 295

Medium-Edge

0 0 0 0

0 0 0 0

0 0 0 .

0 0 0 0

Part ial-Hi-Q

• 0 . 0 •

• 0 0 0 .

000

000

Hi-O-I

000

000

0 0 0 0 0 0 0

0 0 . 0 0 0 0

0 0 0 0 0 0 0

000

000

Hi-Q-2

000

000

0 0 . 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

000

000

Hi-Q

000

000

0 0 0 0 0 0 0

0 0 0 . 0 0 0

0 0 0 0 0 0 0

000

000

Figure 4. Peg-solitaire problems used in the experiments.

3.5 T h e s t a t i c a n d d y n a m i c f i l ters in p e g so l i t a i r e

The static filter for peg solitaire includes all three types of tests discussed in
Section 2.4. In the redundancy check, two operators are considered equivalent
if there is some rotation and reflection for which the before and after arrays
correspond exactly. In all of the peg-solitaire experiments, the threshold for
the length test was seven.

The domain-specific criterion used for peg solitaire is a connectedness test,
which requires that the after side of a proposed macro have its pegs connected
in just a single component. The motivation is that the evaluation function
places highest emphasis on keeping the number of connected components of
pegs to a minimum. The notion is that macros leaving their affected pegs in
a single connected component will be more likely to contribute positively to
such an evaluation function. The experiments reported in Section 3.6 seem to
bear this out.

The dynamic filter applies the tests discussed in Section 2.5, filtering out
any macro that never appears in a solution sequence. Such unused macros are
removed from the operator set, but their definitions are retained.

3.6 E x p e r i m e n t s w i t h peg so l i t a i re

In order to evaluate the behavior of MACLEARN in the peg-solitaire domain,
a number of experiments were carried out. The first experiment compared
problem-solving performance on individual test problems with and without the
learning of macros. The second study explored the value of cumulative experi-

296 G . A . IBA

30

O

20

10

N o MACRO LEARNING
FIRST TRY WITH MACRO LEARNING
RETRY WITH MACRO LEARNING
DYNAMIC FILTERING 1800

O
1600

~ 1400

~ 1200

;iiii;ii
i000

!::!::!!::i::!:: ~,: ~,:, ::iiii::::!::i::! 800
i!iiiiiiii! ~ii~:~:l iliiii:i:iiiiii

::ii::i::::::i :::::;'::[::::::::::::i::::::::::::: 600

;!:!i:i::i i 400

i:~. ?ii:!ili~ ~oo

0
MEDIUM-EDGE PARTIAL-HI Q

> 20,000

::::%:

HI-Q-2

Figvre 5. Run-time comparisons with and without macro learning (Experiment 1).

ence over a sequence of problem-solving trials. The third experiment compared
the value of alternative static filtering conditions, and the fourth examined the
value of dynamic filtering. The final experiment compared within-trial and
post-trial learning.

The primary performance measures used to evaluate MACLEARN'S problem-
solving behavior were total run time and success at solving problems. Other
data collected during the experiments include the number of nodes expanded,
the number of operator instances considered, the number of macros proposed,
the number of macros passed by the static filter, and the length of the solution
sequence (in both primitive and macro steps). A derived statistic is the average
branching factor, which is the total number of generated nodes divided by the
total number of expanded nodes.

Figure 4 shows the initial states for the peg-solitaire problems used in the
experiments. In each case, the goal is to reduce the board to a single peg. In
Experiment 1 these problems were each attempted separately. In the remaining
experiments the problems were presented in sequence (Medium-Edge, Partial-
Hi-Q~ Hi-Q-I~ Hi-Q-2, Hi-Q) as a series of training problems, roughly graded
from easier to more difficult.

All static filtering was done using the complete static filter (redundancy,
length, and domain-specific tests), except for Experiment 3, in which the var-
ious static filtering tests were compared. When the length test was used in
static filtering, the length threshold was set to seven. The domain-specific

D I S C O V E R Y OF M A C R O - O P E R A T O R S 297

0

0

z
0
Z

r~

20

10

[---I NO MACRO LEARNING
D FIRST TRY WITH MACRO LEARNING

RETRY WITIt MACRO LEARNING
DYNAMIC FILTERING

i!i!iiiiiiii!!
ili!!!~iiii!i~

MEDIUM-F~DGE PARTIAL-HI-Q HI-Q-2

Figure 6. Average branching factors with and without macro learning (Experiment 1).

test for peg solitaire was the connectedness test described in Section 3.5. The
default for macro learning was within-trial learning, except for Experiment 5,
which compared post-trial and within-trial learning.

3.6.1 Experiment 1: Testing the value of macro learning

This experiment compared search performance with macro learning to the
baseline case without macro learning. Each of the five peg-solitaire problems
was a t tempted first without macro learning and then with macro learning.
When the problem was successfully solved with macro learning, the set of
learned macros was used to re-solve the problem. This allowed macros pro-
posed in later stages of the first search to be available from the beginning of
the search. It also gave all the operators a fair chance to appear in a solution
before the dynamic filter was invoked. The final step in this experiment was to
apply the dynamic filter to the operator set resulting from the retry attempt.
The resulting filtered operator set was used to solve the problem one last time.

Two of the problems (Hi-Q-1 and Hi-Q) were not solved either with or with-
out macros, so no results are reported for them. Of the remaining problems,
Hi-Q-2 without learning ran for 20,000 seconds without finding a solution. All
the other searches were successful, and the run-time measures appear in Fig-
ure 5. The main results are that macro learning led to initially increased run
time for the easier problems (Medium-Edge and Partial-Hi-Q), but that for
the harder Hi-Q-2 problem, learning led to a solution whereas none was found
without macros. Even on the easier problems, the retry at tempts led to run
times comparable to those without macros, and the application of the dynamic
filter led to significant run-time improvements, roughly halving the time spent
on the retry attempt.

298 G.A. IBA

UNSOLVED

3O

6

2O

£

o~

O

NO MACRO LEARNING
FIRST TRY WITH MACRO LEARNING
RETRY W~TR MACRO LEARNING
DYNAMIC FILTERING

MEDIUM-EDGE PARTIAL- HI- Q

iiiiiiii!iiiii!
ii!iii!i

HI-Q-2

Figure 7. Lengths of solutions found with and without macro-operator learning
(Experiment 1).

As discussed earlier, one view of macro learning is that it trades breadth
against depth in the search tree, accepting an increase in breadth in order to
achieve a reduction in depth. One measure of a tree's breadth is its average
branching factor. Figure 6 graphs the average branching factors for each con-
dition on the Medium-Edge, Partial-Hi-Q, and Hi-Q-2 problems. As expected,
the branching factor increases as more macros are learned. The dynamic filter,
by eliminating certain macros, leads to a decrease in branching factor. Figure 7
graphs the macro solution lengths for each condition on the same problems. 2
As expected, the acquisition of macros consistently leads to shorter solutions.

3.6.2 Experiment 2: Cumulative learning - training and transfer

Although Experiment 1 suggests that macro learning can lead to improve-
ment over search without macros, the method was not sufficient to solve the
Hi-Q-1 and Hi-Q problems. One approach to these harder problems is to take
advantage of macros learned while solving simpler problems. Experiment 2
explores the issues of training and transfer by treating the peg-solitaire prob-
lems as a five-step training sequence, with macros learned on earlier problems
being available to help solve later problems. During the first pass through the
training sequence, no dynamic filtering was invoked. At the end of this pass,
the dynamic filter was invoked on the final operator set, causing 15 of the
26 macros to be discarded. The remaining operators are shown in Figure 8.

2Note that although MACLEARN was unable to solve Hi-Q-2 without macros, all solutions
of this problem take exactly 31 primitive steps.

DISCOVERY OF MACRO-OPERATORS 299

Primitive Operator (7) Macrol (i)

0 0 . . 0 0 0 . • 0

0 0 . ----+ . 0

Macro4 (4) Macro6 (2)
O O

0 0 0 . . . 0 0 . -----+

0 0 0 0 0 ----4 . . 0

0 0

Macro23 (i) Macro25 (9)

• o . . . o . o o o

o o . . o o o) ----+

o o . . o o o

• 0 0 0

Macro2 (1)

O O . ____> .

O

Macro7(3)
0 0 0

0 0 0

Macro29(1)
0

0 > 0

O

• 0

• 0

0

Macro3i (1) Macro44 (1)
O O

• 0 0 0 0 0

0 0 0 ~ . . 0

0 0 0 0 0

• O

Figure 8. Operators left after dynamic filtering. Numbers in parentheses indicate
how many times operators have appeared in solutions. Donk-cares have
been omitted in the operator descriptions.

Starting with this filtered set of 11 operators, a second pass was made through
the training sequence• This time, dynamic filtering was invoked between each
problem trial in the sequence.

Figure 9 shows the run-time comparisons on each problem with no macro
learning, the first pass through the training sequence (macro learning with
experience accumulating over trials), and the second pass through the training
sequence (using the dynamic filter before each trial). The main result is that
cumulative learning led to successful solutions for all the problems, including
Hi-Q-l, Hi-Q-2, and Hi-Q, which went unsolved without learning. A somewhat
negative result was that the transfer of macros from Medium-Edge to Partial-
Hi-Q actually slowed down the search• The run time of 179 seconds when
experience was transfered is much greater than the 15 second run time of
Experiment 1, in which Partial-Hi-Q was solved using macro learning but
without any transferred experience. On the second pass, dynamic filtering
led to a dramatic reduction in run time for the Partial-Hi-Q problem, and to
roughly a halving of run time on the remaining problems. On all problems, the
run time after dynamic filtering was less than when no macros were learned at
all. Figure 10 shows the solutions to the Hi-Q-l, Hi-Q-2, and Hi-Q problems
that MACLEARN found during the dynamic filtering pass through the training
sequence. The searches for Hi-Q-1 and Hi-Q-2 were completely monotonic,
meaning that no backtracking was required and the solution was found in a

300 G.A. IBA

8O

O
70

¢ o

E=
z 50

N 40

30

20

10

[] No ~/IACRO LEARNING
[] MACRO LEARNING WITH CUMULATIVE EXPERIENCE

DYNAMIC FILTERING > 1800

179

i

MEDIUM-EDGE PARTIAL-HI-O Ill- HI -Q-1

> 1800 > 1800

i iiiililil
i iiiiliiii
! iii!iiiii
1 .:.:.:.:.

::::::::::

!!!i!i!!!!
iiiiiiiiii

iil;ii!ili
HI-Q-2 I t I -Q

Figure 9. Run times for learning with cumulative experience (Experiment 2).

straight-line fashion. The Hi-Q search was nearly monotonic, having just a
single instance of backtracking; eight nodes were expanded to find the final
seven-step solution.

3.6.3 Experiment 3: Testing the static filtering heuristics

Section 3.5 described the three static filtering tests employed in MACLEARN.
In order to assess the value of each of these tests, the following five combina-
tions of tests were evaluated as static filters:

1. No tests

2. Redundancy test
3. Redundancy + domain-dependent (connectedness test)

4. Redundancy + expanded length
5. Redundancy + expanded length + domain-dependent (connectedness test)

This list includes all combinations of the tests except length, domain, and
length + domain-dependent tests. These were omitted to simplify the study,
since the redundancy test was so obviously desirable. Note that in the "no
tests" condition, all macros pass the static filter by default. In this experiment,
each combination of tests was evaluated by using it as the static filter while
doing cumulative learning on the entire five-problem training sequence.

DISCOVERY OF MACRO-OPERATORS 301

Hi-Q

M a c r o 4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 . 0 0 0 ~ 0 0 0 , 0 0 0

o 0 0 0 o o o o . . 0 0 o
o 0 o 0 0 0

o o o 000

M a c r o 6 M a c r o 2 5

o o o 0 0 0

o o o 0 0 0

o o o o 0 0 0 o o 0 0 0 .

___, o o o . 0 0 0 _ _ ~ o o o . o . . ~

o . . . 0 0 0 o . . . o .
. . . , .

. . . o ~ .

M a c r o 2 5

• • .

ooo00 . .

_ ~ o o o . 0 . .

o . . . 0 .

• . .

Macro4 Macro44 Prim. Op

• . . . • . . ,

0000

__~ 0 o 0 , . 0 0 ÷ . . . o . . .

0 •

• • ° . • •

• . • . • .

Hi-Q-1

o o l i o .

4

I. Macro6
2. Macro25
3. Macro25
4. Macro25

5. Macro31

Hi-q-2

~ - - ~ o ~ ? o ~ ' - 5] 1 . M a c r o 7 2 . M a c r o 2 5
3. Macro25

5 . M a c r o 2 5
4 2

6 . M a c r o 4

7 . P r i m . Op.
3

Figure 10. Solutions found with dynamically filtered macros.

Figure 11 shows the cumulative run-time data ~ over the training sequence
for each of the static filters. The data show a consistent improvement as
additional tests are included in the static filter, with the complete static filter
performing best of all. The Hi-Q problem was only solved with the third and
fifth combinations. In the other conditions (1, 2, and 4), an examination of the
Hi-Q search tree revealed that the search started off on a bad track because of
some unhelpful macros~ which increased the branching factor without usefully
advancing the search. In filters 3 and 5 the domain-dependent test excluded
these macros, leading to a successful solution for Hi-Q.

Figure 12 shows how the various static filters selectively limited growth of the
operator set. Again the complete static filter provided the greatest selectivity,
leading to the slowest growth. The slower growth of the operator set with
stronger filtering conditions accounts for the improvements in run time. An
examination of search statistics shows that very often the same number of

3See M i n t o n (1988) for a d i s c u s s i o n of t h i s d e p e n d e n t m e a s u r e .

302 G . A . IBA

500

400 ~ . /

~ '~ f .-,1¢ ~ . • •

/ ~ e , . •

/ ~ : f " • i 300

f ~ - . = ' ° "

200 / / g : " / t . . ' .

/~5.'" -- -- -- _I~EDUNDANCY --

100 / ~ geDUNBANCY + CONNECTEDNESS

C O N N B C T E D N E S S t "

0 I I I I I

MEDIUM-EDGE PARTIAL-HI-Q Hr-Q-I HI-Q-2 HI-Q

Figure 11. Cumulative run-time comparison of different static filter tests
(Experiment 3).

nodes were expanded in corresponding searches, but the reduced branching
factor resulted in faster search.

3. 6.4 Experiment 4: Dynamic filtering

The first two experiments gave some indication of the value of dynamic fil-
tering. In order to further assess dynamic filtering, a separate experiment was
conducted in which MACLEARN was first trained on the five-problem training
sequence, and then the training sequence was solved again. The purpose of
this was to give each operator ample opportunity to demonstrate its useful-
ness by appearing in solution sequences. A final pass was made through the
training sequence, invoking the dynamic filter before each problem trial. The
design of this experiment combines the "retry before dynamic filtering" ap-
proach of Experiment 1 with cumulative learning over a training sequence, as
in Experiments 2 and 3.

Figure 13 shows the cumulative run-time graphs for the three passes through
the training sequence. There is a noticeable improvement for the retry pass,
which is due almost entirely to the dramatic reduction in solution time for
the Partial-Hi-Q problem. No additional macros were learned during the retry
phase, but two new macros were used in solutions and thus earned the right to
survive the dynamic filter. The dynamic filter removed 13 operators, compared
with 15 at the comparable point of Experiment 2. Due to the consequent
reduction in branching factor, run times during the dynamic filtering phase
were further reduced on all problems.

DISCOVERY OF M A C R O - O P E R A T O R S 303

5O

©

a~
40

©

©

3O
/ .." . -.:::.~

.

f t . . : _ 20

/ / J . : : ' - - ~ o T E S T S
~ , . ' . - : - - - - - - R E D U N D A N C Y --

I0 / ~ D A N C Y ~- CONNECTEDNESS
/ ~ ' ~ E D U N D A N C Y ~- LENGTH

/ ~]~EDUNDANCY -~- LENGTH -J- CONNECTEDNESS

0 I I I I I I

INmAL OPERATORS MEDIt~M-EDGE PART~AL-HI-Q HI -Q-1 HI -Q-2 H I -Q

Figure 12. Growth of the operator set for different static filters (Experiment 3).

3. 6.5 Experiment 5: Within-trial and post-trial learning

In order to test the value of within-trial learning, the training sequence of
five problems was solved using post-trial learning. In this paradigm, macros
were proposed as before, but they were not available for use until a subsequent
problem was worked on. The cumulative run-time graphs of Figure 14 compare
post-trial and within-trial learning on these problems. As the figure shows,
within-trial learning resulted in consistently lower run times. This suggests
that the value of having macros immediately available for use is greater than
the disadvantage of increased branching factor.

Note that within-trial learning also resulted in slower growth of the operator
set, as illustrated in Figure 15. This can be explained by the fact that the
search trees were consistently smaller in the within-trial condition, and so
there were fewer opportunities for additional macros to be proposed. Also
note that all the growth occurred on the first two problems, with the operator
set remaining constant thereafter.

An interesting feature of within-trial learning is that a single problem-solving
trial can lead MACLEARN to define macros in terms of other macros, taking
advantage of the hierarchical nature of macro definition. Figure 16 shows the
definition," macro hierarchy generated on the Medium-Edge problem using
within-trial learning and the complete static filter. The specifications for some
of these macros (numbers 1, 2, 4, 6, and 7) are shown in Figure 8, and it is
easy to see how each is defined in terms of simpler macros in accordance with
the hierarchy of Figure 16.

304 G.A. IBA

400 MACRO LEAI~NING WITH EXPERIENCE
RETRY WITH MACAO LEAI~NING /

............. AFTE

~ 300
Z

>

~ 200

/ .~. ~ ~ ~ .~ ...o' " "'" '" "" ' "" "" '"a

/ .).'
100 /

7 " ' ' ' " " " t . . ~."'"
. . . : . ~ . 7 •

o r ~ I I i

MEDIUM-EDGE PAKTIAL-HI-Q HI-Q-1 HI-Q-2 HI-Q

Figure 13. Effect of the dynamic filter on cumulative run time (Experiment 4).

600

~ 500

400

i 300

C) 200 ,~ ~ ~ ~

/ / POST-TRIAL
WITHIN-TRIAL

i00

0 i i i l i
MEDIUM-EDGE PARTIAL-HI-Q HI-Q-1 HI-Q-9 HI-Q

Figure 14. Cumulative run-time comparison of within-trial and post-trial learning
(Experiment 5).

DISCOVERY OF MACRO-OPERATORS 305

4O

O

Q 30

~ 2o

10

z / z / ' / / /

I t t

- - P O S T - T P d A L
- - - - - - W I T H I N - T R I A L

I I

I N I T I A L O P E R A T O R S M E D I U M - E D G E P A R T I A L - H I - Q H I - Q - 1 H I - Q - 2

Figure 15. Growth of the operator set in within-trial and post-trial learning
(Experiment 5).

I

H I - Q

4. Application to t i l e s l i d i n g

In order to test the generality of the methods and heuristics embodied in
MACLEARN, it was applied to a second domain called tile sliding, which is a
generalization of the well-known "Eight puzzle" and "Fifteen puzzle". In tile-
sliding problems a set of numbered tiles are arranged in a rectangular grid,
such that exactly one grid space remains blank. If a tile is adjacent to the
blank, it can be moved by sliding it into the blank space. Typically the tiles
start out scrambled, and the puzzle is to unscramble them into some canonical
pattern (e.g., numerically increasing order). Both Korf (1985a, 1985b), and
Laird, Rosenbloom, and Newell (1986) have studied macro-learning in this
domain.

Figure 17 shows the set of problems used in the tile-sliding experiments
reported in Section 4.4. These initial states were chosen at random, but were
then fixed so that comparative studies could be undertaken. The problems
are ordered by difficulty (Simple, Eight puzzle, Fifteen puzzle, Twenty-four
puzzle), and the most successful learning occurred when the problems were
solved in that order, with the accumulation of macros over the whole sequence
of trials. The following sections describe the application of MACLEARN tO the
tile-sliding tasks, along with the results of experiments in this domain.

306 G.A. IBA

\

Figure16. Hierarchy of macro definitions resulting from within-trial solving of
Medium-Edge with complete static filter. Macros are represented only
by their number to save space.

4.1 Representation and matching in tile sliding

As with peg solitaire, states in tile sliding are represented by rectangular
arrays. Instead of pegs and holes, the elements in tile-sliding arrays are num-
bered tiles, with each tile having a unique number. The array also contains
exactly one special element that represents the blank. Rectangular arrays are
used to represent the before and after parts of primitive operators and macros.

In peg solitaire there is no distinction between one peg and another, and so
it is sufficient to represent primitive operators and macros in terms of before
and after arrays whose operators are simply pegs and holes. In tile sliding
the identities of tiles are distinct, and so it is necessary to keep track of their
individual positions. This is done by introducing pattern variables into the rep-
resentation of both primitive operators and macros. Variables bind to specific
tiles, and the movements of tiles are reflected in the movements of variables
between the before and after arrays of the operators. Tiles whose positions
remain unchanged by an operator are treated as don't-cares (signified by
in the figures). Figure 18 shows the primitive operator for tile sliding and some
useful macros.

Except for the addition of variables that match to any tile (but not the
blank), the generation of legal operator instances is the same as in peg solitaire
(Section 3.2). Also as in peg solitaire, the mechanism for applying operator
instances automatically handles translations, rotations, and reflections. In the
application of an operator instance, when the after part is being copied into
the board state, each variable in the after part is replaced by the tile of the
board state which matches that variable in the before part.

DISCOVERY OF MACRO-OPERATORS 307

Simple Puzzle

I2 II 5 Itl I

Fifteen Puzzle

~1~ 5 II 71114 II10 I
I ~3 II ~=I~_FII131

II 8 Ills Iill I l l l

Eight Puzzle

Twenty-Four Puzzle

i-i-°ll ~ II = It 9 I
12 II 7 II 8 I iT l iT I

11 1119 1117 II 3 11131
24 Ills 1118 1114 11231

Figure 17. Initial states for tile-sliding problems. For each problem, the goal is to
arrange the tiles in numerical order with the blank in the lower right.

4.2 The evaluation function for tile sliding

The evaluation function used in tile sliding takes two arguments, a current
state and a goal state, each represented as a two-dimensional rectangular array.
It returns a vector with the following three components:

1. The number of consectutive tiles already in their goal locations. Counting
starts in the upper left-hand corner, and proceeds row by row until the
first mismatch is encountered.

2. Minus one times the Manhat tan distance 4 between the current and goal
positions for the next tile to be placed; i.e., the tile belonging in the first
grid position not matching the goal.

3. Minus one times the Manhat tan distance of the blank from the next tile
to be placed.

Informally, these three components encode a set of subgoa]s to guide the search.
The first component of this evaluation function corresponds to the subgoal
of placing each tile in its correct position in row-major order. The second
component corresponds to the subgoal of getting the target tile (the next tile
to be placed) closer to its goal position. In order to be able to move the target
tile, the third component represents a subgoal of getting the blank adjacent to
that tile. As an illustration of the evaluation function, the initial state for the
Simple puzzle in Figure 17 evaluates to (0 , - 3 , - 1) . As in peg solitaire, the
vectors returned by the evaluation function are compared lexicographically.

4The M a n h a t t a n distance between two points is just the number of grid steps it takes to
go from one to the other. Formally, M D (x l , y l , x 2 , y 2) ---]xl - x21 + lYl - y 2] .

308 G.A. IBA

Primitive Operator

Macro2

D II ~. II F j
Macro47

- r l - II- I ~

Macro l

Macro5

I D II- tl- r

I-Ji- rl-

[V ~ V ~ - - -+

II' II - II - I

Figure 18. The primitive operator and some useful macros for tile sliding. Letters
bind to any tile; the symbol "-" denotes a tile unchanged by a macro.

4.3 P r o p o s i n g a n d f i l ter ing macros in t i le s l iding

In tile sliding, macros were again proposed according to the peak-to-peak
heuristic. In order to compare the possible-peak and selected-peak conditions
(see Section 3.4) for determining when to propose macros, each was tried under
identical conditions.

The processes of composition and abstraction are almost identical to those
described for peg solitaire. Composition proceeds using fixed identities of
tiles, then abstraction replaces the fixed tiles with pattern variables so the final
macro can match different configurations of tiles. Strictly speaking, don't-cares
are not needed in tile-sliding operators, since they can always be represented
by a variable which is left in the same position. MACLEARN introduces them
merely to improve readability.

The static filter used only the redundancy and length tests. No domain
dependent test was used in tile sliding. Redundancy checking was done as
in peg solitaire~ with the additional feature of checking for correspondence of
pattern variables. Throughout the tile-sliding experiments, the length test of
the static filter used a threshold of 30 for the maximum allowable expanded
length of macros.

4.4 E x p e r i m e n t s w i t h t i le sl iding

In Experiments 6 and 7, MACLEARN was run on each of the tile-sliding
problems in Figure 17 under the following three conditions:

1. No macro learning (just problem solving using the primitive operator);

2. Macro learning without prior experience; and
3. Macro learning with cumulative experience from previous problems.

Experiment 6 tested the possible-peak proposal method fro" each of these con-

D I S C O V E R Y O F M A C R O - O P E R A T O R S 309

O

1500

1000

500

[---] No MACROS
MACROS WlTIlOUT EXPERIENCE
MACROS WITH CUMULATIVE EXPERIENCE

SIMPLE EIGHT PUZZLE

> i0000 > i0000
::.....
=.=::'.:.: ~!ii~:#ii!:;i

::!:!:!:!:i:i.i ~!~!i!~::!li!i~

i:i:i:i:i:i:i:i :~i!!i~

: i . : . - : : i : ~iii:il]~!;J

iiiiii!ii:i!i:!ii!!!ii!::iiiii: ~
• : .

:i:ii:!:i::):~i '~

. v . . v :

iii?iii)iiiiiil ~iiii;:::i!i~
. . : . . : :

;:::::::::::::

• : : : . . . :
. : . . . : : . .

• . -~ . .

:iiiiii:i~i~iil i !iiii iliiii P iiii iii i
i i!i!;iliiiiii

FIFTEEN PUZZLE TWENTY-FOUR PUZZLE

Figure 19. Run-time comparisons with and without macro learning in the tile-sliding
domain using the possible-peak macro proposer (Experiment 6).

ditions. Without macro learning, this version of MACLEARN solved only the
Simple and Eight-puzzle problems. With macro learning but no prior expe-
rience, it was also able to solve the Fifteen puzzle, but it still failed on the
Twenty-four puzzle. Solving the problems as a training sequence with cumu-
lative learning did not provide much help.

Figure 19 shows the run-time results for this experiment. Learning macros
led to consistently lower run times than problem solving without macros. Prior
experience on simpler training problems led to a slight reduction in the run
time on the Eight puzzle compared with macro learning without prior experi-
ence, but it led to a significant increase in the run time for the Fifteen puzzle.
Experiments with other starting states for the Fifteen puzzle suggest that the
short run time encountered in this experiment (for the "no prior experience"
condition) was serendipitous and not very representative. None of the con-
ditions led to successful solutions for the Twenty-four puzzle within the time
limit of 10,000 seconds.

Experiment 7 repeated the format of Experiment 6 but used the selected-
peak method rather than the possible-peak technique. Note that since the
selected-peak method defers proposal of macros until a lower-valued node is
actually selected as the best to expand, it is more restrictive and results in
fewer proposals. This could be viewed as an additional form of selectivity,
over and above the static filter.

310 G.A. IBA

1500

O

I000

500

N O M A C R O S

M A C R O S W I T H O U T E X P E R I E N C E

M A C R O S W I T H C U M U L A T I V E E X P E R I E N C E

> 10000
:.: :-:.:.:.:-:.:
:.:.:.:-:.:.:,:.:

- iiii i!iiiililili
!!i!!!!!:!i!iii!i!

',ii','iiiii',i',ii' i

iiiiiii!iiiiii!!
i!iiiiiiiii:iii
;iiiiiii:.ii!ili::ii
:!!iliiiii!ii!ii!:i!i:

.:..:..:...:.1

> 10000

,iiiiiiiiiii!!iii
...:.:: .:,
v: :,.v. =......:
v.v:.,

i!iiiiiii!iil

i:i:i:i:i:i:i:i:i:

!ii!:!:!:ii::!::

iiiiiiiiiii iiiiii
S I M P L E E I G H T P U Z Z L E F I F T E E N P U Z Z L E T W E N T Y - F O U R P U Z Z L E

Figure 20. Run-time comparisons with and without macro learning in the tile-sliding
domain using the selected-peak macro proposer (Experiment 7).

Figure 20 shows the run-time data for this experiment. The Simple puzzle
and Eight puzzle were solved in all three conditions. The more difficult Fifteen
puzzle and Twenty-four puzzle were solved only in the case of macro discovery
with prior experience from earlier trials. The failure to solve Fifteen puzzle
without prior experience is more representative than the success in the previous
experiment.

A comparison of the first two conditions (no learning and learning without
prior experience) illustrates the value of macro discovery within the course of
a single problem-solving trial. The data indicate that macro learning leads
to consistently greater search efficiency. The only disadvantage seems to be a
tendency towards longer (expanded) solutions in the macro conditions. Nev-
ertheless, the macro solutions are shorter (in macro steps) and can be viewed
as a higher-level (chunked) representation of these solutions.

Macro learning with experience accumulating over problem trials provided
the most dramatic success. Only in this case was MACLEARN able to solve
the more difficult problems. In fact, by the time the system had solved the
Fifteen puzzle, it had discovered a complete set of macros and no additional
ones were needed to solve the Twenty-four puzzle. Note that the time to solve
the Twenty-four puzzle was actually less than for the Fifteen puzzle, since the
solution was found in monotonic fashion, with no backtracking. The number
of nodes expanded was equal to the macro-length of the solution sequence.

DISCOVERY OF MACRO-OPERATORS 311

The 11 operators in the final operator set which accomplished this are shown
in Figure 21. These macros were also sufficient to solve twenty randomly
generated variations of the Twenty-four puzzle (with the same size board but
different starting configurations). In each of these additional problems, the
goal was still to get the tiles arranged in numerically increasing order with the
blank in the lower right.

A comparison of the results of Experiments 6 and 7 indicates that selected-
peak did better on these problems. This is particularly true for the cumulative
learning case,in which the Twenty-four puzzle was solved so successfully and in
which the learned operator set was able to solve additional random problems.

5. D i s c u s s i o n

MACLEARN represents a combination of empirical and analytic techniques
for discovery of macro-operators. The empirical component arises from the in-
terplay of the macro proposer with the static and dynamic filters, and can be
viewed as a generate-and-test search applied to the space of macro-operators.
The macro-proposer does the generation, whereas the static and dynamic filters
carry out the testing. The ultimate test is whether the behavior of the per-
formance element is improved. This can also be viewed as a credit-assignment
problem, in which macros receive credit or blame for their influence on system
performance. The dynamic filter eventually removes those macro-elements that
do not receive sufficient credit over time. The analytic component lies in the
methods by which macros are composed, abstracted, and defined in terms of
before and after conditions. These analytic methods are essentially equivalent
to the weakest pre-condition analysis that is commonly used in explanation-
based approaches.

5.1 Advantages and disadvantages of the approach

The approach to macro discovery embodied in MACLEARN has several ad-
vantages. Learning and performance are integrated, proceeding hand in hand
so that macros learned in the early stages of problem solving may aid the
later stages. The approach to representation (closure under composition of
sequences into pre- and post-conditions) enables the learning of new macros in
terms of previously learned macros. The representation also has the important
advantage that it lets the system use macros without reference to their actual
expansion. Macros function in a kind of planning capacity, suppressing un-
necessary details until a solution plan is found. The generalization of macros
supports transfer to larger and more difficult problems.

These advantages were born out in the experiments on both peg solitaire and
tile sliding. Macro-learning generally outperformed solving without macros,
especially on more difficult problems. Within-trial learning proved very ben-
eficial, leading to shorter run times and slower growth of the operator set.
Static and dynamic filtering were useful in selectively limiting the growth of
the operator set, resulting in greater search efficiency. Cumulative learning
over a sequence of increasingly more difficult training problems also proved to
be worthwhile.

312 G.A. IBA

Pr imi t ive O p e r a t o r (I)

Macro2(6)

~F;1 I

Macro6(5)

[1 D]l E [[F I

Macro10(28)

VC
IL_Jl ~ II ~ I
Macro34(18)

V~-YqP-1

EEl Eli
2cV-F~-I[

[I) II F II B I
I
]1-- II' rl H I

Macro47(24)

IV I - I I - i [- I I - I V:T:-V:UV:-I

Macrol(3)

Macro5(8)

I D Jl- II- I I ' It- II- I
MacroS(13)

I-II ~ I1-1 F - T ~ [- : - -]

Macro33(19)

I-I1-11° V~ V:-W=-ll m
Macro36(ll)

FI

Figure 21. Full tile-sliding operator set after training on first three problems. Num-
bers in parentheses indicate the expanded length of each macro. Letters
bind to any tile; the symbol "-" denotes a tile unchanged by a macro.

The principal difficulty encountered in these applications of MACLEARN
was due to the choice of best-first search as the performance element. Since
best-first search applies every available operator when expanding a node, the
branching factor of the search increases as more macros are learned. A second
difficulty is that the search is not goal-directed, except in the sense that goals
are implicit in the evaluation function. Thus the system's behavior exhibits
a lack of focus, illustrated in what might be termed a mesa phenomenon; in
some cases, the program spends considerable time exhaustively searching a
large number of nodes, all having equal values, before considering any nodes
with lower values. This partly explains the importance of training on sim-
pler examples. For smaller problems, the combinatorics of searching mesas are
more manageable. This lets the program reach the point where lower-valued
nodes must be selected and propose macros that may be useful in similar (but
combinatorially more complex) situations.

DISCOVERY OF MACRO-OPERATORS 313

Both these issues - increased branching factor and lack of search focus -
can be addressed by moving to a goal-based performance element such as
means-ends analysis (Newell ~z Simon, 1963). The introduction of explicit
subgoals should provide a focus of attention, while the table of connections
should reduce the branching factor of the search, insuring that operators are
applied only when they are relevant.

5.2 Genera l i ty of the learning methods

Several issues arise with respect to the generality of MACLEARN. The first
involves the range of problems to which the system can be applied within the
domain of problem solving. The current implementation, which uses best-
first search, should handle any problem that can be specified in terms of initial
state, goal condition, and operators, provided these operators can be composed
to form macros represented in the same format as primitive operators. An
evaluation function must also be supplied. This paper has focused on the
domains of peg solitaire and tile sliding, but MACLEARN has also been applied
to Tower of Hanoi, slide jump, and telecommunications network control.

A second issue involves the value of the system's learning component when
used in conjunction with different performance elements. Goal-directed search
has already been mentioned as one important alternative. With a new perfor-
mance system, it may be necessary to employ different heuristics for proposing
and filtering macros. Further work is needed to explore alternative perfor-
mance systems and to determine heuristics that are effective with them.

The learning mechanisms of MACLEARN can be abstracted and viewed as
embodying a general empirical approach to the task of learning by composition,
which is a type of chunking. These mechanisms might be incorporated into any
system that uses elements to generate behavior, provided those elements can
be composed to define macro-elements. The learning task is then to discover
a set of macro-elements that improves performance. The notion of a macro-
element proposer combined with static and dynamic filters may prove to be a
powerful one.

Problem solving is one domain that fits within this general framework. A
search system generates performance and the composable elements are the
operators. Other domains that exhibit a similar compositional structure in-
clude theorem proving, automatic programming, design, and natural language
parsing. In theorem proving, the basic elements are axioms and composition
involves assembling axioms (and theorems) into new theorems. A theorem
prover serves as the performance element. Once a theorem is proved, it can
function as though it were an axiom, as far as the theorem prover is concerned
(O'Rorke, 1987). The other domains fit within this compositional framework in
a similar fashion. Future work should explore the extent to which MACLEARN
can be extended to apply across these domains.

5.3 Re la ted work

It is useful to compare 1V[ACLEARN to related work on the discovery of macro-
operators. Fikes, Hart, and Nilsson (1972) carried out some of the earliest work
in this area, applying their STRIPS problem solver to the domain of robot

314 G.A. IBA

planning. Macros (which they called 'Macrops') were represented in terms of
triangle tables, which abstracted robot plans to their most general pre- and
post-conditions. In this respect, MACLEARN'S representation is similar. One
difference is that triangle tables simultaneously abstract all sub-sequences of
a plan (sequence of steps), whereas the current system's macros abstract only
entire sequences. The latter approach leads to a simpler representation and
a reduced branching factor relative to triangle tables, but it does not capture
as many possibilities. Another difference is that STRIPS was a goal-directed
problem solver, whereas MACLEARN USeS best-first search.

Korf (1982, 1983, 1985a, 1985b) has also done important work on macro
learning. The learning in his program takes place during an initial phase of
explicit search for macros to fill in a table of connections, whereas MACLEARN'S
discovery of macros is integrated (interleaved) with problem solving. As noted
in Section 3, Korf's approach requires operator decomposability, which is not
a limitation for MACLEARN. Another difference is that his macros are sim-
ple sequences of primitive operators that apply only in particular circum-
stances, whereas the ones used here are abstracted so as to apply in more
general settings. Moreover, Korf's macros do not build on others to form a
hierarchy. One can view his approach as learning a large number of rather
special-purpose macros, whereas MACLEARN aims for a smaller number of
more general-purpose macros. However, Korf's method has the important ad-
vantage of being algorithmic; one can prove that a macro table exists under
certain assumptions, and that the learning algorithm will eventually find this
table. This contrasts with the heuristic approach taken in MACLEARN.

Another appealing aspect of Korf's method is that once a macro table has
been learned, it can be used to solve all variants of the puzzle having the same
size and goal state. However, if the goal changes, a new macro table is required.
In contrast, MACLEARN'S macros are not tied to specific goals. Another limi-
tation is that Korf's macros do not generalize naturally to related problems of
different size. For example, the macros that solve the 2 x 2 × 2 Rubik's Cube do
not help solve the 3 × 3 × 3 version of the cube, nor do macros learned for the
Eight puzzle help solve the Fifteen puzzle. The present approach overcomes
this difficulty through the process of composing and abstracting macros, which
lets the macros apply in new circumstances, such as larger-sized problems with
similar structure. This occurred in both the tile-sliding and peg-solitaire do-
mains, where macros learned from simpler problems proved useful in solving
harder problems.

Laird, Rosenbloom, and Newell (1986) have taken yet another approach in
their work on learning by chunking in SOAR. Both the current system and
SOAa use within-trial learning, so that macros from early stages of search can
lead to improvements later on. One difference is that SOAR can use goal-
directed search, whereas MACLEARN uses best-first search. Another difference
is that SOAR explicitly chunks control knowledge having to do with subgoals
and methods, whereas MACLEARN'S control knowledge (the evaluation func-
tion) is separate from the representation of macros. MACLEARN merely dis-
covers macros that one can apply, but makes no suggestions about when to
apply them. This latter question is certainly important, but it can be treated

DISCOVERY OF MACRO-OPERATORS 315

as a separate issue, rather than having it bound up with the macro discovery
process. There is a suggestive analogy with the discovery of theorems in math-
ematics, which are similar in many respects to the macros discovered here. A
theorem states that it is possible to draw a conclusion from premises, but it
makes no commitment as to when the conclusion should be drawn. A math-
ematician certainly develops control knowledge that suggests when to use a
theorem, but this knowledge can stand separately from the statement of the
theorem itself. A final difference between the two systems is that SOAR does
not address the issues of selectivity in what should be learned and what should
be forgotten. These issues are directly addressed in MACLEARN by means of
the static and dynamic filters. SOAR has been applied to a number of tasks,
including the Eight puzzle and Tic-Tac-Toe.

Minton (1985) has explored another interesting approach to macro discovery
in his MO~tRIS system, which uses a combination goal-directed and best-first
search. MORRIS and MACLEARN are similar in that they both use heuristics
that explicitly address the need for selectivity. Minton's system learns macros
of two types - S-macros and T-macros. The S-macros (script macros) are cre-
ated from common sub-sequences shared by different solution paths. MORRIS
places a limit on the number of allowable S-macros. When the number of S-
macros exceeds this limit, the system determines which ones have been used
least often, and removes them one by one until the number of macros is within
the bound. This stratagem is similar to dynamic filtering. MORRIS is also
selective in forming T-macros (trick macros), which are only proposed when
a solution path contains a step or steps that run counter to the evaluation
function. This is similar to the peak-to-peak heuristic, but his system applies
it only to solution paths, rather than to partial search paths. Thus MORRIS
does not learn within a single trial, but only from examination of solution
sequences once a problem has been solved. Minton's system does not seem
to have a mechanism for selectively forgetting T-macros once they have been
learned. Tests of MORRIS were conducted in the domain of robot planning.

In other work, Cheng and Carbonell (1986) have studied the discovery of
iterative and conditional macros in their FERMI system. This is an important
and novel extension of previous macro-learning work. FERMI employs a rep-
resentation that is an extended form of production rules, in which right-hand
sides of productions may have special rule sets called buckets. A bucket is
essentially a subroutine of rules that is repeatedly called until none of its rules
applies, thus achieving iteration. There can be more than one bucket on the
right-hand side of a rule, leading to conditionality. As in SOAR, the FERMI sys-
tem incorporates control knowledge as part of its learned macros, rather than
keeping control knowledge separate. Also, since the system does not compile
macros into pre- and post-conditions, it can only predict the effect of a macro
by actually executing it in expanded form. Learning in FERMI involves ana-
lyzing solution traces, so the system learns only after it has found a complete
solution, rather than during a problem trial. This contrasts with both SOAR
and MACLEARN, which learn within a single trial. However, one should be
able to extend FERMI SO it proposes macros when it satisfies subgoals, and
thus achieve within-trial learning.

316 G.A. IBA

5.4 S u m m a r y and conclus ions

This paper has described a heuristic approach to the discovery of macro-
operators. The program MACLEARN, which implements the approach, was
tested in the two problem-solving domains of peg solitaire and tile sliding. The
tests demonstrated successful learning, leading to the solution of some diffi-
cult problems. Experiments with several selective filtering mechanisms showed
improvements of overall search efficiency. Within-trial learning proved to be
beneficial in limiting growth of the operator set and in discovering solutions
more efficiently.

Perhaps the greatest problem with the current work is that the best-first
search applies every available operator at each node of the search tree. Thus,
as more macros are learned, the search process slows down because of the
increased branching factor. A goal-directed search might remedy this defect,
since it would selectively consider only operators that are relevant to the cur-
rent subgoal.

Although the basic framework has proved useful for discovering macros in
problem solving, it should also apply to other problem categories. Future work
should examine domains such as theorem proving and automatic programming,
in order to test its full generality.

Acknowledgements

Chuck Anderson, Jaime Carbonell, Wayne Iba, Pat Langley, Bernard Silver,
Rich Sutton, Oliver Selfridge, and John Vittal all provided numerous valuable
suggestions for improving drafts of this paper. Special thanks go to Oliver Sel-
fridge for his support and encouragement, as well as his valuable assistance in
revising and formatting; and to Pat Langley, who gave a careful reading to each
of several drafts, making numerous valuable suggestions for improvements, and
provided continuing support and encouragement throughout.

References

Cheng, P., & Carbonell, J. G. (1986). The FERMI system: Inducing iterative
macro-operators from experience. Proceedings of the Fifth National Con-
ference on Artificial Intelligence (pp. 490-495). Philadelphia, PA: Morgan
Kaufmann.

Dawson, C., & Sikl6ssy, L. (1977). The role of preprocessing in problem solv-
ing systems. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence (pp. 465-471). Cambridge, MA: Morgan Kaufmann.

Fikes, R., Hart, P , ~ Nilsson, N. (1972). Learning and executing generalized
robot plans. Artificial Intelligence, 3, 251-288.

Iba, G. A. (1985). Learning by discovering macros in puzzle solving. Proceed-
ings of the Ninth International Joint Conference on Artificial Intelligence
(pp. 640-642). Los Angeles, CA: Morgan Kaufmann.

iba, G. A. (1986). Learning by composition. In T. M. Mitchell, J. G. Carbonell,
& R. S. Michalski (Eds.), Machine learning: A guide to current research.
Boston, MA: Kluwer.

DISCOVERY OF MACRO-OPERATORS 317

Korf, R. E. (1982). A program that learns to solve Rubik's Cube. Proceed-
ings of the National Conference on Artificial Intelligence (pp. 164-167).
Pittsburgh, PA: Morgan Kaufmann.

Korf, R. E. (1983). Operator decomposability: A new type of problem struc-
ture. Proceedings of the National Conference on Artificial Intelligence
(pp. 206-209). Washington, DC: Morgan Kaufmann.

Korf, R. E. (1985a). Macro-operators: A weak method for learning. Artificial
Intelligence, 26, 35-77.

Korf, R. E. (1985b). Learning to solve problems by searching for macro-
operators. Boston~ MA: Pitman.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in SOAa: The
anatomy of a general learning mechanism. Machine Learning, 1 ~ 11-46.

Lewis, C. (1987). Composition of productions. In D. Klahr, P. Langley,
R. Neches (Eds.), Production system models of learning and development.
Cambridge, MA: MIT Press.

Minton, S. (1985). Selectively generalizing plans for problem-solving. Proceed-
ings of the Ninth International Joint Conference on Artificial Intelligence
(pp. 596-599). Los Angeles, CA: Morgan Kaufmann.

Minton, S. (1988). Quantitative results concerning the utility of explanation-
based learning. Proceedings of the Seventh National Conference on Arti-
ficial Intelligence (pp. 564-569). St. Paul, MN: Morgan Kaufmann.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-
based generalization: A unifying view. Machine Learning, 1, 47-80.

Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation: Mecha-
nisms for the automatization of cognitive skills. In J. R. Anderson (Ed.),
Cognitive skills and their acquisition. Hillsdale, N J: Lawrence Erlbaum.

Newell, A., & Simon, H. A. (1963). GPS, A program that simulates hu-
man thought. In E. A. Feigenbaum &; J. Feldman (Eds.), Computers and
thought. New York: McGraw-Hill.

O'Rorke, P. (1987). LT revisited: Experimental results of applying explanation-
based learning to the logic of Principia Mathematica. Proceedings of
the Fourth International Workshop on Machine Learning (pp. 148-159).
Irvine, CA: Morgan Kaufmarm.

Vere, S. A. (1978). Inductive learning of relational productions. In D. Wa-
terman & F. Hayes-Roth (Eds.), Pattern-directed inference systems. New
York: Academic Press.

