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Abstract. Concept learning depends on data character. To discover how, some researchers have used theoretical 
analysis to relate the behavior of idealized learning algorithms to classes of concepts. Others have developed pragmatic 
measures that relate the behavior of empirical systems such as ID3 and PLS1 to the kinds of concepts encountered 
in practice. But before learning behavior can be predicted, concepts and data must be characterized. Data 
characteristics include their number, error, "size" and so forth. Although potential characteristics are numerous, 
they are constrained by the way one yiews concepts. Viewing concepts as functions over instance space leads 
to geometric characteristics such as concept size (the proportion of positive instances) and concentration (not 
too many "peaks"). Experiments show that some of these characteristics drastically affect the accuracy of con- 
cept learning. Sometimes data characteristics interact in non-intuitive ways; for example, noisy data may degrade 
accuracy differently depending on the size of the concept. Compared with effects of some data characteristics, 
the choice of learning algorithm appears less important: performance accuracy is degraded only slightly when 
the splitting criterion is replaced with random selection. Analyzing such observations suggests directions for concept 
learning research. 
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1. Introduction 

Data character affects concept learning. If  a data characteristic is some property of the 
training instances input to a learning program, then accurate learning depends on 
characteristics such as the number of data (Haussler, 1986; Kearns, Pitt, and Valiant, 1987), 
the kind of data (Buchanan, Rissland, Rosenbloom, Ng, and Sullivan, 1987; Winston, 1975), 
and the amount of error in the data (Quinlan, 1986). Other data characteristics important 
to learning include the number of attributes, the size of the concept class, and the con- 
cept's concentration in instance space (i.e., the number of disjunctive "peaks;" Rendell, 
1988, in press). Despite the extensive empirical and theoretical investigation into these rela- 
tionships, however, many questions remain. Which data characteristics affect learning most? 
How do characteristics interact? Can data be characterized in ways that will improve con- 
cept learning? This paper explores various data characteristics and their effects on learning. 

The way one analyzes data depends on how one views a concept. For our studies it has 
proven useful to view a concept as a function or surface over instance space (Rendell, 1986b; 
Rendell, Cho, and Seshu, 1989). This perspective can reveal hidden characteristics. For 
example, viewing a concept as a function leads one to wonder about concept shape and 
the effects of grossly irregular concepts (e.g., functions having many peaks). 



268 L. RENDELL AND H. CHO 

Another reason to view concepts as functions is to overcome the problem of data collec- 
tion. Thorough studies are difficult if they rely exclusively on "natural" data. On the other 
hand, if concepts are functions, we may characterize them to generate artificial data. 
Through systematic data generation, specific data characteristics can be finely controlled 
by manipulating the generating function. We designed and implemented a program for 
generating artificial data based on the characteristics we have described. Previous studies 
have used both natural concepts (e.g., Lavrac, Mozetic, and Kononenko, 1986) and arti- 
ficial concepts (e.g., Langley, 1987; Valiant, 1984). 

Although we have investigated several data characteristics, this paper focuses on two major 
ones: concept size and concept concentration. Concept size is the proportion of positive 
instances. Concept concentration characterizes the distribution of positive instances 
throughout the instance space: High concentration implies few concept regions; low con- 
centration means dispersion across many disjunctive regions. As the experiments 
demonstrate, both of these characteristics have a profound effect on the accuracy of con- 
cept learning. 

Other data characteristics influence learning to greater or lesser degrees. In our ex- 
periments we have varied some of them while observing their effects on the two major 
characteristics mentioned above. The minor characteristics reported in this paper are class 
error, attribute error, peak shape, and number of data. One of the general results of our 
study is that these data characteristics can interact in non-intuitive ways. 

In our quantitative investigation we have used two systems: ID3/C4 (Quinlan, 1983) and 
PLS1 (Rnedell, 1983). These inductive systems represent a class of algorithms that specialize 
hypotheses using information or probabilistic splitting criteria; for the problems we ad- 
dress, these algorithms behave particularly well (Lavrac et al., 1986; O'Rorke, 1982; Rendell 
et al., 1989). We consider both ID3/C4 and PLS1 to compare the effects of design choices 
with the effects of data character. We also demonstrate the generality of the results through 
a set of experiments in which the splitting criterion is replaced with random selection. 
Surprisingly, performance accuracy is not significantly degraded, compared with the effects 
of some data characteristics. 

Our characterization of data and the experimental results motivate certain extensions of 
empirical learning methods. For example, such methods behave poorly when concept con- 
centration is low, which suggests that improving this important characteristic should be 
a driving principle of mechanized representation change. 

This paper develops data characteristics from first principles. Beginning from the definition 
of concepts as functions, we review and reorganize various data characteristics relevant 
to our investigation (Section 2). Next we outline the design of the experiments and discuss 
our method for artificial data generation (Section 3). Then we present and analyze experi- 
mental results that focus on concept size, concept concentration, and splitting criteria (Section 
4). Finally, we summarize by suggesting methods for improving concept learning, while 
proposing questions for additional study (Section 5). 

2. Characterizing the data 

Aspects of concept learning, such as accuracy and speed, depend on the learning algorithm 
and the problem domain. Here we are primarily interested in the latter: What are the effects 
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of the many kinds of data that can be encountered? We consider this question in five parts. 
First, Section 2.1 reviews current notions of data character. To help clarify these data 
characteristics, Section 2.2 examines concept structure. Sections 2.3 and 2.4 continue this 
analysis by refining dimensions of "concept distribution" and "sampling distribution." 
Finally, Section 2.5 summarizes and organizes the many data characteristics to help ration- 
alize the experiments. 

2.L A preliminary view of data variables 

Some data characteristics are known to affect concept learning in specific ways; other data 
characteristics are less well understood. This section begins with some well-known effects 
and leads to open research problems. 

Number  of data in the learning sample. The number of training instances affects the 
speed of learning. Some systems are slowed only linearly as the sample size increases. 1 
To reduce the learning time, the available data may be sampled, although the accuracy 
can suffer if the sample is too small. Whereas ID3 determines the sampling empirically 
(Quinlan, 1983), the required number of data for a given accuracy can sometimes be decided 
theoretically (Ehrenfeucht, Haussler, Kearns, and Valiant, 1988). 

Number  of attributes. The speed of learning is also affected by the number of attributes 
that describe an input datum. Some learning algorithms (such as ID3 and PLS1) are slowed 
only linearly. If  the number of attributes is large, techniques of attribute selection may 
be used to save time without sacrificing accuracy (Devijver and Kittler, 1982; Draper and 
Smith, 1981; Samuel, 1963). Another way to improve the attributes is to replace some with 
more appropriate choices using a domain theory (Mitchell, Keller, and Kedar-Cabelli, 1986). 

Scales of attributes. The scale of an attribute may be nominal (unordered), tree-structured 
(partially ordered), ordinal (totally rank ordered), or interval (integer or real). The scales 
toward the end of this list code more information than those at the beginning; such infor- 
mation may benefit learning. Techniques to manage various scales are given by Michalski 
(1983) and by Quinlan (1983). Scales are often interconvertible (Anderberg, 1973). 

Er ro r  or noise. The effects of noisy data can be severe. In a detailed study, Quinlan 
(1986) artificially corrupted data input to ID3. He introduced varying degrees of corrup- 
tion, sometimes to attribute values and sometimes to class membership values, to show 
how each degrades accuracy (also see Breiman, Friedman, Olshen and Stone, 1984; Rendell 
et at., 1989). Later in this paper we describe new results that relate error to attribute scales 
and other data dimensions. 

Class distribution. Except for some interesting but limited theoretical results (Cover, 
1965; Haussler, 1986; Ehrenfeucht et al., 1988), the effects of concept "distribution" are 
not well understood. By concept or class distribution, we refer to the way the positive 
instances are arranged in instance space. To mention two extremes, the positive instances 
may form just a single, tightly packed group or cluster, or they may be widely scattered 
over instance space. One might suppose that tightly packed groups are easier to find and 
describe than concepts that are dispersed.2 Section 4 reports results of experiments using 
varied class distributions. We also study how this data variable interacts with error and 
other data dimensions. To lay the groundwork for these results, Sections 2.2 and 2.3 refine 
the idea of concept distribution. 
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Sampling distribution. The distribution of a concept may or may not be reflected in 
the training examples. In other words, relative to the whole popnlation of instances, the 
training sample may be random, or it may be biased in various ways (Hunt, Matin, and 
Stone, 1966; Simon and Lea, 1974). Because some instances are more useful for learning 
than others, the training data may be limited not only by random sampling, but also by 
"intelligent" sampling (Buchanan et al., 1987; Sleeman, 1981). Section 2.4 refines the no- 
tion of the sampling distribution. 

2.2. A closer look at concepts: From definition to characterization 

By definition, a concept is a rule that describes a class (subset) of instances. If  we repre- 
sent an instance as a tuple of attributes, any particular concept has an associated instance 
space whose dimensionality is the number of attributes. As shown in Figure l(a), an "all- 
or-none" concept is a binary-valued function over instance space. We allow a concept to 
be probabilistic, as in Figure l(b), so the function becomes graded: It has values between 
0 (certain class exclusion) and 1 (certain class membership). Thus a concept is a (binary 
or graded) function or surface over instance space. 

Any concept expressed using an n-tuple of attributes is a function over the instance space 
defined by those attributes. 3 The instance space of a concept using n attributes is n- 
dimensional; the structure of the space depends on attribute scales. The diagrams in Figure 
1 show familiar interval scales which are ordered and permit a distance measure. If  the 
attributes are real-valued, the concept may be a continuous function; if the attributes are 
integer, the concept may still be fairly "smooth" (it might vary gradually from one point 
to the next). Partially ordered and nominal scales also determine an instance space, albeit 
a less ordered space. Because ordering and smoothness make concepts easier to learn using 
empirical systems (Rendell, 1986), partially ordered and nominal scales are more prob- 
lematic, although such variables may be converted to integer (Anderberg, 1973). 

(a) (b) 
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Figure 1. Binary-valued and graded concepts. In (a), the concept is binary or aU-or-none; in (b), it is graded 
or probabilistic. Here the instance space is two-dimensional and has interval scales, showing clear differences 
in "'concept conformation" (shape of individual peaks). In (a), the concept is uniform; in (b), it is normally 
distributed. 
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Figure 2. Relationship of a decision tree to the instance space form of a concept. The two diagrams are related. 
The instance space form (a) corresponds to the decision tree (b) although the latter orders attributes. (Whereas 
(a) suggests that shape and size are equally important, (b) shows that shape is more significant. Both (a) and 
(b) indicate that color is irrelevant.) Another difference between the two representations is that with usual inter- 
presentations, one tends to think of (a) but not (b) as ordering attribute values. 

Although one can represent a concept in various ways, all adequate representations are 
logically equivalent to a function over instance space. For example, the decision tree in 
Figure 2(b) describes the same class as the binary-valued function in Figure 2(a). We have 
introduced the idea of a concept as a function because this perspective helps to clarify 
data dimensions. For example, refining the class distribution dimension becomes the prob- 
lem of characterizing the class membership function. The character of the function af- 
fects the difficulty of learning. 

2.3. Refining the notion of class distribution 

How does concept difficulty depend on the distribution of the class? For binary-valued con- 
cepts, one way to describe difficulty is in terms of the number of conjuncts and disjuncts 
in the concept (Haussler, 1986; Kearns et al., 1987). To permit graded concepts, however, 
we propose to break down the class distribution dimension into more refined data variables. 
Each refined dimension in Table 1 refers to some aspect of the concept as it appears over 
its instance space. We illustrate and discuss the first three dimensions below, relegating 
the fourth to a later discussion on future work. 

2.3.1. Relative size of the concept or prevalence of positives 

Figure 3 shows two extreme cases of instance space coverage, relative concept size, or 
prevalence of positive instances. Concept size is the positive volume (integral of the class 
membership function) divided by the volume of the whole space. The size of the concept 
may affect accuracy, especially when the data are noisy. Suppose that some attribute of a 
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Table 1. Class distribution dimensions and their hypothesized effects. 

Data Variable or Dimension Explanation or Typical Values  Specific Effects (hypothesis) 

Relative Size of the Concept 
(prevalence of positives) 

Concentration of Positives 
(number of peaks) 

Conformation of Positives 
(shape of individual peaks) 

Higher-Order Regularity 
(association of peaks) 

proportion of instance space 
covered by the concept 

localization of the concept in 
instance space 

e.g., uniform, normal, or 
irregular 

random distribution of peaks, 
vs. some way to relate them 

Minor effect on accuracy, unless 
there is noise 

Major effect on accuracy, speed, 
other performance considerations 

Some effect, as the shape becomes 
more spread out or irregular 

No effect on systems tested, but 
important in future systems 

negat ive instance is corrupated.  The  effect should be greater  in Figure  3(a) because  the 
probabillity of  the corrupted instance's landing in a positive region of  the space is t,5, whereas 

in Figure  3(b) this probabi l i ty  is only  l /D0.  

F igure  3(b) is typical  o f  data found in some  problems.  For  example,  w h e n  we examined 

the output  f rom PLS1 in medica l  domains  (Clark  and Niblet t ,  1989; Lavrac  et a l . ,  1986), 

we found small  under ly ing  concepts  (just a small  p ropor t ion  o f  all medica l  patients suffer 

f rom any g iven  disease).  Many  concepts  learned in the l i terature are small ,  al though the 

relat ive size can vary greatly. 

(*) (b) 

/ 
Class 
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ship 
Proba- 
bility 
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 IstnceSpce /' J 
Figure 3_ Variation of relative concept size (prevalence of positives) in instance space. Although the diagram 
shows two attributes, the space may have any number of dimensions. In (a), the concept covers half of the space. 
In (b), the concept covers just 1% of the space. Concept size can affect learning behavior in the presence of 
error (see text). 
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2.3. 2. Concept concentration 

Concepts may also vary in the concentration. A coarse measure of concentration simply 
counts the number of distinct disjuncts or "peaks" in the concept. For an interval (integer- 
or real-valued) instance space S, a peak is a neighborhood 4 of S that has a class member- 
ship value greater than average. "Neighborhood" is a meaningful term only for ordered 
scales (integer, real, partially-ordered); for other scales (e.g., nominal) a peak is always 
a single point until some ordering is learned or imposed. Figure 4 contrasts two extremes 
of concept concentration in an integer space: one peak (a), and many peaks (b). Counting 
the number of peaks provides a simple measure of the degree of localization of a concept, 
which may cohere tightly or be spread out in instance space. 

Concept concentration, or its opposite, concept dispersion, can be related to problems 
found in the literature. Holte and Porter (1988) surveyed several machine learning articles 
and found that the reported concepts tend to have few disjuncts. Moreover, because machine 
learning algorithms such as ID3 and PLS1 align disjuncts with instance space axes, several 
disjuncts may indicate just one peak: An irregularly shaped peak misaligned with the axes 
requires many disjuncts to describe it. Small numbers of peaks is characteristic of represen- 
tations used in many domains, including games (Samuel, 1963), puzzles (Rendell, 1983), 
and various pattern recognition problems (Tou and Gonzalez, 1974). Because of the attri- 
butes typically chosen for these problems, class membership functions are remarkably well- 
behaved. The function is often monotonic or singly peaked. 

In contrast, some problems (and alternative representations of these same problems) have 
low-level (primitive) attributes, which tend to produce dispersed concepts. Consider, for 
example, what the class-membership function would look like when the concept is the letter 
"A" and attributes are pixel gray-levels, or when the concept is "forced win" and attributes 
are chessboard contents. Class-membership functions having many peaks have been con- 
sidered by Quinlan (1983, 1987b) and by Rendell (1985, 1988). As Section 4 shows, concept 
dispersion has a drastic effect on learning. 

(,) (b) 

Class 
Member- | 

2-dim. Instance Space 

Figure 4. Variation of concept concentration. In (a), the concept is tightly grouped in a single region of in- 
stance space. In (b), the concept is spread out all over the space. Concept concentration can affect learning 
drastically. 
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2.3. 3. Concept conformation or the shape of individual peaks 

Figure 1 shows two different conformations of positive instances: uniform (a) and normal 
(b). Many natural cases are like Figure l(b) (Tou and Gonzalez, 1974). Although the number 
of shapes is infinite, the effect of this data dimension on learning may be less important 
than the number of peaks. Later we test this hypothesis. 

2.4. Refining the notion of sampling distribution 

The simplest sampling characteristic is perhaps its size, but there are other aspects of sampling 
(Hogg and Craig, 1965). First, the sample may or may not be meaningfully ordered (Win- 
ston, 1975). Secondly, the distribution over instance space may or may not be reflected in 
the training examples; in other words, relative to the whole population of instances, the train- 
ing sample may be random or it may be biased. Finally, the balance of positive versus nega- 
tive examples may differ relative to the actual class distribution; in other words, the propor- 
tion of positive instances in the data can be larger or smaller than in the whole population. 
This may occur in practical applications; for example, if the class to be learned is some 
disease, one may have many recorded cases of the disease but few explicit records of health. 5 

2.5. A summary of data dimensions 

Table 2 organizes the data dimensions into a coherent structure based on our view of concepts 
as surfaces over instance space. We have referred to coarse data variables (such as concept 
distribution) and refined data variables (such as concept concentration). The table lists many 
refined variables (Column 2) as specific cases of three coarser variables (Column 1). 

This table also previews the experiments. Each was designed to measure quantitative 
relationships between particular aspects of learning and particular data variables. Our ex- 
periments emphasize certain variables, especially concept size and concept concentration 
(Column 3). In some cases the data variables may interact; their effect may depend on 
other dimensions. For example, we argued in Section 2.3.1. that the effect of error should 
depend on the size of the concept. Our experiments examine such relationships (Column 4). 

Table 2. Data dimensions and their investigation. 

Coarse Data Variable Refined Data Variable Investigated Here? with Other Var's?* 

Problem Dimensions Attribute Scales Somewhat Shape, No. of Peaks 
(Domain Character, Number of Attributes No - -  
Representation, Attribute Error Yes Concept Size 
Data Reliability) Class Error Yes Number of Peaks 

Concept Dimensions Size of Concept Yes Error 
(Class Distribution) Concentration (No. of Peaks) Yes Scales, Error 

Conformation (Shape of Peaks) Yes Number of Peaks 
Higher-Order Regularity No 

Sampling Dimensions Number of Data Somewhat Number of Peaks 
(Training Biases) Ordering Characteristics No, always random - -  

Sign Balance Relative to Class Somewhat 

*This column shows secondary data characteristics found to interact with the primary data characteristic listed 
in the corresponding row of the table. 
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3. Exper imental  design 

This section describes our broad experimental conditions, algorithms, and measures. We 
select two inductive systems known to behave well, discuss dependent measures of their 
behavior, and outline our method for obtaining data to train and test the systems. 

Our experiments used two algorithms because we wanted to test the effects of their design 
compared with the effects of  data and concept character. One of our hypotheses was that 
although various specialization or splitting algorithms differ in several respects, their design 
has a minor effect compared with data and concept character. To verify this hypothesis 
and to investigate effects of  data character in detail, we varied the learning algorithm, 
measured accuracy and speed, and generated a broad selection of  data. 

3.1. Learning algorithms 

The algorithms we test are ID3 (Quinlan, 1983, 1986) and PLS1 (Rendell, 1983, 1986). 6 
These learning systems are similar: Both input data as attribute vectors; both use probabilistic 
or information criteria to specialize hypotheses; and both represent hypotheses in a similar 
fashion. Although ID3 uses a decision tree whereas PLS1 uses hyperrectangles, the two 
representations are similar (see Figure 2 and the Appendix). These programs output a rule 
or concept to classify unknown instances into positive or negative classes (although ID3 
can handle multiple classes). 

Because these learning algorithms are of  secondary concern here, we relegate their detailed 
description to the Appendix. However, we note a few important facts: 

• ID3 and PLSI represent a class of specialization algorithms 7 that use probabilistic or 
information criteria. For others in the same class, see Breiman et al. (1984), Clark and 
Niblett (1989), and Gains and Lavrac (1987). 

• In a number of experiments whose conditions were similar to those we investigate here, 
this class of  learning algorithms was found to be faster and more accurate than generaliza- 
tion algorithms (Lavrac et al., 1986; O'Rorke, 1982; Rendell et al., 1989). 8 

• Viewing algorithms such as ID3 and PLS1 as members of a single class of learning systems 
can improve our perspective on the comparative effects of  system design versus data 
character. We can vary both algorithm design and data character to determine their relative. 
roles. 

In this paper we primarily vary data characteristics to determine their effects on measures 
of concept quality. 

3.2. Dependent measures 

To measure the effects of various data characteristics, we need evaluation criteria. Numerous 
measures have been used to assess learning systems (see Lavrac et al., 1986; Rendell et 
al, 1989). Here we use measures not so much to compare systems, but rather to evaluate 
the effects of data character. Two important criteria are concept accuracy and learning speed. 
Although conciseness may also be important for some purposes, we do not report this aspect. 
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Because of the difficulty of real-world problems, the exact concept is seldom obtained. 
Instead, the concept output by the learning system is an approximation. The quality of the 
approximation may be defined in terms of its classification error. In other words, given 
a sample of instances whose true classification is known, the estimated accuracy of a con- 
cept is the estimated probability of correct classification = (number of correct classifica- 
tions)/(number of instances tested). This definition of accuracy is standard (Tou and Gon- 
zalez, 1974; Valiant, 1984) 9 

Although accuracy was our primary concern, we also measured speed or efficiency. This 
factor can be significant because slow learning can mean impractical learning. In some 
cases learning can become infeasible. We measured quantitative effects of problem 
characteristics on learning speed. 

3.3. Data generation 

As Table 2 shows, learning depends on many data characteristics. In order to measure their 
complex effects, one needs a wide range of data. In this respect, however, natural domains 
are often uncontrolled. Nevertheless, any natural data from any domain must have an 
underlying class membership function which is the concept (Figure 1). Because a function 
can be generated to have any desired form, one can simulate natural data by using arti- 
ficially generated data (cf. Kearns et al., 1987; Langley, 1987). 

Our data generation program has several parameters the user may select. The parameters 
include the desired type and number of attributes, the type and proportion of noise, infor- 
mation about the character of the class membership function, and choices for its sampling. 
The parameters and operation of the data generation program are explained in the next 
section, which details the experiments. 

4. System behavior as a function of data character 

We observed the behaviors of ID3 (the version called C4), PLS1, and a variant of PLS1. 
The versions used of ID3 and PLS1 were written in C and Pascal, respectively. Both were 
run on a VAX/780 under UNIX. Although the designs of ID3/C4 and PLS1 differ somewhat 
(see the Appendix), we have found little difference in their average accuracy. Elsewhere 
(Rendell et al., 1989), we showed that ID3 and PLS1 behave similarly with respect to ac- 
curacy, speed, and conciseness. These specialization algorithms, however, behave differently 
from generalization algorithms. 

Because ID3 and PLS1 behave so similarly and because some experiments took several 
hours to run, we often used only PLS1, instead of wasting resources in what would have 
amounted to duplicate runs. In other experiments we tested both systems to underline their 
similar behavior and to contrast effects of system design with effects of data character. 

To exploit data for both training and testing, Breiman et al. (1984) discuss three methods. 
The most common is to partition the sample and reserve part of it for testing. We used 
our data generation program to create testing and training instances at the same time (one 
half the data for each purpose). In all cases, both sets of instances had identical properties, 
except that the instances used for testing were never corrupted. The rationale behind this 
exception is that testing should be objective, not flawed (cf. Quinlan, 1986). For ease of 
experimentation, the attributes of a given data set were all of the same type--either integer 
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or nominal. Another parameter of data generation is the number of values in an attribute's 
range. The number chosen (32) was rather arbitrary, although in combination with the dimen- 
sionality of instance space (5), this gives a size of 325 = 3.4 x 107, which is large enough 
so that even large samples cover just a fraction of the space. 

Table 3 summarizes these and other data characteristics for all our experiments. This 
table follows the format of Table 2, listing detailed data dimensions (Column 2) as 
refinements of coarse characteristics (Column 1). The other columns show data 
characteristics for four major series of experiments. Each series is designed to show ef- 
fects on learning of some major variable upon which the study is focused. The major 
variables (shown above the figure numbers in Table 3) are two data characteristics: con- 
cept size and concept concentration, and also a factor of system design discussed later. 

These factors were not the only ones we varied. The effects of other concept characteristics 
were also studied, including most of the data dimensions of Column 2. Characteristics 
that varied over a series of experiments are shown in the table using an asterisk (*). For 
other variables, we set data characteristics to mimic some "natural" cases. For example, 
the last row of Table 3, which shows the proportion of positive examples, was either the 
same as the class distribution (Figure 5), or even (50 % positive and 50 % negative; Figures 
6 to 9). 

We evaluated effects of data characteristics using the two criteria of Section 3 (concept 
accuracy and learning speed). The ordinate of all but one of the graphs is accuracy. The 
lower accuracy limit is 50 %, because in the two-class case with even sign distribution, 
this is the expected accuracy for guessing. Standard deviations for accuracy were at least 
as good as 3% (often 1%); all the phenomena we report are statistically significant. We 
present and interpret the results in four separate sections. 

4.1. Effects of concept size and noisy data 

This first set of experiments varied the size of the concept and the amount of error or noise 
in the data. As a function of these variables, we measured concept accuracy. 

Table 3. Data characteristics for experiments. 

Coarse Data Variable Refined Characteristic 

Experiment Focus and Figure Number 

Size 

5 

Concentration (Peaks) Algor. 

6 7 8 9 

Problem Dimensions Attribute Scales Int. Int. * Int. Int. 
(Basic Representation Number of Attributes 5 5 5 5 5 
and Data Reliability) Attribute Error * 0 0 0 0 

Class Error * 0 * * 0 

Concept Dimensions Relative Size * 1% 1% 1% 1% 
(Class Distribution) Number of Peaks 1 * * * * 

Peak Shape Unif * Unif Unif Unif 

Sampling Dimensions Number of Training Data 2000 2000 2000 * 2000 

(Training Biases) Proportion of Positives class even even even even 
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4.1.1. Experimental conditions 

As illustrated in Figure 3, the concept characteristic we call relative concept size is the 
proportion of instance space covered by positive instances. Figure 5 gives the percentage 
of testing instances correctly classified, as a function of concept size. 

Accuracy is also a function of (a) class error (flipping the sign of the instance) and (b) 
attribute error (random substitution of attribute values). To introduce a desired amount 
of  noise, the data generation program was instructed to corrupt the training data it produc- 
ed (cf. Quinlan, 1986). For class error, the program corrupted the class membership of 
a desired proportion of instances. For attribute error, the program randomly selected a 
desired proportion of instances and randomly substituted new values to some of their at- 
tributes, x° The settings of  the other data dimensions are shown in Table 3. 

4.1. 2. Observation and discussion 

The graphs in Figure 5 support earlier experimentation and they also express less familiar 
relationships. First, our results agree with Quinlan's (1986) findings which show that in- 
duction systems like ID3 and PLS1 can learn accurately despite noise. Figure 5 also agrees 
that class error (a) is more  damaging than attribute error (b). One reason is that corrupting 
the class value not only destroys information but reverses it; in contrast, corrupting an 
attribute tends to leave enough information in the uncorrupted attributes for adequate learn- 
ing. Another reason that attribute error is less damaging is that incorrect attribute values 
may sometimes produce correct examples. H In other words, class noise is worse than at- 
tribute noise because flipping the class value guarantees that an error is introduced, whereas 
distorting an attribute value may or may not introduce error. 
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Figure 5. Variation of accuracy with concept size and noise. The abscissa is the proportion of positive instances 
covering instance space (logarithmic scale). In two separate experiments both class corruption (a) and attribute 
corruption (b) were also varied. 
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Another phenomenon may be less well known. Section 2.3.1 hypothesized that the effect 
of attribute error is greatest if the concept covers about 50 % of the space. Figure 5(b) agrees: 
Classification accuracy is minimum at about 50 % coverage, whereas attribute error has 
a lesser effect in either small or large concepts. According to the figure, even 30% at- 
tribute error degrades performance only slightly if the concept covers 1% or less of the 
space. But if the concept covers close to half the space, 30% attribute error degrades ac- 
curacy by up to 15 % more. 

Why is the effect of attribute error largest when the concept covers half the space? Sup- 
pose that some attribute of a negative instance is corrupted. This will give an incorrect 
example only if the altered instance lands in a positive region of the space. Hence, the 
effect of corrupting a negative instance is greater if it has a high probability of landing 
in a positive region (i.e., if the concept is large). Conversely, the effect of corrupting a 
positive instance is great if the concept is small. And because both positive and negative 
instances may be corrupted, the greatest effect occurs when both conditions are maximal 
(subject to a tradeoff constraint). 

We can state this argument more formally. Let the relative size of the concept be p 
(0 _< p ___ 1). Hence, p is the probability that a random corrupted event x is positive. If 
attribute corruption is random, the probability that x will (incorrectly) land in a negative 
region of instance space is 1 - p. Similarly, the probability that x is negative is 1 - p, 
and the probability that it will (incorrectly) land in a positive region is p. In either case, 
the probability that x will become incorrect is P = p(1 - p). By differentiating and setting 
the result to zero, we find that P has a maximum at p = %. 

If  attribute error is random, this phenomenon may be important in practice. Even if ex- 
periments on attribute error show a small effect, we still need to know concept sizes, both 
in the experimental domain and in any projected domains, before we can predict accuracy. 

4.2. Effects of concept concentration (and two other factors) 

In this section we observe concept accuracy as a function of concept concentration (number 
of peaks). We also consider the effect of concept shape and learning algorithm. 

4.2.L Experimental conditions 

In instance spaces having interval scales, natural data tend to form one or more peaks. 
Instances of a class often cluster around the "center" of a peak. To simulate this structure, 
the data generation program selects random centers in instance space and generates in- 
stances around each center. Each center has a maximum class membership value of one; 
the probability of an instance's being in the (positive) class decreases with its distance from 
a center. The program allows the user to vary concept concentration by inputting the desired 
number of centers or peaks. Peak size may be varied, although peaks have uniform sizes 
within any given concept. 

The data generation program also allows the user to select concept shape. Although the 
program assumes that the class is isotropic in instance space, the program allows various 
distributions, two of which are uniform (binary class membership) and normal (graded 
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Figure 6 Variation of accuracy withconcept concentration, measured as the number of peaks in the concept. 
The accuracy depends on the shape of the concept (a) but apparently not on the learning algorithm (b). 

membership). For a uniform distribution, class membership changes abruptly (from 1 to 
0 or 0 to 1) at the class boundary, as in Figure l(a). For a normal distribution, class member- 
ship decreases gradually, as in Figure l(b). (Rather than being an input parameter, the 
variance of the distribution was implicitly determined by concept size.) In the current ver- 
sion of the data generation program, peak shape is uniform within a given concept. For 
these experiments, no training error was introduced, although a normal distribution (or 
any graded concept) effectively embodies error. 

Figure 6(a) shows accuracy as a function of concept concentration and concept shape, 
whereas Figure 6(b) gives accuracy as a function of concept concentration and learning 
algorithm. We observed both ID3 and PLS1 to compare their relative behaviors with effects 
of  data characteristics. 

4. 2.2. Observation and discussion 

Using PLS1 as the learning algorithm, Figure 6(a) shows the effect on accuracy as a func- 
tion of concept concentration. For either shape (uniform or normal), a concept having only 
one peak is learned almost perfectly. But accuracy drops significantly as the number of 
peaks increases to twenty. A uniformly-distributed concept having twenty peaks (a) gives 
an accuracy of 92 %; a normally-distributed concept (b) gives an accuracy of 84 %. 

Why does accuracy vary with these two choices of concept shape? The uniform distribu- 
tion gives a fixed class membership value (either 0 or 1) over local regions of instance 
space. In contrast, the normal distribution gives only a probability of class membership. 
Although this probability u is converted to 0 or 1 by the data generation program, u merely 
weights the binary conversion (e.g., u = .9 means a 90% chance of an instance's being 
positive). Because regions of instance space can have these mixed class values, this is like 
the introduction of class error. 12 
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Figure 6(b) shows the result of fixing concept shape (to be uniform) but varying the learn- 
ing algorithm. This diagram shows that ID3 and PLS1 learn less accurately as the number 
of peaks in the concept increases from one to twenty. Although ID3 and PLS1 differ in 
significant ways (see the Appendix), the effect of these differences is indistinguishable, 
given the resolution of these experiments (+3 %). 

4.3. Further effects of concept concentration (and other data variables) 

In this section we continue our study of concept concentration as we increase the number 
of peaks to larger values. We also vary class error and attribute scales. 

4.3.1. Experimental conditions 

To simulate the clustering of natural data around peaks, the data generation program allows 
selection of peak multiplicity and shape. But shape makes sense only if attribute scales 
are real or integer. To generate data having nominal scales, the program first assumes an 
integer scale to produce the usual distribution of positive instances around centers of peaks. 
Then the program randomly scrambles the attribute values, thus destroying the smooth 
structure of the integer ordering. 

For both nominal and integer scales, we generated many data sets having highly varied 
concept concentration: The number of peaks was increased from one to 1000, in logarithmic 
intervals (1, 2, 4, 8, . . .  ). Using this logarithmic abscissa, Figure 7 shows the classifica- 
tion accuracy primarily as a function of the number of peaks in the concept. The other 
data characteristic we varied is the amount of class error. The number of training instances 
was fixed at 2000. 

As in Figure 7, the major variable of Figure 8 is also the number of peaks, but here 
the number of training instances was 20 per peak. A concept having one peak had only 
20 instances, whereas a concept having 1000 peaks had 20,000 instances. This experiment 
was performed to see if massive amounts of data could overcome the detrimental effects 
of having to spread the instances over all the peaks. Further, if massive data can help ac- 
curacy, what is the cost in terms of learning time? Figure 8(a) shows accuracy and Figure 
8(b) shows learning time. 

4. 3. 2. Observation and discussion 

Whether the attribute scales were nominal, as in Figure 7(a), or integer as in Figure 7(b), 
the accuracy dropped nearly to chance as the number of peaks approached the fixed number 
of training instances (2000). Even when the sample size was increased to keep pace with 
the number of peaks, as in Figure 8(a), the accuracy still suffered. Furthermore, the number 
of disjuncts required (not shown) to describe complex concepts increases with the number 
of peaks. Worse, the effect on learning time is drastic. To process the 20,000 data for 1000 
peaks, PLS1 took 20,000 CPU seconds (six hours); by extrapolation, ID3/C4 would take 
several days. 
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Why do algorithms like ID3 and PLS1 behave so poorly when concepts are dispersed? 
Such systems provide no way to predict peaks. Although these induction systems are good 
for discovering the sizes and shapes of individual peaks in the class membership function, 
each peak must be learned separately. Every peak requires at least one training example, 
if that peak is to be learned at all. And to shape a peak correctly, many instances may 
be needed, both from inside the peak (positive examples) and from outside the peak (negative 
examples). Moreover, as the number of peaks increases, so does the difficulty of finding 
them, because multiple peaks imply attribute interaction (high-order relationships), whereas 
typical systems rely on simpler correlations (Rendell, 1989). 

Figure 8 suggests that the practical limit for our best empirical algorithms is perhaps 
between 1,000 and 100,000 peaks. A complexity analysis of PLS1 shows that, like ID3, 
its processing time t increases as the product of the number of instances N, the number 
of attributes n, and the number of disjuncts k (which varies with the number of peaks). 
Holding n constant, we would predict t ~ Nk. I f  we fit the model t = c × (Nk) x to the 
values of Figure 8, we obtain x = .57 (this is less than the predicted value ofx = 1 because 
of various heuristics in PLS1). Substituting k = 100,000 and N = 20 per peak (two million 
instances) into t = (Nk) 57, we have t = one CPU month. Given the 1016 peaks that arise 
in real-world problems (Rendell, 1985), our current algorithms would be completely 
overwhelmed. 

Problems whose initial descriptions give class membership functions having large numbers 
of peaks can be considered problems of representation. For example, even when restricted, 
a low-level representation of the protein folding problem results in many millions of peaks 
(Rendell, 1988, in press). The distinguishing feature of such domains is that a good rep- 
resentation is unknown or cannot easily be communicated. 

Because the best known formulations of such problems tend to produce immense numbers 
of peaks in a primitive instance space, these problems require construction of new attributes 
that reduce the number of peaks in a transformed space. To automate construction, the 
original attributes must somehow be transformed so that peaks merge (Drastat and Raatz, 
1989; Rendell, 1988, in press). This is discussed in Section 5. 

4.4. The effect of one algorithm design factor 

This final set of experiments has a different purpose. Rather than observe further effects 
of data character, we consider the effect of an aspect of algorithm design as a benchmark 
for comparison. 

4.4.L Experimental conditions 

Figure 9 shows concept accuracy as a function of the number of peaks and also as a func- 
tion of one aspect of algorithm design. This diagram is the same as Figure 6(b) except 
that one more curve has been added. The upper two curves copied from Figure 6(b) show 
the behavior of ID3 and PLS1. The third curve shows the effect on PLS1 when its splitting 
criterion was entirely randomized. 



284 L.  R E N D E L L  A N D  H.  C H O  

~o Ace 
100 

95 

90 

85 

80 

75 

70 

65 

50 

55 

50 
2 4 6 8 10 12 14 16 

~ PLS1 
V ~ ]D3 
• ~ ]~andom 

18 20 

P e a k s  

Figure 9. The comparative effect of a system design factor. The abscissa is the number of peaks in the underlying 
concept (linear scale). The splitting criterion used by ID3 and PLS1 is normally probabilistie or information 
theoretic (two top curves). The lowest curve shows PLS1 with its criterion altered so that splitting becomes random. 

In the experiments represented by Figure 9, the peak shape was uniform and no error 
was introduced. We ran other experiments for various settings of  peak shape (normal) and 
data corruption (class error rates of  10% and 30%); in these cases, randomizing the split- 
ting had a similar effect. 

4.4. 2. Observation and discussion 

Perhaps surprisingly, removing a learning algorithm's splitting criterion can degrade ac- 
curacy less than increasing the size of  the concept in the presence of attribute error. In 
Section 4.1 we saw that depending on error, concept accuracy can drop from 95% to 80% 
as the size of  the concept increases, as in Figure 5(b). Yet Figure 9 shows that removing 
the splitting criterion results in an average accuracy degradation of just 5 %, despite the 
fact that the splitting criterion has been considered an important design factor for algorithms 
such as ID3 and PLS1.13 

If we consider the 5 % effect of  the splitting criterion as a unit of  influence, then the 
size of  a concept has three times the influence. In other words, the splitting criterion, over 
the range of choices we investigated (random selection versus PLSI's probabilistic criterion 
versus ID3's information criterion) influences accuracy only a third as much as the size 
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of the concept (over its whole range: 0% to 100%). This influence unit provides a bench- 
mark for other data characteristics. Comparing it with Figure 6(a) from Section 4.2, we 
see that the shape of a concept's peaks can affect accuracy as much as the splitting criterion. 

Figure 9 also compares the effect of the splitting criterion with the effect of concept con- 
centration. The benefit of the "informed" splitting criterion used by ID3 or PLS1 is quick- 
ly outweighed if we increase the number of peaks. ID3 or PLS1 behave worse when learn- 
ing a concept having 10 peaks (90% accuracy) than a naive algorithm does when learning 
a concept having one or two peaks (95 % accuracy). 

Why is the splitting criterion less important than concept concentration? The answer in- 
volves the fact that a dispersed concept is hard to learn for greedy algorithms like ID3 
and PLSI. Increasing the number of peaks increases the degree of attribute interaction, 
resulting in higher-order relationships among the attributes. In contrast, greedy algorithms 
consider just one attribute at a time, which is tantamount to considering only one-dimensional 
projections of the class membership function over instance space. But one-dimensional 
projections become blurred when attribute relationships are high-order, so a one-dimensional 
splitting criterion becomes less useful. One response is to use lookahead in the decision 
tree or instance-space partition being learned, but this requires exponentially more time; 
moreover, extreme attribute interaction requires more data, slowing learning still further. 

5. Further investigation 

The results we have reported suggest two kinds of continued research. One is to exploit 
further the idea of "concept as function" to refine concept characteristics related to learn- 
ing behavior. The Other research direction is to improve learning algorithms based on find- 
ings to date. We discuss these two directions in two separate sections. 

5.1. Improving studies of learning behavior 

Table 2 is incomplete and oversimplified. It is incomplete with regard to sampling dimen- 
sions; for example, it ignores ideas such as "near misses" The table is also oversimplified 
with regard to concept concentration, for which the number of peaks is only a course 
measure. Below we detail one example each of incomplete characterization and over- 
simplified characterization, 

5.1.1. Boundary concentration 

Training data may be selected randomly or they may be biased. Figure 10 shows one kind 
of sample bias, where data near the boundaries of the class are favored. Such "boundary 
concentration" may speed learning by sharpening distinctions. 

This data characteristic could be considered as intelligent instance selection. Winston's 
(1975) original idea of a "near miss" was that the instance is a member of the class except 
for the value of a single attribute. Buchanan et al. (1987) refined this notion, and showed 
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Figure 10. Boundary biasing of the training sample. In (a) the data are selected randomly, so they follow the 
whole population. In (b) the data are biased so that instances near the class boundaries are preferred. 

that near misses and "near hits" are both helpful for learning. We suggest generalizing 
the notion still further, so that instead of near misses or near hits, we consider boundary 
concentration, which is the selection of training examples from near the class boundary. 
To implement this, our data generation program weights random selection to define the 
sampling distribution in terms of the class boundary. For example, in "quadratic" sam- 
piing, the distribution decreases with the square of the distance from the boundary. 

Our preliminary experiments to find relationships between accuracy and boundary con- 
centration have supported the results of Winston (1975) and Buchanan et al. (1987). Increasing 
the boundary concentration improved the accuracy. Quadratic (extreme) boundary con- 
centration was better than linear (mild) concentration, which in turn was better than uniform 
distribution (no concentration). Because these results are tentative, we do not report details 
here. 

How useful are such results? In our controlled experiments we could influence the sam- 
ple at practically no cost, but to obtain a desired sample in practice, what resources are 
required? To answer such questions one must consider interactions of training with perfor- 
mance (e.g., Buchanan et al., 1987; Coles and Rendell, 1984; Mitchell, 1978; Sleeman, 
1981). Although some of these studies show how the performance system can improve in- 
stance selection, finding boundary examples may be difficult, sometimes tantamount to 
locating the concept itself. Knowledge about the boundary is particularly complicated when 
the concept is dispersed in instance space, which brings us to another issue. 

5.L 2. Concept dispersion 

When we chose number of peaks p as a measure of concept dispersion in Section 2.3.2, 
we noted that this measure is limited: It does not distinguish peak sizes, shapes, or heights. 
Another measure, the Vapnik-Chervonenkis (VC) dimension 14 has been used to bound the 
number N of examples needed, as a function of the class of concepts to be learned. For 
example, for k-term DNF the best N known for any algorithm varies exponentially with 
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the number of disjuncts k in the actual concept. More precisely, N oc n k, where n is the 
instance space dimensionality. The algorithm having this behavior changes representation 
to k-CNF (Ehrenfeucht et al., 1988; Pitt and Valiant, 1986). 

We can relate this case to ours: Each term of a k-term DNF expression corresponds to 
a disjunct in the output of  a program such as ID3 or PLS1. If  we assume that each o f p  
peaks requires roughly m disjuncts to describe, we need k = m x p terms. The theoretical 
result N oc n k suggests a similar pattern for learning speed: t oc n ~. In contrast, our ex- 
perinaental results for PLS1 appear more optimistic: In Section 4.3.2. we found that for 
fixed n, t oc (Nk) .57. We also saw that to maintain reasonable accuracy, we need to in- 
crease N at least linearly with k, which gives a rough estimate of t oc (ckk) ,57 = C x 

k L2. For large k, however, this estimate is too optimistic; without change of representa- 
tion the problem is known to be NP-hard (Pitt and Valiant, 1986). On the other hand, the 
theoretical upper bound may be too pessimistic if attribute construction is allowed. 

By relating theoretical to experimental results we may profit in other ways. One issue 
is suitable measures for concept complexity. As a general measure, the number of peaks 
is limited, and so is the VC dimension. The VC dimension seems unsuited to practical 
problems because it is not easily measured and does not lead directly to algorithm im- 
provement. Ideally, we wouldlike a measure of concept complexity that is a good predic- 
tor of learning behavior, suitable for theoretical analysis, and directly related to practical 
problems. 

The first two criteria are satisfied by the VC dimension. Are there other measures that 
would retain the analytical benefits but be more suited to practical work? For example, 
algorithms like ID3 have more trouble learning a concept (class membership function) as 
its variability increases, because then the instance space must be "chopped up" to a greater 
extent. This suggests a measure A = the sum (or integral) of the absolute value of the 
differences (or slopes) in the class membership function over the instance space. Hence 
a function having many changes of sign would have a higher A value than a monotonic 
function or a function having only one peak. The empirical results in this paper have been 
based on a simplification of  A: The number of  peaks in a concept is a coarse estimate 
of A because if all the peaks are similar, their number is proportional to A. 

How can one take advantage of a measure such as A? It is straightforward to compute: 
As a by-product of standard empirical learning, one estimate of  A sums the differences 
in the class membership values over adjacent regions (the Appendix describes how induc- 
tion methods partition instance space into regions). Such an estimate is computationally 
inexpensive? ~ An estimate of A is valuable for attribute construction. This measure in- 
dicates the concept dispersion not only in the current instance space, but also in trans- 
formed instance spaces. Because a transformed instance space is the product of attribute 
construction, A can be used to evaluate the process. Such a measure may also be useful 
for theoretical analysis. 

5.2. Chang ing  representat ion to improve concept concentration 

Whereas the previous section focused on measurement, this section considers algorithms. 
In particular, standard induction algorithms learn poorly when the concept is highly 
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dispersed. For such a concept one needs to transform instance space so that the concept 
becomes more concentrated. Concentration improvement can be viewed as the purpose 
of hidden layers (the analogues of new terms) in research on neural networks, whose in- 
puts are only low-level (Barron and Barron, 1988). In contrast, research involving sym- 
bolic techniques also applies domain knowledge, which could be considered "higher-level" 
information. The use of knowledge to transform representations for induction (and the use 
of induction to improve knowledge) is the theme of the following discussion. 

5.2.1. Directly converting knowledge to representational bias 

If  increased concept concentration speeds learning and improves its accuracy, one might 
transform instance space so as to diminish peaks. One simple transformation involves only 
attribute scales: Nominal attributes can be converted to integer. PLS1 does this by trying 
all possible orderings of a nominal attribute's values, and choosing the "best" one. The 
best ordering is the one that gives the least variation in class membership (giving a monotonic 
increase) across the sequence of tentatively ordered attribute values, temporarily ignoring 
other attributes to project the membership function onto the attribute in question. ~6 Find- 
ing the best ordering is probably the reason for PLSI's good behavior in Figure 7(a). 

More generally, decreasing the number of peaks is difficult, though Table 2 specified 
one aspect of concept characterization that we have not used yet: higher-order regularity 
(see Figure 11). Although this characteristic is irrelevant for the systems we have considered, 
it can play an important role in new attribute construction. Instance spaces can be transformed 
into more abstract and useful spaces by exploiting higher-order regularity to relate peaks. 
Because diminishing peaks improves the behavior of inductive systems (Sections 4.2 and 
4.3), peak merging becomes a purpose of attribute construction (Drastal and Raatz, 1989; 
Rendell, 1985, 1988, in press). 

(.) (b) 

Member- 1 Member- | 
ship / ~:~ ship 

Figure 11. Higher-order concept regularity. In (a) the concept seems to be random, whereas in (b) it is more 
regular. A rule describing such regularities may merge and predict peaks. 
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Merging peaks involves "domain invariance." Domain invariance may be expressed using 
rules that merge observed peaks and predict unseen peaks. For example, many games and 
spatial problems exhibit symmetries--invariance of class membership under translation, 
rotation, reflection, and so forth. More specifically, suppose that the primitive instance 
space has peaks at regular intervals of length a, as in Figure 11. If the regularity appears 
along the x axis, a rule that expresses this invariance under translation is u(x) = u(x mod 
a) (where u represents class membership), or more simply, x ~ x mod a (for an analogous 
example in a real problem, see Rendell, 1985). Systems that input such domain invariants 
allow peaks to be grouped together (Rendell, 1988, in press). Some of the peaks may be 
unrepresented by observed data, yet related to observed peaks through the knowledge. 

Constructing new attributes by specifying (partial) knowledge has been shown to im- 
prove accuracy (Drastal, Raatz, and Munier, 1989; Matheus and Rendell, 1989). In fact, 
construction of attributes even without prior knowledge can improve accuracy (Pagallo, 
1989; Pagallo and Haussler, 1988). As yet, however, such phenomena are relatively unex- 
plored. We should explore the tradeoffs among (1) the amount of knowledge given to a 
construction system, (2) the resources consumed by the system, and (3) the improvement 
in learning behavior. Rendell (1986b) reported preliminary studies of this sort. 

5.2.2. Inferring appropriate biases from domain theory 

From the perspective of inductive learning, we might say that the purpose of domain 
knowledge is to speed the search for better attributes (those that diminish peaks in thc 
transformed instance space). The role of knowledge is to constrain attribute construction 
to those attributes that merge and predict peaks (Rendell, 1988, in press). Unfortunately, 
the available knowledge is not always in a form that would merge peaks directly (it is not 
operational). Nevertheless, this idea provides what may be an important link between 
"similarity-based" empirical learning and "explanation-based" analytic learning. In one 
development, Drastal and Raatz (1989) have explored a system that merges peaks through 
inference from domain knowledge. Their scheme also addresses some problems of in- 
complete domain theories. 

With the complication of inference, however, our research problems are compounded. 
Whereas the simpler type of knowledge of Section 5.2.1 directly expresses relationships 
among peaks, knowledge obtained through inference may be irrelevant for peak merging. 
In other words, many correct deductions are useless for the purpose of finding better at- 
tributes for induction. Hence, interplay between the deductive and inductive components 
becomes important, and one issue involves intelligent control of such components. 

6. Summary 

This paper has characterized and investigated the extensive role of data character as a deter- 
miner of system behavior in empirical concept learning. Careful study of data characteristics 
help to clarify their effects. Although we have examined just a cross section of realistic 
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data, our experiments have shown quantitative relationships among data characteristics and 
learning behavior. Our experiments have supported some earlier results and have led to 
some new findings. 

• As Quinlan (1986) showed, although class error (and to a lesser extent, attribute error) 
degrades learning, systems like ID3 and PLS1 can still learn fairly accurately. Never- 
theless, the degree of degradation may depend on other data characteristics, such as the 
size of the concept (Section 4.1). With attribute error, a concept size of 50% leads to 
the poorest accuracy. 

• Concept shape and especially concept concentration have significant effects. Increasing 
the number of peaks from one to twently degrades accuracy by 15% (Section 4.2). With 
large number of peaks, even compensation using proportionately more examples does 
not prevent degradation. 

• In terms of both accuracy and time, learning systems such as ID3 and PLS1 become 
incapacitated when the peaks number in the thousands (Section 4.3). Yet important real- 
world problems exhibit many millions of peaks. Immense numbers of peaks occur when 
good representations are unavailable because humans lack understanding (e.g., protein 
folding) or cannot communicate the understanding (e.g., recognition and generation of 
sounds). 

• Although the probabilistic or information theoretic splitting criteria used by algorithms 
such as ID3 and PLS1 have been considered important, their effects on accuracy are 
small compared with some concept characteristics. Even random splitting degrades accur- 
acy by only five percent (Section 4.4). 

Our basic approach in this paper has been to view concepts as functions. This characteriza- 
tion has yielded some general insights: 

• Considering a concept as a funct ion or surface over instance space leads to a characteriza- 
tion of concept complexity (shape, size, and concentration) that relates both to real-world 
problems and to learning behavior. 

• Characterizing aspects of the concept or function allows artificial data generation, which 
is a valuable tool for exploring learning behavior by allowing controlled experimentation 
(cf. Langley, 1987). 

• Because concept characteristics sometimes interact in unsuspected ways (Section 4.1), 
one must exercise caution when generalizing system behavior from one problem to another. 

• One particularly important characteristic is concept concentration (Section 2.3). Ex- 
periments reported in the literature often use concepts that are highly compact (e.g., having 
just one peak), which are easy to learn. 

• More "primitive," low-level attributes tend to produce class membership functions hav- 
ing many peaks. Because current learning algorithms are limited by the number of peaks 
they can handle, one purpose of constructive induction should be to transform the in- 
stance space so as to merge (and predict) peaks (Drastal and Raatz, 1989; Rendell, 1988, 
in press). 
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Data characteristics determine the behavior of learning algorithms. Empirical study of rela- 
tionships between data characeristics and learning behavior can help discover which aspects 
of algorithms need augmentation. Moreover, appropriate characterization of data may sug- 
gest means for algorithm improvement. 
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Appendix 

To measure the effect of data we used the algorithms ID3 (Quinlan, 1983, 1986) and PLS1 
(Rendell, 1983, 1986a), 17 which we describe here. These two learning systems represent 
a class of splitting algorithms that use probabilistic or information criteria, which have 
many versions and variations (e.g., Breiman et al., 1984; Clark and Niblett, 1989; Gams 
and Lavrac, 1987; Rendell et al., 1988). The reason for using this class of algorithms is 
that they behave well for the conditions investigated here; for empirical comparisons see 
Lavrac et al. (1986), O'Rorke (1982), and Rendell et al. (1988). 

Both ID3 and PLSI input data as attribute vectors. Both systems use probabilistic or 
information criteria to specialize hypotheses, and both represent hypotheses in a similar 
fashion. These programs output a rule or concept to classify unknown instances into one 
of two classes (positive or negative). Some variants, such as ASSISTANT (Gams and Lavrac, 
1987) can learn more than one concept at a time. 

Let us first consider the basic algorithms, and then discuss some of the variants. In these 
systems the entire space of possible instances begins as a single general description. The 
space is then split into two or more parts--those that have a greater likelihood of contain- 
ing positive instances, and those that have a greater likelihood of containing negative in- 
stances. The splitting continues (using one attribute for each split) until some stopping 
criterion is satisfied. At each step, the attribute is chosen according to some probabilistic 
or information-theoretic standard. 

As an example of the operation of ID3 or PLS1, if (small, triangle, red) were given as 
a negative instance of "toy ball," and (large, round, red) were a positive instance, then 
the instance space would be split in either the size or the shape dimension (see Figure 
2). Since the algorithms normally consider one dimension at a time, instance space is par- 
titioned into orthogonal hyperrectangles. The partition is refined until the differences in 
class membership probabilities no longer warrant any more splitting. 

The ID3 algorithm 

First we describe a basic version of Quinlan's (1979) original program, which continues 
splitting until the class membership probabilities are zero or one. This system represents 
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a concept or rule as a decision tree. Each interior node of the tree is associated with one 
attribute; each arc leaving a node represents a value of an attribute (see Figure 2). The 
leaf nodes, which represent conjunctions of attribute values, are labeled as positive (+) 
or negative ( - ) .  

The tree-building algorithm begins with some training set of instances and compares 
the information measures of each attribute for the set. The attribute having the largest score 
becomes the label of the root node. For each attribute value, an arc is drawn from the 
root and labeled with this value. This process is then repeated at every intermediate node, 
until each node of the resulting partition is "pure" (i.e., has instances that are all " + "  
o r  all " - " ) .  The basic learning algorithm is shown in Table 4. 

Table 4. Two algorithms for partitioning instance space. 

Let S be a set of n training instances. 

Procedure ID3 (S) 

While there are any exceptions in the decision tree, 
Select an impure node r. 
For each attribute x, 

Compute the value of the dissimilarity (information) criterion d (S, x); 
For the attribute x having the highest value of d, 

Extend the tree from node r by drawing arcs labeled with the values of x. 
Return the resulting tree. 

Procedure PLS1 (S) 

Initialize the region set R as the minimal region outlining S. 
While regions exist whose splitting remains unexplored, 

Select from R an untried region r. 
Let dbest be 0 (initialize the stopping criterion). 

Choose a trial set of hyperplanes evenly-spaced and oriented with the axes 
(the trial set can be exhaustive or spaced out). 

For each trial hyperplane H, 
Use H tentatively to split r into two subregions r~ and r2. 
Compute the dissimilarity d(H). 

If d(H) > dbest , 

Let dbest be d(H) and 

Record the information required to reproduce the split; 

If dbess is greater than 0, 

Make the best split permanent. 
Add the new regions rl and r2 to the set R. 

Return the resulting region set R (which is a piecewise-constant estimate 
of the class-membership function). 
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ID3 is quite fast? 8 Contributing to the speed of ID3 during classification and learning 
is the information criterion d, which tends to pick the "best" or most dissimilar splits, 
economizing data and minimizing attribute testing. For example, although there are a total 
of three attributes in Figure 2, a sufficient decision rule is a tree just two levels deep. Such 
a tree results from using the information criterion d, which can be defined by the expression: 

V ~ Pji ~Pji~ 
d(x) = - ~ Pj PTJ log2 

j = l  i=1 ~,- Pi -) 

where Pj is the prior probability that attribute x has t h e f  h value, Pi is the prior pr0babil- 
ity that an example belongs to the i th class, and Pji is the probability that an example with 
t h e f  h value ofx belongs to the i th class. The values actually used are probability estimates 
from the training sample S. 

The basic algorithm has been extended and modified in various ways. For example, when 
the number of instances is very large, a random subset or "window" helps to speed learn- 
ing in some cases (Quinlan, 1983). The basic algorithm is given an initial window, and 
an overseeing algorithm retains exceptions to the window. The system then adds these ex- 
ceptions to a new random sample to form a new window. This procedure is repeated until 
there are no exceptions to the rule. In the version of ID3 that we test in this paper (C4), 
this entire process is repeated ten times, and the tree with the smallest number of nodes 
is selected. 

Other improvements of ID3 extend its applicability. Although the original program was 
designed for nominal attributes only, recent derivatives allow ordinal scales (Quinlan, 1986). 
Another extension permits the classification of instances into probability classes instead 
of pure binary classes (Quinlan, 1987a). Still another modification incorporates a measure 
of confidence in the splitting criterion d for dealing with uncertain data, based on the chi- 
square statistic (see Quinlan, 1986). These last two additions make ID3 similar to PLS1. 

The PLS1 algorithm 

The probabilistic learning system PLS1 consists of several components (Rendell, 1983, 
1986a), one of which partitions instance space like ID3. Here we apply the name "PLSI" 
just to that module. 19 The algorithm accepts instances of known class membership, and 
based on their frequency, divides the instance space into mutually exclusive regions or "pro- 
bability classes." As shown in Figure 12, this representation is a piecewise constant ap- 
proximation (c) of the general (graded) class membership function (b). For classification, 
(c) can be converted to a Boolean (logic) representation (a) or to a decision tree that orders 
attributes like ID3. 

Like ID3, PLS1 also uses specialization. It represents input instances as points in a k- 
dimensional space and creates orthogonal hyperrectangles by inserting boundaries parallel 
to instance space axes. Each hyperrectangle r is annotated with two values: (1) the prob- 
ability u of finding a positive example within r, 2° and (2) an error measure e of u. These 
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(o) (b) (c) 

i 

o xj o 
o "~," 

Xl 

Figure 12. Alternative concept representations over a one-dimensional instance space. (In general this space is 
multidimensional.) In (a), the concept is assumed to be binary-valued; in (b), it is graded or probabilistic; in 
(c), it is approximated for easy learning. 

annotated hyperrectangles (r, u, e), called regions, are like nodes of a decision tree annotated 
with probability and error measures (see Figure 2 and compare Quinlan, 1987a). PLS1 
allows disjunctive concepts in a manner similar to later verions of  ID3. 

Also like ID3, PLS1 chooses boundaries based on an informed splitting criterion. If  ul 
and u2 are the two class membership probabilities for a tentative region dichotomy, with 
el and e2 their error factors, then the dissimilarity is 

d = Ilog Ul - log u21 - t x log(el e2). 

The constant t > 0 expresses the degree of confidence. One source of  error is the finite 
sample size n of training instances: the error factor e varies as 1 + l / v~, where n is 
the sample size of  a region. Larger values of d mean more assured dissimilarity. The 
dissimilarity measure d is also a stopping criterion whose effect can be compared to that 
of the chi-square statistic in some versions of ID3 (Quinlan, 1986). Table 4 summarizes 
the PLS1 algorithm, which is much like ID3 in terms of expected speed, zl 

Abbott (1987), Rendell (1986b), and Rendell et al. (1989) have compared PLS1, ID3, and 
related algorithms. If  we compare ID3/C4 and PLS1 in light of Figure 2, we see that the 
two algorithms are similar, although they differ in some striking ways. For example, the 
splitting criteria are different. Also C4 prunes its decision tree to eliminate noise, whereas 
PLS1 faces that problem by splitting only if the statistical significance is high (and never 
prunes). These differences suggest that running ID3/C4 and PLS1 on the same data may 
improve our perspective about the effects of system design versus data character. Section 
4 reports the results of  such runs. 

N o ~ s  

1. Complexity analysis of  algorithms such as ID3 and PLS1 shows that their speed depends linearly on the 
product of the number of  data, the number o f  attributes, and the number of  disjuncts in the output concept 
(Quinlan, 1983; Rendell, 1983). 
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2. Our approach favors concepts expressed in disjunctive normal form (DNF). We picture an instance space 
with conjunctions representing local regions, and disjunctions collecting sets of regions. In contrast with 
conjunctive normal form (CNF), we could say that DNF gives a "spatial" or "human" representational bias 
(Lakoff and Johnson, 1980). 

3. An important issue is change of representation involving new attributes. A new representation would result 
in a different function over a different description space (see Rendell, 1988, in press). 

4. "Neighborhood" is a standard term in calculus and measure theory. The neighborhood of a point comprises 
the points close to it, given some notion of distance. 

5. Uneven distributions of positive versus negative examples can also occur in learning evaluation functions. 
For example, PLS1 learned an evaluation function H to solve new problems (Rendell, 1983). Since H tended 
to improve search, it naturally favored the production of positive examples, which were then used in another 
(more focused) round of learning. The training sample became biased toward positive instances of the concept. 

6. PLS1 is a complex system (Rendell, 1983), part of which corresponds to ID3; here we call just that part PLS1. 
7. Rendell et al. (1989) speak of specialization algorithms as those that start with the whole instance space and 

proceed to partition it into more refined pieces (decision tree nodes or instance space regions). In contrast, 
generalization algorithms start with positive examples as seeds and extend them to other positive examples. 
If one views induction as clustering (of class membership probabilities), specialization algorithms split whereas 
generalization algorithms agglomerate (Anderberg, 1973). 

8. Specialization or splitting algorithms are faster because they do less computation. They simply chop up the 
instance space, leaving a partition whenever they stop. In contrast, when generalization algorithms extend 
positive examples (seeds), they need to avoid negative examples, which is expensive. After extension of several 
seeds, additional computation ensures a partition (non-redundancy). Comparing well-known generalization 
algorithms with their counterpart specialization algorithms results in remarkable differences, as shown and 
discussed by Rendell et al. (1989). 

9. Variations on the basic accuracy measure include different weightings for a "false positive" (incorrectly classi- 
fying a negative instance as a positive one) versus a "false negative" (incorrectly classifying a positive in- 
stance as a negative one). These distinctions can be important in critical applications such as disease diagnosis. 

10. An error figure of x% in Figure 5(b) means attribute values were corrupted as follows: First, a random sam- 
ple of x% of the instances was selected. Then, for each of these instances, a random number of attributes 
was chosen, each of whose values was replaced with a random value within the allowed range (which might 
have been the correct value). 

11. Clark (personal communication) has formally related attribute error to class error. 
12. Except for the fact that most experiments have involved binary concepts, there is no compelling reason to 

convert graded data values to binary. In other words, the instances could have graded class membership, 
but we have not investigated this case. 

13. Note that this assessment concerns accuracy only. Since this paper was originally submitted, Mingers (1989) 
has shown a related result. With respect to conciseness, our experiments do not assess the splitting criterion, 
which reduces the size of the concept expression (Mingers). Conciseness can speed learning, especially in 
incremental situations. 

14. The VC dimension of a class of concepts {H} in hypothesis space X is the largest d such that there exists 
a set S ~_ X of size d, so that for all T c S, some concept in {H} describes T consistently and completely. 

15. Using an even cheaper estimate of concept dispersion, our programs are currently computing the sum of 
absolute differences between the mean class membership and the membership value of each region. 

16. Becaue PLS1 orders attribute values one attribute at a time, the cost increases only linearly with the number 
of attributes. Unfortunately the effectiveness of this simple technique decreases as the number of peaks in- 
creases, because multiple peaks interfere with the one-dimensional method used by the program. The order- 
ing algorithm is also limited in another way: Trying all possible orderings of an attribute's values becomes 
expensive as the number of values increases, because permutations increase factorially. 

17. PLS1 is actually a set of algorithms, one of which was said to "cluster" because it clustered uniform values 
of probabilities. To simplify, we simply call the clusterer PLS1. 

18. The outermost loop is repeated once for each of the m nodes in the final tree. The next loop is repeated 
for each of the k attributes. Finally, the time for the computation of criterion d varies linearly with the number 
of instances n. Hence the overall time complexity is O(kmn). 
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19. The full version of PLS1 is designed for incremental or dynamic learning (Rendell, 1983). It performs various 
operations, including updating and refinement of probability estimates. 

20. The true probability u is approximated by count ratios of the number of positive instances in a hyperrectangle 
to the total number of instances in that hyperrectangle. 

21. PLS1 has a time complexity of O(kmn), where k is the number of attributes, m is the final number of regions, 
and n is the number of instances. 
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