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Abstract. Machine learning programs need to scale up to very large data sets for several reasons, including 
increasing accuracy and discovering infrequent special cases, Current inductive learners perform well with 
hundreds or thousands of training examples, but in some cases, up to a million or more examples may be 
necessary to learn important special cases with confidence. These tasks are infeasible for current learning 
programs running on sequential machines. We discuss the need for very large data sets and prior efforts to 
scale up machine learning methods. This discussion motivates a strategy that exploits the inherent parallelism 
present in many learning algorithms. We describe a parallel implementation of one inductive learning program 
on the CM-2 Connection Machine, show that it scales up to millions of examples, and show that it uncovers 
special-case rules that sequential learning programs, running on smaller datasets, would miss. The parallel 
version of the learning program is preferable to the sequential version for example sets larger than about 
10K examples. When learning from a public-health database consisting of 3.5 million examples, the parallel 
rule-learuing system uncovered a surprising relationship that has led to considerable follow-up research. 
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1. Introduction: Why Scale Up? 

Current inductive learning programs cannot practically be used with very large data sets 
(e.g., a million or more examples). Catlett estimates (1991b) that real-world learning 
tasks using one million data items will require months on a dedicated workstation. This 
paper outlines reasons why very large data sets are necessary and summarizes past efforts 
to scale up machine learning methods. We then present an effective way to scale up a 
standard rule learner using massive parallelism and an implementation on the CM-2 
Connection Machine. In a public-health domain, this program discovered relationships 
that could not have been found on current sequential machines. One relationship has led 
to considerable follow-up research by our public-health collaborators. 

There are important reasons why machine learning methods must scale up to very 
large data sets. Perhaps the most obvious reason is to maximize accuracy. In the most 
comprehensive work to date on scaling up machine learning, Catlett (1991a) amassed a 
collection of very large data sets. In every domain, halving the size of the training set 
produced a statistically significant decrease in accuracy. 

In many cases, degradation in accuracy when learning from small samples stems from 
over-fitting, due to high dimensionality of the concept description language or due to the 



34 F.J. PROVOST AND J.M. ARONIS 

need to allow the program to learn rules known as small disjucts (Holte, Acker & Porter 
1989), which correspond to special cases of the concept. Because small disjuncts cover 
few data items, learning programs have difficulty learning these rules with confidence. 
Unfortunately, in some domains special cases account for a large portion of the concept 
(Danyluk & Provost, 1993). In such domains, high-accuracy learning depends on the 
ability to learn special cases well. Noise further complicates the problem, because with a 
small sample it is impossible to tell the difference between a special case and a spurious 
data point (Danyluk & Provost, 1993; Weiss, 1995). 

Classification accuracy aside, small disjuncts are often of most interest to scientists 
and business analysts, since they are precisely the rules that were unknown previously; 
analysts usually know the common cases. Consider machine learning as an aid to public- 
health research. It may be the case that, in general, Japanese-Americans have a low infant 
mortality rate. An inductive learner trying to describe the class Low-Infant-Mortality 
might look at linked birth/infant death data and produce the rule Japanese-American 

Low-Infant-Mortality. Learning such a rule with high confidence is not a problem 
if the rule represents a substantial portion of the data, but if the rule covers only a 
small percentage of the data, a sample set of several thousand examples will not contain 
enough instances to infer the rule with confidence, if at all. Thus, if the sample set 
contains only a few Japanese-Americans--a situation that is likely since they form such 
a small percentage (0.3%) of the births in the U.S.--a learner could not draw conclusions 
about them with any degree of certainty. 

In sum, a sample must be large enough to contain enough instances of each special 
case from which to generalize a rule with confidence. Learning rules for still smaller 
subgroups of the Japanese-American population would require still larger samples. For 
example, Japanese-Americans who live on the East Coast make up only 0.03% of the 
U.S. births. In order to have 30 examples from which to generalize a rule, one would 
need approximately 100,000 examples. In practice, it is desirable to have many more 
than 30 examples from which to generalize, to reduce the probability that a rule looks 
good by chance due to the generation and testing of many alternative hypotheses. For 
our example of Japanese-Americans living on the East Coast, increasing the number of 
examples required to generalize a rule by an order of magnitude pushes the total number 
of examples required up to one million. It is important to note that, in principle, scaling 
up does not eliminate the problem of small disjuncts; for any data set there could be 
ever-smaller special cases that could not be learned with confidence. 

It should be clear that scaling up to very large data sets implies, in part, that faster 
learners must be developed. There are, of course, other motivations for very fast learners. 
For example, interactive machine learning (Buntine, 1991), in which a machine learner 
and a human analyst interact in real time, requires very fast learning algorithms in order 
to be practical. Automatic bias selection (Gordon & desJardins, 1995) also requires very 
fast learners, because such systems evaluate learning on multiple biases; each evaluation 
may involve multiple runs to produce performance statistics (e.g., with cross validation), 
and experimenting with many biases also requires large data sets to avoid over-fitting 
due to bias selection. In addition to implications for learning time, scaling up to very 
large data sets may require space-efficient algorithms for space-limited platforms. 
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We now turn our attention to a number of strategies that seek to scale up learning 
methods to very large data sets and/or that have been designed with the related goals of 
reducing learning time or space complexity. 

2. Scaling Up Inductive Learning: What has been done? 

There are several approaches one might take to apply symbolic machine learning to very 
large problems. A straightforward, albeit limited, strategy for scaling up is to use a very 
fast, but simple, method. This strategy may seem silly until we consider results like 
Holte's (1993). Holte showed that degenerate (one-level) decision trees, called "decision 
stumps," performed well in terms of accuracy for many commonly used databases. While 
the algorithm for learning decision stumps is very fast, the method prohibits the learning 
of complex concept descriptions. Nonetheless, the decision-stump results suggest that 
a fast, but simple, learning algorithm may be an effective tool for scaling up to very 
large databases. Catlett (1991a; 1991c) applied the strategy of simplifying a learner's 
representation language to the problem of scaling up, and showed that the discretization 
of numeric attributes can reduce the run time of a decision-tree learner, often without a 
corresponding decrease in accuracy. 

A second strategy is to optimize a learning program's search and representation as 
much as possible. Optimization may involve the identification of constraints that can 
be exploited to reduce algorithm complexity, or the use of more efficient data structures 
(e.g., bit vectors, hash tables, binary search trees). Segal and Etzioni's BruteDL (1994) is 
a highly optimized rule learner, which uses clever search-reduction techniques as well as 
efficient data structures. When learning time is an issue, such code optimization is good 
engineering practice and complements the other methods of scaling up that we describe 
below. However, when fast, simple methods are not adequate and optimization is not 
enough, other strategies are necessary to scale up learning methods. 

The most common method for coping with the infeasibility of learning from very large 
data sets is to select a smaller sample from the initial data set. Catlett (1991a) studied 
a variety of strategies for sampling from a large data set. Despite the advantages of 
certain sampling strategies, Catlett concluded that they are not a solution to the problem 
of scaling up to very large data sets. Sampling does not adequately address either of the 
two main reasons for using large data sets; small samples generally reduce accuracy and 
inhibit learning infrequent special cases. 

Catlett (1991a; 1992) also studied strategies for reducing the complexity associated 
with description languages containing numeric attributes. He found that by looking at 
subsets of examples when searching for good split values for numeric attributes, the run 
time of decision-tree learners can be significantly reduced, without a corresponding loss 
in accuracy. Even with these strategies in place, the run time of the learners is still linear 
in the number of examples, so learning with very large data sets can still be prohibitively 
expensive. These techniques are complementary to the methods described below for 
learning in parallel. 

Incremental batch learning (Clearwater, Cheng, Hirsch & Buchanan, 1989) is a cross 
between sampling and incremental learning (Schlimmer & Fisher, 1986; Utgoff, 1989). 
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Incremental batch learners process subsamples of examples in sequence to learn from 
large training sets. Incremental batch learning has been used to scale up to example 
sets that are too large for pure batch processing (Provost & Buchanan, 1995). Such an 
approach is effective because even for learners that, in principle, scale up linearly in the 
number of examples, if the entire example set does not fit in main memory, memory- 
management thrashing can render the learner useless. 

Still another approach to scaling up has been studied by Gaines (1989), though Gaines' 
primary goal was to unify manual and automatic knowledge acquisition. In particular, 
Gaines analyzed the extent that prior knowledge reduces the amount of data needed for 
effective learning. Unfortunately, pinpointing a small set of relevant domain knowledge 
begs the very question of machine learning. Therefore techniques for using background 
knowledge must scale up to large knowledge bases. Aronis and Provost (1994) use paral- 
lelism to enable the use of massive networks of domain knowledge to aid in constructing 
new terms for inductive learning. 

We now discuss an important class of strategies that deal with very large problems by 
decomposing the learning problem and using parallel machines to process the different 
pieces simultaneously. Three approaches to parallelization can be identified. First, in the 
coarse-grained approach, the data are divided among a set of processors; each proces- 
sor (in parallel) learns a concept description from its set of examples, and the concept 
descriptions are combined. Shaw and Sikora (1990) take this approach using a genetic 
algorithm to combine the multiple concept descriptions, but do not experiment with very 
large data sets. Chart and Stolfo (1993a; 1993b) also take a coarse-grained approach and 
allow different learning programs to run on different processors. Their approach takes 
advantage of existing learning algorithms---only the parallel infrastructure needs to be 
programmed. Not unexpectedly, as with sampling, such techniques may degrade classi- 
fication accuracy compared to learning with the entire data set. Provost and Hennessy 
(1994) also use a coarse-grained parallelization, where the individual learners cooperate 
such that it is guaranteed that each rule is considered acceptable to the distributed learner 
if and only if it would be considered acceptable to a monolithic learner using the entire 
data set. This approach has been successful with very large data sets. Coarse-grained 
parallel learning algorithms utilize loosely coupled computers in a distributed processing 
setting, and could also be implemented successfully on a MIMD (multiple instruction 
multiple data) parallel architecture. 

In the second approach to parallel learning, rule-space parallelization, the search of the 
rule space is decomposed such that different processors search different portions of the 
rule space in parallel. This type of decomposition is similar to that used in parallelizing 
other forms of heuristic search. Although some have stated that massively parallel S1MD 
(single instruction multiple data) machines are inherently unsuitable for parallel heuristic 
search (Bobrow, 1993), several researchers have implemented heuristic search routines 
(IDA*) on SIMD architectures with impressive results (Cook & Lyons, 1993; Powley, 
Ferguson & Korf, 1993; Mahanti & Daniels, 1993). In this work, portions of the search 
tree are given to the processors, each of which performs a heuristic search. Previous work 
has also dealt with search on MIMD machines; for example, Rao and Kumar discuss 
parallel depth-first search (Kumar & Rao, 1987; Rao & Kumar, 1987). 
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In this mold, Cook and Holder (1990) used the CM-2 Connection Machine for a 
rule-space parallelization of AQ (Michalski, Mozetic, Hong and Lavrac, 1986). AQ 
was parallelized by specializing all elements of a star (i.e., an overly general concept 
description) simultaneously instead of using a beam search. In their approach, 215 (32K) 
processors on the CM-2 can handle problems with fifteen features or fewer. However, 
a maximum of fifteen features imposes a strict limitation on the utility of a learning 
program. In general, this type of parallelization does not address the problem of very 
large data sets. If rules are distributed across processors, each processor will either have 
to deal with all the data (which does not address the inability of current processors to 
deal with massive data sets) or each processor will have to deal with subsets of the 
data (which would run into the same problems as subsampling). Also, load balancing 
becomes an issue in order to take full advantage of the parallel processing power. Load 
balancing and interprocess communication add additional overhead. Cook and Holder 
(1990) also discuss (without implementing) a rule-space parallelization of ID3 (Quinlan, 
1986), but conclude that it is "actually very difficult to implement" and does not provide 
"much benefit over the sequential ID3 procedure." Cook and Holder (1990) take a 
similar approach to parallelizing the perceptron method, and there has been work using 
rule-space parallelism to scale up other connectionist methods (Rumelhart, Hinton & 
Williams, 1986); for example, Zhang, Mckenna, Mesirox and Waltz (1989) utilized the 
massive parallelism of the CM-2 in a parallelization of a backpropagation neural network. 

The third parallelization approach stems from the identification of the major bottleneck 
in learning from very large data sets and the distribution of the computation that addresses 
that bottleneck. More specifically, many inductive learning programs fall under the 
generate-and-test paradigm. In typical artificial intelligence search problems, the major 
computational cost is due to the fact that many nodes are generated. Thus, previous work 
on using massively parallel search has concentrated on distributing both the generation 
and testing of nodes across many processors. However, search for inductive learning 
differs from most other AI searches--in inductive learning the cost of evaluating a node 
is very expensive. Nodes in the search tree (e.g., partial rules or decision tree branches) 
are hypothesized and each must be matched against many examples. The results of this 
match guide the generation of subsequent hypotheses. For a problem with more than a 
few hundred examples, this matching dominates the computation. 

Thus, our approach utilizes parallel matching. Our approach is similar to that taken 
by Lathrop's ARIEL system (Lathrop, Webster, Smith & Winston, 1990); the example 
set is distributed to the processors of a massively parallel machine. ARIEL was not 
run on data sets larger than a few hundred examples, however, for two reasons. First, 
the biological problem being investigated only consisted of several hundred examples, 
and second, using ARIEL's method of decomposition a few hundred instances was the 
maximum possible on the available 8K-processor CM-2 Connection Machine (Lathrop, 
1995). 

Stanfill and Waltz (1988) use a parallel-matching approach for case-based learning from 
very large databases. Their Memory-Based Learning (MBL) approach uses a Connection 
Machine to find the most similar instance from a very large database. This approach 
is inherently different from parallelizing the type of generalization algorithm addressed 
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in our work. In MBL all processing is done when a new example is classified, but 
in our approach learning a concept description precedes classification with that concept 
description; a parallel machine is not necessary for classification. A parallel MBL-like 
approach would only be suitable for the batch classification of a large set of examples, 
due to the overhead of loading the data onto the parallel machine. Furthermore, MBL- 
style learning does not make interesting special cases apparent, because it does not form 
explicit generalizations. 

3. The RL Learning Program: Sequential and Parallel Variations. 

The RL learning program (Provost, Buchanan, Clearwater & Lee, 1993; Clearwater & 
Provost, 1990) is a descendant of Meta-DENDRAL (Buchanan & Mitchell, 1978). RL 
uses a heuristic search algorithm to generate a series of if-then rules and tests each of 
them against a set of data. In practice, RL is often used to find interesting individual 
rules. However, the set of rules learned by RL forms a disjunctive class description, 
which can be optimized with standard techniques as described, for example, by Quinlan 
(1987). 

RL performs a straightforward, general-to-specific search of the space of rules defined 
by conjunctions of attribute-value pairs (features). The goal of RL's search is to find rules 
that satisfy user-defined criteria. In particular, in the experiments below RL searches for 
rules that satisfy two thresholds: the positive threshold, which specifies the minimum 
number of positive examples a rule must cover, and the negative threshold, which speci- 
fies the maximum number of negative examples a rule may cover. The use of thresholds 
relaxes constraints on the coverage of discovered rules, mitigating the effects of noise in 
the data and/or the effects of an inadequate representation language. 

Each rule has a set of conditions and a predicted class, which RL evaluates statistically. 
The space of possible rules includes all possible combinations of conditions, so the size 
of the search space grows exponentially with the allowable number of conditions in a 
rule. RL uses a beam search to ensure that the time complexity of the search is linear 
in the number of conditions. The beam evaluation function is defined by the user; 
for the experiments reported here we used a signal-to-noise function that is, roughly, 
the percentage of positive examples covered by a rule divided by the percentage of 
negative examples covered. Each rule is tested against the entire set of data to calculate 
performance statistics. This introduces only a linear factor into the complexity of the 
algorithm when the data are described solely by nominal attributes (an n log ~ factor if 
the program searches for numeric features). Nonetheless, for data sets with more than 
a few hundred examples, the testing dominates the computation. For data sets with 
millions of examples the time spent checking rules against data can run into days or 
weeks, making learning from very large data sets impossible from a practical standpoint. 

SIMD parallel architectures, such as the CM-2 Connection Machine, consist of a front- 
end workstation that issues instructions to thousands of processors to be executed simul- 
taneously. This provides a perfect match to generate-and-test inductive learning programs 
such as RL. The front-end generates partial rules, and each partial rule is tested on data 
residing on individual processors. As each rule is created it is broadcast to all the CM~2 
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processors which simultaneously match it against the data residing on that processor. 
The results of these matches are sent back to the front-end to guide the generation of 
subsequent rules. 1 

On a sequential machine checking a rule against n data items takes cn time, but on 
a SIMD machine with p processors, it takes only c~n/p time to check a rule. Since p 
is large for massively parallel machines (e.g., up to 64K on a CM-2), this is a very 
favorable speedup despite the fact that on the CM-2 individual processors are relatively 
slow, bit-serial processors (i.e., c' is large). 

Notice that processors check a rule against only the data items stored in that processor's 
local memory. There is no communication overhead because there is no interprocessor 
communication. In theory, collecting results from individual processors and returning 
the aggregate to the front-end takes log n time, but special hardware makes this factor 
insignificant. 

This complexity analysis may obscure the main point, which is that parallelism allows 
us to scale up to data sets several orders of magnitude larger than previously possible. 
Since checking k rules takes time proportional to kn/p,  a large p allows us to increase 
the number of data items, n, thereby making it possible to learn more accurate concept 
descriptions, and to learn small disjuncts that previously were not practically possible to 
learn. 

4. Experimental Results. 

This section describes the results of running sequential and parallel versions of RL on 
synthetic and real-world data sets of a million or more examples. We used synthetic 
data to better control experimental parameters, and real-world data to illustrate that the 
scaling enabled by massive parallelism does indeed lead to useful, novel discoveries. In 
the results presented below, sequential RL (a relatively fast C-language version of the 
program) was run on a dedicated DECstation 5000 with 32M main memory. Parallel RL 
was run on a CM-2 Connection Machine with 8 K  processors. 

4.1. Experiments with Synthetic Data. 

We designed a learning task that had a concept description with disjuncts of various sizes. 
There were a total of one million examples, and the concept to be learned included 0.5 
million positive examples. As Table 1 indicates, each example of the concept consisted 
of 27 features: 7 significant features, and 20 with random values. For the (positive) 
examples of the concept, one example had a "1" for the first significant feature, and "0" 
for the rest of the significant features; 10 examples had a "0" for the first significant 
feature, "1" for the second, and "0" for the rest of the significant features; . . . ;  100,000 
examples had a "0" for the first five significant features, "1" for the sixth, and "0" for the 
rest of the significant features; the remainder of the 0.5 million examples of the concept 
had "0" for the first six significant features, and a "1"" for the seventh significant feature. 
The 0.5 million examples of the complement simply had "0" for each significant feature. 
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All examples of  the concept and its complement had random values for the remaining 
20 features. 

Table 1. Design of the Synthetic Concept. 

Positive Examples 

1 Example: 1 0 0 0 (? 0 0 + 20 random digits 
10 Examples:  0 1 0 0 0 0 0 + 20 random digits 
100 Examples:  0 0 1 0 0 0 0 + 20 random digits 
1000 Examples: 0 0 0 1 0 0 0 + 20 random digits 
10000 Examples:  0 0 0 0 1 0 0 + 20 random digits 
100000 Examples:  0 0 0 0 0 1 0 + 20 random digits 
Remainder of 0.5M Examples:  0 0 0 0 0 0 1 + 20 random digits 

Negative Examples 

0.5M Examples: 0 0 0 0 0 0 0 + 20 random digits 

RL allows the user to specify thresholds of acceptability. Typically, a user specifies 
that an acceptable rule must cover a substantial portion of  the positive examples, while 
allowing it to cover some small number of negative examples. For this experiment we 
specified that a rule can cover as few as one positive example, but must not cover any 
negative examples. Furthermore, to eliminate extraneous search from the comparison of 
run times we specified that RL was to learn only rules with a single conjunct. Thus, 
to characterize the concept RL was forced to learn a rule for each part--with its single 
conjunct specifying a ' T '  in one of the significant features. The disjunction of these 
rules covered the concept. This test was designed to see if sequential and parallel RL 
could in fact learn rules of various sizes from a large set of data, and to compare the run 
times. 

Figure 1 shows the time required by both sequential RL and parallel RL to learn rules 
that characterize the concept. The sequential version was run on data sets up to 70K 
examples, at which point it became infeasible to run it on larger data sets. We project 
that it would have taken more than 20 hours to run sequential RL on all the data. Parallel 
RL took less than one minute to learn rules on all data sets up to one million examples. 

A close examination of  the graph in Figure 1 reveals that the times for parallel learning 
form a step function. Figure 2 shows the parallel learning times in detail. Without the 
sequential times in the graph to swamp the much smaller parallel times, the step function 
is more apparent. The CM-2 was run with 8K actual processors. For data sets with 
more than 8K examples virtual processors had to be allocated. That is, each processor 
emulated several virtual processors (and, therefore, stored multiple data items). Each 
time new virtual processors had to be used to accomodate a larger data set the overall 
computation time reflected the increased cost of emulation. Virtual processors must be 
allocated in powers of 2, so as to emulate an entire hypercube. Thus, the bottom of the 
steps visible in the graph shown in Figure 2 correspond to example sets of size 64K, 
128K, 256K, and 512K. One extra example pushes the run time up to the next step. 
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Two observations are relevant here. First, the basic parallel operation--evaluating 
a predicate across independent data items distributed across many processors--does not 
involve interprocessor communication. Second, each processor of the CM-2 is a relatively 
weak bit-serial processor, so the speedup factor is not nearly 8K, but the use of thousands 
of such processors produces an overall dramatic effect. Subsequent architectures that 
combine large numbers of more powerful processors (such as the CM-5 or Cray's T3D) 
will give more impressive speedups. 

Parallelizing RL allowed it to learn rules that practically are impossible for the sequen- 
tial program to learn on current workstations. On the test workstation, the maximum 
practical sample size for the sequential RL is 50K-I00K examples, but the chance is 
nearly zero that such a sample will contain an adequate representation of all parts of a 
concept that is made up of very small disjuncts. Remember that it is often these spe- 
cial cases that particularly interest scientists. In contrast, parallel RL learned all rules 
necessary to cover the positive examples with a million training items. 

4.2. Experiments  on a Publ ic .Heal th Database.  

We analyzed a data set comprising U.S. Department of Health birth records linked with 
records of infant deaths. Parallel RL was used to learn rules to predict infant mortality 
and survival. The database contained 3.5 million records with about 20 fields each, 
including race, birthweight, and place of birth. This is an example of a problem where 
the goal is not to form a classifier, since we are not predicting whether new infants are 
going to survive, but to identify interesting subgroups of the population. Identifying 
subgroups with unusually high and unusually low infant mortality rates directs further 
research. The long-term goal of such work is to formulate policies that will reduce the 
nation's infant mortality rate, and the rate for particular subgroups. 

Figure 3 shows the learning times required to learn with this data set, which are similar 
to those obtained with the synthetic data. Notice, in particular, that the sequential program 
becomes practically useless at approximately the same number of training examples as 
it did with the synthetic data. 

The massively parallel system learned the rule, known by experts in the field, that 
African-Americans have a high rate of infant mortality (1.88% vs. 1.10% for the general 
population). It also learned the small rule that Japanese-Americans have a low rate 
of infant mortality (0.79%), and the even smaller rule that Japanese-Americans living 
in East Coast states have a very low rate of infant mortality (0.18%). 2 It is important 
to remember that the dataset contained approximately 3.5 million records, so the small 
differences we see here are significant. 

In addition, the analysis of the infant mortality database with parallel RL uncovered a 
surprising relationship that has led to considerable follow-up research with our public- 
health collaborators. Public-health researchers are concerned about the disparity in infant 
mortality rates between African-Americans and the general population. In the general 
population earlier prenatal care correlates with a reduction in infant mortality rates: 
however, RL discovered that for African-Americans, earlier prenatal care is correlated 
with higher infant mortality rates. Statistical tests show the relationship to be significant 
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even after controlling for confounding variables. Further analysis has explained the 
relationship only partially. These results are currently being written up for submission 
to a public-health journal (Sharma, Provost, Aronis, Mattison & Buchanan, 1994). 

5. C o n c l u s i o n s  

Massively parallel matching succeeds because it attacks a specific bottleneck encountered 
with very large problems, i.e., matching hypotheses against huge data sets is computa- 
tionally expensive. As opposed to previous work (Cook & Holder, 1990), we did not 
attempt to parallelize the entire algorithm. The generation of hypotheses takes place on 
the supercomputer's front-end workstation. This makes sense since the results of match- 
ing hypotheses against the data guide the generation of subsequent hypotheses (and so 
there is a serial nature to this portion of the algorithm). Each hypothesis is independently 
checked against each data item, which can be done in parallel. However, the sequen- 
tial bottleneck is not avoided entirely with the CM-2. Loading the data into the CM-2 
processors is a sequential task that can take several minutes for one million data points. 
Coupling this overhead with the performance numbers depicted in Figures 2 and 4, we 
conclude that the massively parallel version is preferable when the number of examples is 
greater than 10K. This conclusion is based on domains with approximately 20 attributes, 
but it should hold for domains with more or fewer attributes, up to the point where the 
memory of the individual processors is exhausted. 
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Parallel matching applies to generate-and-test learning programs in general, such as 
MetaDENDRAL-style rule learners akin to RL; parallel matching would undoubtedly 
enable dramatic scaling for systems such as BruteDL (Segal & Etzioni, 1994), where 
efficiency is a primary concern. Parallelizing some other generate-and-test machine learn- 
ing programs would be slightly less straightforward, but we believe our basic approach 
would succeed. For example, consider a version of ID3 that exploits parallel matching. 
Roughly speaking, as decision-tree partial paths were generated by the front end, they 
would be matched against all of the data in parallel. This procedure does not exploit 
the recursive partitioning nature of sequential ID3, which matches partial paths against 
increasingly smaller subsets of the data. Thus, speedups would not be as large as for RL, 
because often many processors would be "extraneous" when matching a decision-tree 
partial path. Nonetheless, we still would expect speedups to be dramatic for very large 
example sets. 

For other learning methods where concept description generation and testing are too 
closely coupled, parallel matching will be either awkward or impossible. As an extreme 
example, it would be difficult to use this method to parallelize backpropagation learning 
for a neural network. 

In summary, for some learning tasks, like the exploratory analysis of the infant mor- 
tality data, learning small rules is very important. In order to learn small rules, it is 
necessary to have very large samples so that the algorithm will see enough cases to form 
a rule (with confidence). However, learning with sample sets containing one million or 
more examples is infeasible on standard sequential machines. We have shown that mas- 
sive parallelism is an effective way to scale up inductive learning to large data-analysis 
problems. 
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Notes 

1. Stolfo and Shaw designed DADO, a parallel tree-structured machine for production system matching, to 
deal with large production systems (Stolfo & Shaw, 1982; Stolfo, 1987). DADO was based on the principle 
that in production systems, the matching of each rule against working memory is independent of the others. 
In principle, our approach to parallel learning would work well on DADO; however, our representation is 
much simpler, so many of DADO's capabilities would be wasted. 

2. The feature East Coast does not appear in the original data set. It was created by a constructive induction 
program described by Aronis and Provost (1994). 
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