
Machine Learning, 5, 299-348 (1990)
© 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Problem of Expensive Chunks and its Solution
by Restricting Expressiveness

MILIND TAMBE, ALLEN NEWELL
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

PAUL S. ROSENBLOOM
Information Sciences Institute, University of Southern California, 4676Admiralty Way, Marina del Rey, CA 90292

Editor: Jack Mostow

Abstract. Soar is an architecture for a system that is intended to be capable of general intelligence. Chunking,
a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items
of information, called chunks, based on the results of problem-solving and stores them in the knowledge base.
These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to deter-
mine them. It is already well-establiShed that chunking improves performance in Soar when viewed in terms
of the subproblems required and the number of steps within a subproblem. However, despite the reduction in
number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due
to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge
base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's
performance.

In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose
a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the represen-
tational language to guarantee that the chunks formed will require only a limited amount of accessing effort.
We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support
our analysis.

Keywords. Soar, chunking, explanation-based learning, expensive chunks, restricting expressiveness, utility
of learning

1. Introduct ion

The goal o f the Soar pro jec t is to build a system capable of genera l intel l igent behavior

and autonomous existence (Laird, Newel l , and Rosenbloom, 1987). One central hypothesis

is that chunking (Laird, Rosenb loom, and Newel l , 1986), an e lementary exper ience-based

learning mechan i sm, can form the basis of a general learning mechan ism. Soar uses a pro-

duct ion system (rule-based system) to encode its knowledge base. Chunking creates new

productions (chunks), based on the results of problem-solving, and adds them to the produc-

t ion system. These chunks then fire in appropr ia te later situations, direct ly producing a
result in situations which once required problem-solving to determine. This chunking process

is a form of explanation-based learning (EBL) (DeJong and Mooney, 1986; Mitchell , Keller,

and Kedar -Cabel l i , 1986; Rosenb loom and Laird, 1986).
It is a l ready wel l -es tabl ished that chunking improves pe r fo rmance in Soar when v iewed

in terms of the subproblems requ i red and the number of steps wi th in a subprob lem (Steier,

300 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

et al., 1987). However, despite the reduction in number of steps, there may sometimes be
a severe degradation in the total run time. This problem arises due to expensive chunks,
i.e., learned productions that consume large amounts of processing in the match. In the
worst case, matching expensive chunks is NP-hard (Tambe and Newell, 1988). Expensive
chunks pose a major problem for Soar, since in their presence, no guarantees can be given
about Soar's performance.

This article is an investigation into expensive chunks. 1 We establish that expensive chunks
exist and analyze their causes. This analysis reveals that expensive chunks are formed due
to particular representations of tasks in Soar. We then present a solution to the problem
of expensive chunks. The solution guarantees that chunking will create only cheap, i.e.,
inexpensive chunks, with a linear bound on the match. The central notion in the solution
is to restrict the expressiveness of Soar's production system, so as to prohibit those task
representations that lead to expensive chunks. As a result, tasks have to be encoded with
a less expressive production system language. Thus, we trade off some amount of expres-
siveness for a guarantee of inexpensive chunks. /

Concern about degradation in performance due to learning has appeared widely in the
EBL literature (Iba, 1989; Keller, 1987; Markovitch and Scott, 1988; Minton, 1985; Minton,
1988a). Various approaches have been used to deal with this degradation, most focusing
on some form of a cost-benefit analysis of the learned material. In contrast, the overall
goal of this work is to achieve the safety of chunking, where safety of chunking is defined
as a guarantee that chunking will not degrade Soar's performance. To do this, our solution
for expensive chunks focuses on reducing the cost of chunks to a negligible level. Though
the solution provides no explicit guarantees about the benefits of chunking, empirical and
analytical case studies of several tasks suggest that the solution does help Soar obtain per-
formance benefits via chunking.

This article is organized as follows: Section 2 establishes that expensive chunks exist.
Section 3 provides background information about Soar and its production matcher. Section
4 uses the background material to decompose the causes of expensive chunks into two com-
ponents. Section 5 presents the solution for expensive chunks based on restricting expressive-
ness. Section 6 analyzes the tradeoffs involved in adopting the solution. Section 7 provides
detailed experimental results bearing on expensive chunks. Section 8 presents a discussion
of some issues related to expensive chunks. Section 9 discusses the relevance of this research
to other research efforts. Finally, Section 10 summarizes the results and discusses the open
issues remaining for future work.

2. The problem of expensive chunks

The problem of expensive chunks is Soar's particular version of a more general problem:
the high cost of accessing learned knowledge in problem-solving systems (Minton, 1988a).
This accessing cost arises from testing the applicability of the learned knowledge in a
problem-solving situation. In the extreme, testing the applicability of a piece of learned
knowledge can be so expensive that a problem-solver may slow down with learning, a clearly
undesirable effect.

To analyze this problem in the context of Soar, we need to separate out various aspects
of what happens to Soar's performance with learning. Intelligent systems such as Soar,

THE PROBLEM OF EXPENSIVE CHUNKS 301

that are based on symbolic architectures (Newell, Rosenbloom, and Laird, 1990), partition
the complete system into two domains. Above the architecture is the cognitive domain of
flexible symbol processing. Below the architecture is the implementation domain of fixed
computational processes. In Soar, the cognitive domain consists of problem space search.
It is a symbolic process that can itself be controlled by further symbol processing, i.e.,
the problem space search can be controlled using search control knowledge. The implemen-
tation domain, on the other hand, performs production match, i.e., it tests applicability
of the productions in the knowledge base. Production match is a fixed process that runs
to completion unaffected by the knowledge in the cognitive domain, i.e., search control
is unavailable in the implementation domain.

Thus, the computations in the cognitive and implementation domains are quite distinct.
Analogously, the phenomena in these domains that arise out of chunking are also qualitatively
different in nature. Therefore, it is useful to partition the effects of learning on task perform-
ance in the two domains into two different effects: the cognitive effect (in the cognitive
domain) and the computational effect (in the implementation domain). The cognitive effect
is the change in the number of cognitive operations required to perform the task. The com-
putational effect is the change in the amount of time required to perform the individual
cognitive steps. For Soar, the cognitive effect of chunking is the change in the number
of (right-hand-side) actions of productions that are executed, since actions are the smallest
cognitive operations. The computational effect of chunking is the change in the time required
per action that is executed. The implementation domain performs production match for
each action in the cognitive domain. This match computation per action in the implementa-
tion domain cannot be terminated or altered by the addition of any amount of knowledge
in the cognitive domain. Therefore, it is important to bound the match computation per
action to guarantee the performance of the system. This constraint gives rise to the notion
of an ideal computational model, which says that the time per action should be constant.
This ideal computational model relates back to our goal of safety of chunking--achieving
a constant time per action implies that chunking has not added any match cost. The compu-
tational effect is then a measure of the amount of distortion in the ideal computational model
due to chunking.

Table 1 shows the effects of chunking for eight tasks implemented in Soar (a description
of these tasks and the representations used in solving them appears in Appendix 1). Column
1 gives the cognitive effect for the eight tasks. It is defined as the number of actions before
chunking divided by the number of actions after chunking, i.e., the speedup, in number
of actions, achieved due to chunking. Column 2 gives the computational effect, defined
as the time-per-action before chunking divided by the time-per-action after chunking. Ideally
the computational effect should be unity. Note that in calculating both the computational
and cognitive effects, the before-chunking quantity is in the numerator and the after-chunking
quantity is in the denominator. Thus, if the cognitive effect and the computational effects
are multiplied, they provide the speedup in total match time. Column 3 gives this speedup
in total match time. Column 4 gives the number of chunks added to the system in the course
of the run. These measurements were done on Soar/PSM-E (Tambe, et al., 1988), a system
that uses a highly optimized implementation of the Rete matcher, based on OPS83 software
technology (Forgy, 1984)?

302 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

Table 1. Effects of chunking on performance.

Task Cognitive Computational Total Number of
Effect E ffec t Speedup Chunks

Eight-puzzle 6.53 0.15 0.99 11
2-Queens 5.21 0.06 0.32 3
Grid 13.54 0.06 0.85 14
Magic-square 6.59 0.04 0.25 5
Syllogisms 11.59 0.89 10.27 10
Monkey and 6.20 0.83 5.16 4
Bananas

Walerjug 9.13 0.57 5.22 11
Farmer 11.09 0.45 5.04 14

In all the tasks, chunking causes a large cognitive effect, i.e., it provides a big speedup
in the number of actions. However, for the tasks in the upper half of the table, i.e., the
Eight-puzzle, 2-Queens, Grid, and Magic-square, the speedup in terms of total match time
is less than 1--the match time has actually increased after chunking. For instance, the Magic-
square task shows a total speedup of 0.25, i.e., a four-fold slowdown after chunking. This
anomaly occurs because of the computational effect, which shows that the time per action
for these four tasks has increased by as much as a factor of 25 (for the Magic-square).
For other tasks, e.g., Syllogisms, Monkeys and Bananas, Waterjug, and Farmer, the speedup
in terms of the number of actions due to chunking is followed by a concomitant speedup
in the total match time.

Thus, despite the optimized implementation, matching a few chunks causes a very large
increase in time per action in some tasks, causing a gross violation of Soar's ideal compu-
tation model. These chunks are called expens ive chunks 4 The slowdowns caused by expen-
sive chunks come from the large (combinatorial) match effort for individual chunks, rather
than the number of chunks, or combinatoric firings of chunks. As shown later in this paper,
in the set of tasks examined, this large match effort in the expensive chunks is due to the
complexity of the match process rather than the total number of conditions in the chunks.
Expensive chunks occur in the Eight-puzzle, 2-Queens, Grid, and Magic-square tasks, while
the chunks in the other tasks are relatively cheap.

In Table 1, the four tasks containing cheap chunks are typical of cheap-chunks tasks.
The four expensive-chunks tasks in Table 1 were the only ones found that exhibit expensive
chunks, out of several dozen tasks in the history of the Soar project (Steier, et al., 1987).
Thus, expensive chunks do not occur often? But when they do occur, they clearly pose
a big performance penalty for the system.

Problems similar to expensive chunks can also arise in hand-coding of productions (recall
that chunks are not hand-coded, they are learned productions). The analysis presented here
applies to such hand-coded productions as well. However, hand-coding allows the flexibility
of a detailed analysis of the problem; the programmer involved may then restructure the task

THE PROBLEM OF EXPENSIVE CHUNKS 303

or rewrite the productions to remove inefficiencies (Brownston, Farrell, Kant, and Martin,
1985; Steier, 1986). Therefore the issues of expensive productions are not (and have not
been) as imperative in hand-coding as they are in an automated process like chunking.

3. Background

The first subsection below presents a brief overview of Soar. This overview helps to ground
the discussion of expensive chunks in the following sections. The overview is divided into
three portions describing the performance system, the non-penetrability of memory assump-
tion, and the chunking mechanism. Readers familiar with these issues may wish to skip
this overview. The second subsection presents a simple model of Soar's production matcher--
the k-search model--to free the analysis of expensive chunks from the complexities of the
implementation.

3.1. Soar 6

Soar is based on formulating all symbolic goal-oriented processing as search in problem
spaces. The problem space determines the set of states and operators that can be used during
the processing to attain a goal. The states represent situations. There is an initial state,
representing the initial situation, and a set of desired states that represent the goal. An
operator, when applied to a state in the problem space, yields another state in the problem
space. The goal is achieved when a desired state is reached as a result of a sequence of
operator applications starting from the initial state.

Each goal defines a problem-solving context. A context is a data structure in Soar's work-
ing memory--a short-term declarative memory--that contains, in addition to a goal, roles
for a problem space, a state, and an operator. Problem solving for a goal is driven by the
acts of selecting problem space, states, and operators for the appropriate roles in the context.
Each such deliberate act of the Soar architecture is accomplished by a decision cycle that
consists of two phases: an elaboration phase and a decision phase.

The elaboration phase proceeds in synchronous cycles. During each cycle of the elaboration
phase, all of the productions in the production memory--a long-term procedural memory--
are matched against working memory, and then all of the resulting production instantiations
are fired. The net effect of these production firings is to add information to working memory.
New objects are created, new knowledge is added about existing objects, and preferences
are generated.

There is a fixed language of preferences, which is used to describe the acceptability and
desirability of the alternatives being considered for selection. By using different preferences,
it is possible to assert that a particular problem space, state or operator is acceptable (i.e.,
should be considered for selection), rejected (i.e., should not be considered for selection),
better than another alternative, etc. When the elaboration phase reaches quiescence--that
is, no more productions can fire--the second phase of the decision cycle, the decision pro-
cedure, is entered. The decision procedure is a fixed body of code that interprets the prefer-
ences in working memory according to their fixed semantics. If the preferences uniquely

304 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

specify an object to be selected for a role in a context, then a decision can be made, and
the specified object becomes the current value of the role. The decision cycle then repeats,
starting with another elaboration phase.

If, when the elaboration phase reaches quiescence, the preferences in working memory
are either incomplete or inconsistent, an impasse occurs in problem solving because the
system does not know how to proceed. When an impasse occurs, a subgoal with an associated
problem-solving context is automatically generated for the task of resolving the impasse.
The impasses, and thus their subgoals, vary from problems of selection (of problem spaces,
states, and operators) to problems of generation (e.g., operator application). Given a subgoal,
Soar can bring its full problem-solving capability and knowledge to bear on resolving the
impasse that caused the subgoal. In this reflective process, Soar can access all of the struc-
tures in working memory and fire all of the productions which match this working memory.
However, it cannot directly examine the production memory. Productions are compiled
code, which is inaccessible, i.e., the production memory is non-penetrable. (This constraint
has a major impact on the solution to the expensive chunks problem.) When impasses occur
in the course of resolving other impasses, then subgoals occur within subgoals, and a goal
hierarchy results.

Chunking is Soar's sole learning mechanism. It acquires new productions, called chunks,
that summarize the processing that leads to results of subgoals. Chunking only creates new
productions; it does not delete, modify, or replace productions. The actions of the chunk
are based on the results of the subgoal. The conditions of the chunk are based on those
aspects of the goals above the subgoal (the supergoals) that are relevant to the determina-
tion of the results. Relevance is determined by using the traces of the productions that fired
during the subgoal. Starting from the production trace that generated the subgoal's result,
those production traces that generated the working-memory elements in the condition
elements are found, and so on, until elements are reached that exist in the supergoals.

An example of this chunking process is shown schematically in Figure 1. (This is a highly
simplified example of chunking. See (Laird, Rosenbloom, and Newell, 1986) for more de-
mils.) The circled letters are objects in working memory. The two vertical bars mark the
beginning and ending of the subgoal. The objects to the left of the first bar (A, B, C, D,
E, and F) exist in the supergoals. The objects between the two bars (G, H, and I) are inter-
nal to the subgoal. P1, P2, P3 and P4 are production traces; for example, production trace
P1 records that a production fired which examined objects A and B and generated object G.
The highlighted production traces are those that are involved in the backtracing process.

Chunking in this figure begins by making the result object (J) the basis for the action
of the chunk. The condition finding process then begins with object J, and determines which
production trace produced it--trace P4. It then determines that the conditions of trace P4
(objects H and I) are generated by traces P2 and P3, respectively. The condition elements
of traces P2 and P3 (objects C, D, E and F) existed in the supergoals, so they form the
basis for the conditions of the chunk. The resulting chunk is:

C & D & E & F ~ J

(In the actual chunking process, the objects C, D, E and F would be included in the
conditions of the chunk after some variabilization.) Once a chunk has been learned, the

]'HE PROBLEM OF EXPENSIVE CHUNKS 305

O
Q
C)

~ p

P~ ©

Figure 1. Schematic view of the chunking process in Soar.

new production will fire during the elaboration phase in relevant situations, directly pro-
ducing the required information. No impasse will occur, and problem solving will proceed
smoothly. Chunking is thus a form of goal-based caching that avoids redundant efforts by
directly producing a result that once required problem-solving to determine.

3.2. Modeling Soar's production match

The k-search model of production system match algorithms is based on the notion of tokens,
i.e., partial instantiations of productions. Tokens indicate what conditions have matched
and under what variable bindings. They allow analysis of expensive chunks independent
of the complexities of the physical machine or match algorithms typically used in produc-
tion systems.

Consider the production shown in Figure 2(a). (This is not a real Soar production. See
Figure 6 for an example of a real Soar production.) The production contains three condi-
tion elements (CEs or conditions) and one action. In the figure, up-arrows (^) indicate
attribute names and angled brackets (< >) indicate variables. Figure 2(b) shows the working
memory in the production system. The working memory describes the directed graph shown
in Figure 2(c). Note that the conditions in the production contain variables (<x>, <y>,
etc.) or constants, while working memory elements (or WMEs) can only contain constants
0B, C, etc.). The production in Figure 2(a) cannot be instantiated for the working memory
in Figure 2(b), since there is no match for the first CE.

Now, suppose the WME (cu r r e n t - p o s i t i on B) iS added to the system. The production
will now match the working memory. While matching the production, tokens will be gener-
ated, some of which are: (2; <x> = B, <z> = C), (2; <x> = B, <z> = D), etc. The first number
in the token indicates the number of CEs matched and the other elements indicate the

306 M. TAMBE, A. NEWELL AND P.S, ROSENBLOOM

(Production::Length-2

(current-position <x>)

(point <x> ^connected-to <z>)

(point <z> ^connected-to <y>)

-->

(write exists-path of lenqth 2 from <x> to <y>))

(a)

C
/** The workinq memory * * /

{point B ^connected-to C)]

(point B ^connected-to D)

(point B ^connected-to E)

(point C ^connected-to A}

(point D ^connected-to A) A \

(b) (c)

D1 <
Figure 2. An example production system: (a) a production, (b) working memory, (c) the directed graph described
by the working memory.

bindings for the variables. Thus, the first token shows that the first two condition elements
were matched with the bindings B for variable <x>, and ¢ for variable <z>.

The tokens generated in the match can be represented in the form of a match tree, as
shown in Figure 3 (at every stage only the additional variable bindings are shown). This
match tree represents the search conducted, using tokens, by the matcher in order to match
the production. Since this search is done in the production system, i.e., in the knowledge
base, it is called k-search, in order to distinguish it from problem space search.

Measurements on Soar/PSM-E (Tambe, et al., 1988) indicate that the time spent in match
per token is approximately constant. 7 Therefore, for Soar productions, the number of tokens
in the k-search tree is a reasonable estimate of the work done in performing match.

CEI

<x> = B

CE2

<z> = C

CE3

Figure 3. The match tree of tokens generated when the production in Figure 2(a) matches the working memory
in Figure 2(b).

THE PROBLEM OF EXPENSIVE CHUNKS 307

The k-search model extends to various match algorithms such as Rete (Forgy, 1982),
Treat (Miranker, 1987; Nayak, Gupta, and Rosenbloom, 1988), and Oflazer's algorithm
(Oflazer, 1987). There are two important optimizations done in these matching algorithms--
sharing and state saving. Sharing common parts of CEs in a single production or across
different productions reduces the number of tests required to do match. We do not do model
sharing, since in practice, the effect of sharing has turned out to be quite limited (a factor
of 1.1 to 1.6) both for hand-coded productions (Gupta, 1986; Miranker, 1987), and for learned
productions (Tambe, et al., 1988). State saving accumulates partially completed k-search
from previous decision/elaboration cycles for use in future cycles. Even if the WMEs
generated in a cycle fall to match a production, the resulting k-search is saved. Thus, if
a new WME is added in a new cycle, only the new WME has to be matched; the k-search
from the previous cycles is not repeated. Typically, once the production fires, the state
accumulated from previous cycles gets removed. The next firing requires a different
k-search? Therefore, performing k-search on each production in isolation, for every firing
of a production, appears to be a reasonable way of modeling the activity of matching a
production.

As shown in (Tambe and Newell, 1988), there are two key characteristics of k-search
(as performed in Rete, Treat, and Oflazer's algorithm):

1. K-search does not allow heuristics.
2. K-search finds all possible solutions.

Thus, the matcher performs an exhaustive search to find all possible ways in which a pro-
duction can match working memory. The number of tokens in the k-search tree generated
in this process determines the cost of a production (chunk). Consider a k-search tree of
depth D and a constant branching factor of B. The cost of this k-search tree in tokens is:

Cost

D

=~_~ B k > B D t o k e n s
k = l

Thus, the cost of this k-search tree is exponential in the depth D. A chunk with such
a k-search tree is clearly an expensive chunk, since it consumes a large match effort (for
large B and D).

4. Expensive chunks: The contributing factors

The previous section showed that the cost of matching a chunk is determined by the number
of tokens in the k-search tree generated during the match. An expensive chunk generates
a large number of tokens in the k-search tree. Two factors determine the number of tokens
in the k-search tree--the height of the k-search tree and the branching of the k-search tree.
An expensive chunk has a tall, branchy k-search tree. In this section, we look at these
factors in detail.

308 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

4.1. Height of k-search tree

The height of the k-search tree is determined by the size of the footprint, where a footprint
is defined as the set of WMEs in the supergoals examined during processing in a subgoal.
These WMEs (after variabilization) form the conditions of the chunk that results from solving
the subgoal. Thus, the size of the footprint determines the number of conditions in a chunk,
which in turn determines the height of the k-search tree. Although the footprint size can
have a big impact on the cost of a chunk (as shown in the example below), overall, the
footprint size explains only a minor part of the expensive chunks phenomenon.

An example demonstrating the effect of the footprint can be found in the Eight-puzzle
task. The representation used for this task is described in Appendix I. It has eight numbered
tiles in a 3×3 frame with one blank cell. There is a single general operator to move adja-
cent tiles into the blank cell. For a given state, an instance of this operator is created for
each of the cells adjacent to the blank cell. This gives rise to an impasse to select the appro-
priate instantiated operator to apply next. To resolve the impasse, the instantiated operators
are evaluated in a subgoal using comparison of the tiles in the current state and the desired
state. This evaluation is used in selecting the operator to apply next. (The evaluation scheme
used is that if an operator moves a tile into its location in the desired state, it is given a
positive evaluation; if it moves a tile out of its location in the desired state, it is given a
negative evaluation; otherwise it is evaluated as zero.) Thus, to decide the better of two
instantiated operators, the problem-solver examines the tiles in the current and desired states
for both the operators. This creates a big footprint, given the representation used, since
the current state and desired state form part of the supergoal. Figure 4(a) shows the evalua-
tion of one of the instantiated operators. The operator is indicated by an arrow (~) . The
figure shows how the tile to be moved (tile 2) is compared in the current and desired state.
A similar comparison and evaluation is performed for the second instantiated operator.
The big footprint generated via the two evaluations leads to a large number of CEs in the
chunk (34), causing the chunk to be expensive, with a computational effect of 0.15 (recall
from Section 2 that a low computational effect implies a big increase in time per action
with chunking).

compare

I I
1 2 3 1 2 3

6 4 8 4 oper

8 7 5 7 6 5

Current state Desired state

(a)

in-place

I

1 2 3

6 4 e p e r

o u t - o f -
place ---- 8 7 5

Current state

(b)

Figure 4. The footprint for the Eight-puzzle (a) when comparison of tiles in the current and desired state for eval-
uating an operator is required and Co) when a comparison of the tiles with the desired state is not required (in-place
and out-of-place augmentations for only two of the tiles shown).

THE PROBLEM OF EXPENSIVE CHUNKS 309

Computational

Effect

1.0

0.9

0.8

0.7 -

0.6-

0.5-

0.4

0.3

0.2

0.I

B S

W

F

GQ
M

ii0 I I I I I
25 20 25 30 35

Averaqe number of conditions per chunk

Z - Zlght--puzzle
- 2-Queenm

G - Grid
M - ~agic-sq~are
S - Syllogism

B - Monkey and
Bananas

W - Waterjug

F - Parmer

Figure 5. Average number of conditions in the chunks formed in various tasks (on the x-axis) and their correspond-
ing computational effects (on the y-axis). The expensive-chunks tasks are highlighted.

The representation of the Eight-puzzle can be changed, such that explicit in-place and
out-of-place augmentations (attributes) are used to describe the position of each tile relative
to the desired state? Thus for any given state, the in-place or out-of-place status of each
tile is known; and it is updated after every move by an explicit comparison with the desired
state. Therefore, the operator selection does not always require an examination of the desired
state. For instance, as shown in Figure 4(b), evaluation of the operator moving tile 2 does
not require a comparison with the desired state--the operator is moving tile 2 out of its
location in the desired state. For evaluating this operator, the chunk formed includes only
the in-place augmentation of the current-state tile in its conditions; it does not include the
conditions for the corresponding tiles from the desired state. This reduction in the size
of the footprint reduces the cost of the chunks. With this changed representtion, the same
number of chunks are added, but the average number of CEs in the chunks reduces from
34 to 22 and the computational effect increases from 0.15 to 0.25, i.e., the slowdown is
lessened.

Figure 5 graphically depicts the relation between the number of conditions in the chunks
and the computational effects for the tasks from Table 1. It shows that tasks with larger
footprint size (more conditions per chunk) tend to be the expensive-chunks tasks (with low
computational effects), but not always. On average, expensive chunks have a somewhat larger
footprint size (23.2 CEs) than cheap chunks (18.2 CEs). However, this separation in the
average footprint size is quite small (this small separation is also reflected in Figure 5)
indicating that the footprint explains only a minor part of the expensive-chtmks phenomenon.

4.2. Branching of the k-search tree

The branching of a production's k-search tree is a function of the number of WMEs that
match each condition and the amount of constraint provided by the variable tests. All the
WMEs in Soar's production system are a priori candidates to match a condition. This match

310 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

would lead to a k-search tree with a number of tokens greater t h a n / ~ M E s c°nditi°ns. How-
ever, constants and variables bound in the conditions prior to the current condition can
provide a strong filter on the set of WMEs that can possibly be bound. Most Soar condi-
tions, referred to as object-conditions, have four fields: (class identifier attribute value).
The condition (poi nt <x> " c o n n e c t e d - to <z>) from Figure 2(a) is an example of an
object-condition. Two of the fields in object-conditions are constant [class and attribute]
(almost always), one of the fields is a prebound variable [identifier] (almost always), and
the remaining field can be a constant, a prebound variable, or an unbound variable [value].
Here, a prebound variable is a variable bound in a previous condition. Thus, an unbound
varaible should only occur in the value field, and branching only occurs in matching a
Soar condition if there are multiple possible values corresponding to the three already fixed
fields; or, in more semantic terms, if there is more than one value for an attribute. 1°

The other type of Soar conditions match preferences and are called preference-conditions.
For the purposes of this article, it is not necessary to understand the details of these condi-
tions, except that their identifier field is the only possible field which can be unbound.
Thus, these conditions can give rise to multiplicity if similar preferences with distinct iden-
tifiers are present in the system.

Figure 6 presents a Soar production that demonstrates the restrictions described in the
previous paragraphs. The conditions of the production test whether a block with an identi-
fier matching < bl > is on top of a block with an identifier matching < b2 > , and there
is a preference for an operator called put-down. The single action of the production gives
a best preference to the put-down operator. Conditions one through four, and six are object-
conditions. Their class and attribute fields contain constants, their identifier fields contain
prebound variables (except for the first condition) and their value fields contain unbound
variables or constants. The fifth condition is a preference-condition. Its identifier field--
the second field in the condition--is unbound.

(Production::PUT-DOWN-is-beat

CEI (goal <g> ^problem-space <p>)

CE2 (goal <g> ^state <s>)

CE3 (state <s> ^block <bl>)

CE4 (block <bl> ^on-top-of <b2>}

CE5 (preference <oi> ^role OPERATOR ^value ACCEPTABLE
^goal <g> ^problem-space <p> ^state <s>)

CE6 (operator <oi> ^name PUT-DOWN)

-->

(preference <oi> ^role OPERATOR ^value BEST
^goal <g> ^problem-space <p> ^state <s>)

Figure d A production from the blocks world domain.

THE PROBLEM OF EXPENSIVE CHUNKS 311

Given these restrictions on matching Soar's conditions, there remain only two sources
of branching in the k-search tree: multi-objects (multi-attributes and preferences) and poor
condition ordering. We discuss these two factors in detail below.

4.2.1. Multi-objects: Multi-attributes and preferences

Multi-objects reter to a combination of multi-attributes and prelbrences. A multi-attribute
refers to a set of WMEs with multiple values for a fixed class, identifier, and attribute, n
For instance, if there are three blocks in the blocks world, they can be represented as a
multi-attribute of the state (this is also referred to as the state pointing to the three blocks):

(s t a t e S1 ^block B1) , (s t a t e S1 ^block B2) , (s t a t e S1 ^b lock B3)

Figure 7 shows how multi-objects are a source of branching in the k-search tree. Figure
7(a) shows the working memory, to be matched by the production in Figure 6. In Figure
7(a), b lock is a multi-attribute of the state, with the values B1, B2, and B3. The figure

(goal G] ^problem-space PI)
(goal GZ ^state Sl)

(state S1 ^block BI)
(state S2 ^block B2)
(state S1 ^block B3)

(block B2 ^on-top-of BI)
(block B3 ^on-top-of BI)

(preference Ol ^role OPERATOR ~value ACCEPTABLE

^goal G1 ^problem-space Pl ^state SI)

(operator Ol ^name PUT-ON-TOP-OF)

(preference 02 ^role OPERATOR ^value ACCEPTABLE
^goal G1 ^problem-space Pl ^state SI)

(operator 02 ^name PUT-DOWN)

(a)

B2 B3

B1

State S1

Qperators

PUT-DOWN PUT-ON-
TOP-OF

~)

CEI

CE2

CE3

CE4

CE5

CE6

<bl> =BI

<oi> =O1 ~
<02>

PUT-DOWN

/ <@> = G11 <p> = P1

/ <s> = SI

<bl> =B2 <bl> =B3

<b2> = B1 <b2> = B1

~ o 2 > =02

PUT-DOWN

(c)

Figure 7. Blocks-world demonstration of branching in the k-search tree--(a) working memory, Co) situation repre-
sented by the working memory, (c) k-search tree for production pUT-DOWN-is-best

312 M. TAMBE, A. NEWELL AND ES. ROSENBLOOM

Maximum

breadth

of the

k-search

tree

I0000

1 0 0 0

i0(

10 (3)
W (3)

(0) F

S (21
1

M

(91
E - E i g h t - . . p u z z l a

Q - 2-Queonl
G - Grid
M -Magic-square

G Q S - Syllogism
(24) (9) B - Monkey and

E Bananas
(8) W - Waterjuq

F - Farmer

I I I i I I i

5 10 15 20

Average number of CZ$ per chunk that match multi-objects

Figure 8. The impact of multi-objects on branching in the k-search tree for the eight tasks. The maximum breadth
of the k-search tree is an indicator of the amount of branching in the k-search tree. The numbers in parentheses
indicate the maximum number of elements per multi-object in that task representation. The expensive-chunks
tasks are highlighted.

also shows two preference WMEs for the operators O1 (put-on-top-of) and 02 (put-down).
Figure 7(b) shows the situation in the blocks world described by the working memory.
Figure 7(c) shows the k-search tree generated in the match of the production in Figure 6.
Since b lock is a multi-attribute of the state, the k-search tree branches at the third condi-
tion to match the blocks B1, B2, and B3. Similarly, since more than two matching prefer-
ences are presnt, the k-search tree branches in the fifth conditon. At every other point,
the matcher is able to make a unique choice of what to match using the name of the attribute.

Thus, multi-objects are the only WMEs that can cause branching in the k-search tree.
This conclusion suggests that expensive chunks, i.e., chunks with a large branching of the
k-search tree, can only be formed in the presence of multi-objects. Figure 8 presents data
on the eight tasks that supports the above analysis. The x-axis plots the average number
of CEs per chunk that match multi-objects. The numbers in parentheses associated with
each task are the maximum number of elements in any single multi-object used in the rep-
resentation. The y-axis gives the maximum breadth of the k-search tree during the course
of the run; i.e., the maximum number of tokens generated during the course of the run,
for matching a single condition element in the chunk. The breadth of the k-search corre-
sponds to the number of nodes at a particular height in the k-search tree, and maximum
breadth is an indicator of the amount of branching in the k-search tree. The y-axis is actually
plotted on a log scale. Figure 8 does not indicate any precise relation between branching
and multi-objects. However, the figure shows that expensive chunks, i.e., chunks with a
large amount of branching in their k-search trees, have a larger number of CEs matching
multi-objects and a larger number of elements per multi-object.

This analysis shows why in the presence of multi-attributes it is possible for the matcher
to generate an exponential (in the depth of the k-search tree) number of tokens. With multi-
attributes, it is possible to encode a general graph structure in both working memory and
productions, thus implementing a subgraph isomorphism problem, which is a well-known

THE PROBLEM OF EXPENSIVE CHUNKS 313

NP-complete problem (Garey and Johnson, 1978). It is quite possible for chunks encoding
such graph structures to be generated in Soar (Tambe and Newell, 1988). Thus, matching
expensive chunks is NP-hard.

4.2.2. Condition element ordering

The second source of branching in the k-search tree is the poor ordering of condition ele-
ments. Recall that the intercondition variable tests in productions provide a constraint on
the values of attributes. A poor condition ordering can reduce this constraint and thus gen-
erate a large number of tokens in the k-search.

As matching expensive chunks is NP-hard, in the extreme, the condition ordering mecha-
nism cannot eliminate the exponential k-search. However, in practice, a good condition
ordering can provide big speedups in production systems (Ishida, 1988). To investigate the
impact of the ordering of CEs in the expensive chunks, an optimal ordering of CEs is helpful.
The problem of generating an optimal ordering is, however, itself NP-complete (Ullman,
1982). Currently, Soar has a simple ordering algorithm (Scales, 1986), that orders the CEs of
the original productions and the chunks (the analysis of the prior section depended on this
simple algorithm). Since Soar productions can have a large number of CEs (e.g., Cypress-
Soar (Steier, 1987) has over 100 condition elements in some chunks), guaranteeing optimality
could be very expensive. Hence the present ordering algorithm cuts down the number of
orderings it has to search through, by using heuristics that sacrifice guaranteed optimality.

We therefore created another ordering algorithm that .inputs estimates of the number of
WMEs matching the CEs and some data about the generation of tokens. It then performs a
complete search and outputs an optimal ordering (Tambe and Newell, 1988). The new algo-
rithm performs branch and bound search and uses heuristics from (Smith and Genesereth,
1986), which are guaranteed to preserve optimality. (Despite these heuristics, it may take
up to an hour to order a production? 2 Therefore the new algorithm cannot replace the old
one in running Soar tasks.)

Figure 9 shows the result of the new ordering algorithm across the eight tasks. The figure
shows a graph identical to Figure 5, except for the arrows. In Figure 9, the x-axis depicts
the average number of conditions in the chunks formed in various tasks and the y-axis depicts
the corresponding computational effect. The arrows indicate the change in the computational
effect with the new ordering algorithm. Thus, in the Eight-puzzle task, the computational
effect has increased from 0.15 to 0.35 with the new ordering algorithm. However, there
are no arrows associated with the cheap-chunks tasks. This is because the cheap-chunks
tasks show no difference in the computational effect with the new ordering algorithm. The
branching of the k-search tree in the cheap chunks is very low. Thus, ordering cannot make
a measurable difference in these tasks. In the expensive-chunks tasks, about 50% to 75 %
of the cost is attributable to a bad ordering by the old Soar ordering scheme--the computa-
tional effect in these tasks has increased by a factor of two to three? 3 This is because multi-
objects and a large number of CEs exact a heavy price if the ordering heuristics do not
work. The figure shows that the computational effect in the expensive-chunks tasks is still
quite pronounced compared to the cheap-chunks tasks--although it is now closer to the
computational effect of the Waterjug and Farmer tasks.

314 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

Computational

Effect

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.I

F

I T
M GQ

E - Eight--puzzle

Q - 2-Queens
Q - Grid
M - Maglc-squsre

S - Syllogism

B - Monkey and

Bananas
W - Waterjug
F - Farmer

i i I i I i I

5 i0 15 20 25 30 35

Average number of conditions per chunk

Figure 9. Average number of conditions in the chunks formed in various tasks (on the x-axis) and their corresponding
computational effects (on the y-axis). The arrows indicate the effect of using the new ordering algorithm on the
computational effect. The expensive-chunks tasks are highlighted.

At this point, we summarize the main points of this section: expensive chunks are caused
by big footprints, multi-objects, and bad condition orderings. A big footprint causes a tall
k-search tree to be generated in matching an expensive chunk, while multi-objects and
bad condition ordering cause branching in the k-search tree. Out of these three factors,
big footprints explain a relatively minor portion of the expensive chunks phenomenon.

5. Eliminating expensive chunks

Before discussing the strategies to eliminate expensive chunks, we need to consider the
following question: What does it mean to solve the expensive chunks problem? An ideal
solution to this problem would impose a fixed upper bound on the cost of each chunk,
allowing the system to bound its time per action (there is still an issue if the number of
chunks is unbounded, but we will deal with that issue later). Currently, this cost can be
unbounded, since the cost of a chunk can be exponential in the number of conditions, and
there is no bound on the number of conditions in a chunk. Even if a fixed bound cannot
be imposed, it would be prefereable to let the cost of the chunks be a small polynomial
function rather than the existing exponential function. Such chunks will require only a
few additional tokens to match them (when compared to the original system) and hence
will only minimally distort the constant time per action model.

5.1. Strategies for eliminating expensive chunks

Among the various strategies for eliminating expensive chunks, two that initially look like
potential solutions can immediately be ruled out by the inherently exponential nature of
the production match. One technique is the use of smarter match algorithms. This could

THE PROBLEM OF EXPENSIVE CHUNKS 315

involve either better automated condition orderings, or other techniques such as selective
backtracking (Pereira and Porto, 1982). A better conditon ordering can definitely reduce
the amount of k-search, as shown in the previous section, but cannot completely eliminate
it, or even make it non-exponential in general. Unfortunately, other smart match algorithms
suffer from a similar problem--they cannot make the k-search non-exponential in general.
In fact, smart match algorithms may adversely affect optimizations like state-saving and
thus introduce additional overheads. The other technique that looks like a potential solution
is the use of massive parallelism. However, given any amount of parallelism it is always
possible to have an exponential match that will exceed the capacity of the machine.

After eliminating the above approaches, the remaining known strategies addressing the
problem of expensive chunks (or more generally, expensive learned rules) can be divided
into two major categories:

1. Selective solutions: These approaches depend on selectively avoiding the accessing of
expensive learned rules from the knowledge base. They can be further divided into three
subcategories:
a. Selective learning and forgetting: The learning system goes through the process of

creating the rule to be learned after solving a problem. It then determines if the rule
is expensive or cheap. If the rule is expensive, the system does not add it to its knowl-
edge base. The system may have an additional capability of selective forgetting. With
selective forgetting, the system adds the rule to its knowledge base, but if it finds
out that the rule becomes expensive while in use, it throws the rule away.

Typically selective learning/forgetting systems adopt the following criterion for deter-
mining the expense of a rule: a rule is expensive if its estimated processing cost ex-
ceeds its estimated benefits (Keller, 1987; Markovitch and Scott, 1988; Minton, 1985;
Minton, 1988b).

b. Selective Matching: The learning system creates the rule to be learned and adds it
to the knowledge base. The matcher reasons about the expense of the learned rules
and other rules that may be applicable and decides the best rule to apply at that point
in time. Thus, the compiled rule always remains in the knowledge base (Markovitch
and Scott, 1989a); it is not ,thrown away.

c. User Intervention: In this approach, the user of the system monitors its performance.
If he/she notices a performance problem during learning, then he/she intervenes and
removes the efficiency bugs in the system.

2. Transforming the pattern to be matched: These approaches depend on uniformly reducing
the cost of the learned rule by transforming it, so that expensive rules are not added to
the knowledge base in the first place. They can be further divided into two subcategories:
a. Modifying learned rules: This approach requires the system to modify learned rules.

After learning a rule, its left-hand side is simplified to reduce its match cost. This
reduction may be accomplished by processes such as compression (Minton, 1988b)
and removing applicability conditions (Chase, et al., 1989).

b. Restricting expressiveness: This approach requires the system to give up some expres-
siveness of its language to guarantee that all learned rules are cheap. Thus, no eval-
uation need be done to guarantee that the system will not degrade in performance.

316 M. TAMBE, A. NEWELL AND RS. ROSENBLOOM

Furthermore, the system is not required to modify learned rules. This tradeoffis similar
to the tradeoff between the expressiveness of a representational language and its com-
putational tractability (Levesque and Brachman, 1985).

Two important criteria for adopting a particular approach from the above list are: (1) the
effectiveness of the approach in addressing expensive chunks and (2) how well the approach
integrates with the rest of the system, given the assumptions underlying the system. The
approach adopted in this article is one of restricting expressiveness. Meeting the first criterion
above, i.e., demonstrating the effectiveness of this approach, is the focus of the rest of
this article. Meeting the second criterion, i.e., establishing that this approach best conforms
with the assumptions in Soar, compared to the other approaches presented, is the focus
of the following four paragraphs.

Among the approaches presented, the user intervention approach is ruled out immediately,
since the goal of the Soar project is to build a system capable of autonomous existence,
i.e., a system that is not dependent on the user. In fact, the requirement for autonomy is
one key way in which the problem of expensive chunks differs from the more general prob-
lem of expensive productions.

The selective learning/matching approaches depend on analyzing the cost and/or benefits
of individual productions. This can be achieved by two different methods:

1. Using a fixed piece of code as part of the architecture, i.e., using a mechanism in the
implementation domain.

2. By problem-solving, i.e., using a mechanism in the cognitive domain.

Including a mechanism for cost/benefit analysis in the architecture is against one of Soar's
major design principles--no fixed trap-state mechanisms (Newell, 1990). A trap-state mech-
anism is one whose commands the system has to accept, but which has insufficient knowl-
edge to cover all potential situations. The conflict-resolution phase in OPS5 is an example
of a trap-state mechanism. When the knowledge encoded in the trap-state mechanism fails,
as it necessarily has to if the enountered situations are diverse enough, the system can be
led into problems from which it cannot recover--in this case matching a very expensive
chunk. Resource bounds may help the system recover from such problems, e.g., they may
impose some time-outs on the match. But these resource bounds are trap-state mechanisms
in themselves. Consider the example of imposing time-outs on the match. Suppose there
is a production that controls some important external device. The time-out may prevent
the production from controlling the external device in a critical real-time situation, leading
to a disaster. Thus, a time-out mechanism is a trap-state mechanism that could interfere
in getting Soar to do real-time tasks sometime in the future.

The cognitive domain approach for cost-benefit analysis does not suffer from the trap-
state problem. However, this approach cannot be used, since it would require keeping track
of the costs and benefits of the productions in the cognitive domain, which violates the
non-penetrable memory assumption mentioned in Section 3.1. A similar argtmaent eliminates
the possibility of modifying learned rules--it would be a trap-state mechanism in the imple-
mentation domain and would violate the non-penetrable memory assumption in the cogni-
tive domain.

THE PROBLEM OF EXPENSIVE CHUNKS 317

The approach based on restricting expressiveness is not dependent on any mechanism,
in either the cognitive or the implementation domain. Thus, it entirely avoids the issues
of non-penetrability or trap-states faced by the other approaches and is in fact, the only
approach that conforms with the assumptions underlying Soar. But how should schemes
for restricting expressiveness be selected or even devised? An important constraint that
will be used for selection is the guarantee of closure under chunking, i.e., if the produc-
tions and working memory meet the restrictions imposed by a scheme before chunking,
then the chunks should also meet the restrictions. I f chunking violates the restrictions and
creates expensive chunks, then that would clearly defeat the purpose of this exercise.

In devising schemes for restricting expressiveness, two obvious candidates are: restricting
the size of the footprint, and restricting the use of multi-objects. A restriction on the size
of the footprint will bound the depth of the k-search tree. This will make the cost of the
chunk a polynomial in the branching factor fo the k-search tree. However, unless this bound
is small, it will not be useful. But a small bound on the number of CEs will require exten-
sive modifications to the current methods of task representations in Soar. It would also
be difficult to guarantee closure under chunking since chunks usually have a higher number
of CEs than hand-written productions (Tambe, et al., 1988). Providing such guarantees
may require modifications to chunking, and perhaps also to the rest of Soar. Thus, it would
be preferable no to impose an arbitrary bound on the size of the footprint.

The other alternative of restricting multi-objects seems more promising. One category
of restrictions in this mode would be to impose a partial restriction on the use of multi-
objects--for instance, to limit the number of conditions per production that can match multi-
objects. However, it is difficult to guarantee closure under chunking for such partial restric-
tions. In the previous example, the chunks formed can easily exceed the limit on conditions
per production that match multi-objects. A better approach is to eliminate multi-objects
altogether, which clearly guarantees closure under chunking. Multi-objects control the
branching of the k-search tree. Therefore, eliminating multi-objects eliminates the exponen-
tial from the cost (B °) of the k-search tree--it reduces the branching factor of the k-search
tree ot one. This limits the number of tokens in the k-search tree to the size of the foot-
print. Thus,

The c o s t o f m a t c h i n g a chunk w i l l be l i n e a r in t h e number o f c o n d i t i o n s .

As stated earlier in this section, this is a very agreeable bound on the cost of the chunks.
The size of the footprint grows at most linearly with the amount of time spent in the subgoal.
Thus, eliminating multi-objects imposes a very reasonable limit on the cost of a chunk--
these chunks are cheap chunks. However, it is still possible for a chunk with a very large
footprint to distort the constant time per action model. Dealing with such footprints will
be the subject of future work.

5.2. Eliminating multi-objects

Recall that multi-objects refer to a combination of multi-attributes and preferences. The
elimination of multi-attributes implies that the system is not allowed to assign two or more
values to any attribute. The new restricted representation without the multi-attributes is

318 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

(state S1 ^block BI)

J (block B1 ^next B2)

(block B2 ^next B3)

(block B2 ^on-top-of BI)

(block B3 ^on-top-of BI)

A linked list of blocks

is introduced

Figure 10. Unique-attribute encoding of the blocks world from Figure 7.

referred to as the unique-attribute representation. Figure 10 shows how the blocks in the
blocks world, represented originally as multi-attributes in Figure 7(a), are represented as
unique-attributes. Note that the blocks are no longer a multi-attribute of the state. Instead,
a linked list is introduced, with the state pointing the head of the list. The issues in adopt-
ing such unique-attribute representations will be discussed in detail in Section 8.1.

Preferences are dealt with somewhat differently. Recall that preferences cause branching
in the k-search tree due to their unbound identifiers. Therefore, a restriction is imposed
to require that all preference identifiers be prebound. However, chunking may violate this
restriction, and create chunks which include preferences with unbound identifiers. Star's
chunking algorithm has therefore been modified (on an experimental basis) so that prefer-
ences with unbound identifiers are not included in the chunks. This modification prevents
the preferences from causing branching in the k-search tree.

The restrictions for the cheap chunks are summarized below: 4

1. Mulfi-attrbutes are not allowed; only unique-attributes may be used.
2. Preference identifiers must be prebound.

One of the flexibilities not restricted is the ability to match multiple goals in the hierarchy.
The number of goals in the goal-hierarchy can grow only linearly with time, as measured
by the number of decision cycles. In fact, typically there are only about three to four goals
in the goal-hierarchy. This causes a maximum k-search breadth of three to four tokens
in the first one or two CEs of a chunk. This low cost appears to be worth the flexibility
of matching multiple goals in the goal hierarchy, which allows a chunk to transfer to any
of the goal-contexts in the context hierarchy. However, if matching multiple goals turns
out to be a problem, then this capability can also be restricted.

Except for the experimental modification to chunking, the other restrictions can be adopted
in the current version of Soar using a set of conventions. We have used this version for
the empirical analysis presented in this paper. In the actual implementation, assigning mul-
tiple values to a single attribute should lead to the creation of an impasse, allowing the
architecture to enforce a representation without multi-attributes. The new version of Soar
(Soar 5) will allow a very straightforward incorporation of this mechanism (interestingly,
unique-attributes did not influence the design of Soar 5).

Table 2 presents data from nine different Soar tasks: 5 Except for the Tree task to be
introduced in Section 6.2, these tasks are from Table 1. The main message of this table
is that the unique-attributes eliminate expensive chunks. The first column gives the total
run time before chunking, using the multi-attribute representation. The second column gives

T H E P R O B L E M O F E X P E N S I V E C H U N K S 319

Table 2. The total run t ime af te r chunking wi th two different representat ions.

Task Total Total Total Total Total Total
run time run time number of run time run time number of

multi-attr, multi-attr, chunks unique-attr, unique-attr, chunks
before after multi-attr, before after unique-attr.

chunking chunking chunking chunking
(see.) (see.) (see.) (see.)

Eight-puzzle 28.69 34.56 11 26.67 8.88 86

2-Queens 4.48 13.52 3 3.55 0A0 3

Grid 23.44 12.65 17 19,81 3,09 142

Magic-square 13.92 18.72 5 12.62 2.72 5

Tree 10.28 1.55 11 9.94 1.39 72

Syllogisms 8.46 0.82 11 7.92 0.82 11

Monkey 7.13 1.73 5 8.21 1.83 5

Waterj ug 21.43 3.56 11 19.84 2.25 11

Farmer 26.94 4.39 14 20.25 2.07 14

the total run time after chunking, using the multi-attribute representation. The third column
gives the number of chunks formed in the multi-attribute representation. The last three
columns give comparable data for the unique-attribute representation.

The table shows that the time to complete the task without chtmking in both representations
is comparable. However, in the four expensive-chunks tasks, the multi-attribute representa-
tion goes on to form expensive chunks. Chunks formed in the unique-attribute representation
are cheap and the total run time after chunking is much lower than the total run time before
chunking. The two cheap-chunks tasks (Waterjug and Farmer) that had a significant com-
putational effect also show a speedup with the unique-attributes.

Note that, in some tasks, a significantly larger number of unique-attribute chunks are
learned. This effect is due to a secondary impact of unique-attributes--the chunks that are
learned may be less general. This reduction in generality occurs because a multi-attribute
condition can match any element of a set, while a unique-attribute conditon can match
only one possible element. When the unique-attribute chunks were less general than the
multi-attribute ones, additional trials were run on the same task until enough chunks had
been learned to cover the same scope as the multi-attribute chunks. For this experiment,
these trials were selected by hand so as to cover chunks not yet learned. (This issue is
picked up in more detail in the following sections.) However, the table shows that even
after learning the larger number of chunks, the unique-attribute run times are much lower
than the multi-attribute run times.

6. Complexity analyses of two illustrative tasks

The previous section presented the unique-attributes restriction on the expressiveness of
Soar's production system language. Unique-attributes allow us to guarantee that only cheap
chunks will be produced by the system. This section presents complexity analyses of two
simple tasks to demonstrate the expressiveness-efficiency tradeoff involved in unique-

320 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

B

A

Figure 11. The Grid task.

attributes. The first subsection use the Grid task to illustrate this tradeoff. The Second sub-
section uses the Tree task to present a best- and worst-case analysis of the expressiveness-
efficiency tradeoff.

6.1. The Grid task: An illustration of the expressiveness-efficiency tradeoff

Consider an example from the Grid task, shown in Figure 11. To simplify some of the follow-
ing analysis, assume that this grid is infinite. The problem is to go from point A to point
B, a path of length four. This problem is solved first using multi-attributes and then using
unique-attributes.

In the multi-attribute version, the grid is represented using connected as a multi-attribute
of apoint on the grid. Any point Y adjacent to a point X On the grid is represented as:
(po i n t X ^ c o n n e c t e d V). Thus, the multi-attribute connected represents an unstructured
set of connections between a point and all of its immediate neighbors. The problem space
has only one operator: move. The state contains a pointer to the current position on the
grid. If the current position is at point x, then for each point y connected to point x, the
operator move will be instantiated. The problem-solver will solve the problem using some
heuristics, or outside guidance, generating a k-search tree of tokens as shown in Figure
12(a). This process generates 16 tokens, with four tokens per each step generated from
the four options available to the problem-solver at each point on the grid. Even if the
heuristics do not directly lead the problem-solver to the solution, the matcher will generate
only 4 tokens per step. Note that this is a highly simplified version of the real Soar produc-
tion system. For instance, we have not accounted for the cost of subgoaling, or for the
cost of the heuristics. However, since the purpose here is to analyze the cost of multi- and
unique-attribute chunks, we will use this simple model.

The chunk formed in solving the task is shown in Figure 12(b). The chunk says that
if the goal is to reach a point < d > , and if the current position is point < x > , and if
there is a path of length four between them, then prefer the instantiated move operator along
that path. (The prefer action indicates a preference for a path from < x > to < y > over
all other paths; recall from Section 3.2 that < > indicates variables.) This chunk does
not consider the points along which the path goes or the direction the path takes. The chunk
will therefore transfer to all pairs of points with a path length of four between them.

THE PROBLEM OF EXPENSIVE CHUNKS 321

A

B

(a)

(Chunk::Multi-~ttr

(current-state <x>)

(point <x> ^connected <y>)

(point <y> ^connected <z>)

(point <z> ^connected <w>)

(point <w> ^connected <d>)

(desired <d>)

-->

(prefer path <x> ^to <y>)}

(b)

B B . .

(c)

Figure 12. The Grid task with multi-attributes: (a) the k-search tree for the entire task consisting of four problem
solving steps; (b) the chunk formed (prefer action indicates a preference for a path from < x > to < y > over
all other paths); and (c) the k-search tree formed in matching the chunk (generated for one problem-solving step).

Figure 12(c) shows the k-search tree formed in matching the chunk. For the sake of sim-
plicity in the analysis, only the conditions of class-namepoint in the chunk are considered.
(Considering other conditions does not change the results.) Here, each condition has multi-
plied the number of tokens by four, which is the number of points connected to any given
point. Since there are four c0nditons in the chunk (for a path of length four), the total
number of tokens (4 + 16 + 64 + 256 =) 340 tokens. These 340 tokens are generated
in one step. Comparing this with the four tokens per step in the original problem-solving,
we see that the chunk is expensive. The 340 tokens correspond to all possible paths origi-
nating from point A that have a length of four.

In the unique-attribute version, the state points to the current location on the grid, similar
to the multi-attribute version. However, each location points to its four adjacent locations
using specific unique-attributes; up, down, left, and right. Instead of one move operator,
there are four different operators, move-up, move-left, move-right, and move-down. Again,
the problem-solver moves from A to B using heuristics or outside guidance, generating
the tree of tokens shown in Figure 13(a).

However, the chunk formed in this process is different. The chunk is shown in Figure
13Co). It says that if the goal is to move to point < d > from point < x > and if the connec-
tion between the two points is through the specific relation (up-right-up-right) described,
then choose the appropriate operator: move-up. The k-search tree formed is shown in Figure
13(c). There are only four tokens per step formed in this case. The chunk formed is much
cheaper than the chunk in the multi-attribute case. However, the chunk will transfer only
if the two points are connected in a specific manner--up-right-up-right in this case, as
opposed to any arbitrary connection of length four in the earlier case. 16

Table 3 summarizes the cost and generality of the two representations. The generality
is measured in terms of the number of transfers in an nxn grid, i.e., the number of source
destination pairs that the chunk can transfer (or apply) to. The length of the path traversed
in the grid is assumed to be p. However, boundary effects are ignored for simplicity. (See
Appendix II for the derivations.)

322 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

A

B

(a)

(Chunk::Unique-attr

(current-state <x>)

(point <x> ^up-connected <y>)

(point <y> ^right-connected <z>)

(poknt <z> ^up-connected <w>)

(point <w> ^right-connected <d>)

(desired <d>)

-->

(prefer Fath <x> ^to <y>))

(h)

A

B

(c)

Figure 13. The Grid task with unique-attributes: (a) the k-search tree for the entire task consisting of four problem-
solving steps; (b) the chunk formed (prefer action indicates a preference for a path from <x> to < y > over
all other paths); and (c) the k-search tree formed in matching the chunk (generated for one problem-solving step).

Table 3. The cost and generality of the multi- and unique-attribute representations for the Grid task. Here n is
the number of nodes in the grid and p is the path length.

Representation Cost Generality Number of Cost
used in tokens in number of chunks required in tokens

per chunk transfers for same level after achieving
per chunk of generality the same level

as multi-attr, of generality

Multi-attributes (4P +1 - 4)/3 ne*(p+l) 2 1 (4p+1 _ 4)/3

Unique-attributes p n 2 (p+l) 2 (p+l)2*p

Comparing the multi-attributes and unique-attributes, we see that the multi-attributes
allow generality that is (p + 1) 2 times more than the generality achieved by a single unique-
attribute chunk. Thus to achieve the same generality, the unique-attribute system has to
learn (p + 1) z chunks. However, even after learning all those chunks, the cost of matching
all of the productions is only a polynomial number of tokens in the unique-attribute system.
It is exponential (in p) in the multi-attribute system.

Thus, the unique-attribute system has paid polynomial space to eliminate exponential
t ime--which may, at first, appear counterintuitive. This apparent anomaly can be explained
as follows. Figure 14 shows the number of positions tht can be reached in the Grid task
by the chunk shown in Figure 12(b) (a path length of four). The node marked x indicates

the source location. The nodes marked with small circles indicate the positions that can
be reached. The chunk shown in Figure 12(b) is an expensive chunk, based on multi-
attributes. This single expensive chunk can generalize to all the situations shown, with
the source fixed at the location marked x. There are only a polynomial number of positions
that can be reached from x: (p + 1) 2 --- 25; however, there are an exponential number
of paths of length four, to these positions: 4 p = 256. When given the goal of reaching
one particular position, the chunk from Figure 12(b) finds all possible paths of length four,
discovering all 256 paths to all 25 posi t ions--an excessive amount of k-search, since only

THE PROBLEM OF EXPENSIVE CHUNKS 323

))

¢

)

(

(

)

(

)

Figure 14. Locations reached by a path of length four in the Grid task.

a single path to any particular position is required. This k-search of all paths to each of
the positions gives rise to the exponential factor.

In contrast, a chunk learned by the unique-attribute representation performs the minimal
k-search of finding a single path to a single position, as shown in Figure 13(c). Even after
learning all (p + 1) 2 chunks in this representation, the total amount of k-search done is
proportional to the number of destinations (25), and not to the total number of paths to
each of the destinations (256). The unique-attribute system avoids the useless computation
of finding all paths to each position. 17 Thus, it is able to trade off polynomial space for
exponential time.

This example also illustrates the relation between k-search and generality. Consider a
single unique-attribute chunk. It can perform a limited amount of k-search. In the Grid
task, it can find a single path to a single position. The multi-attribute chunk performs more
k-search. In the Grid task, it uses k-search to reach all the locations marked with small
circles in Figure 14. Thus, the difference in the two representations is the amount of k-search
that can be performed to find situations in which the conditions of a chunk match. The
inability of unique-attributes to perform k-search manifests itself as an effective loss of
generality. To make up for this, the unique-attribute system learns more chunks, where
each chunk performs a limited amount of k-search.

Thus, the multi-attribute representation uses k-search to gain generality. Comparing the
k-search performed by the multi- and unique-attributes in the Grid example, we see that
the amount of k-search done (and the generality obtained thereby) by the multi-attributes
is composed of two portions: (1) an essential portion, (2) an excessive portion. The essen-
tial portion of the k-search consists of a single k-search path to each of the destinations
on the grid. The excessive portion of the k-search, a typical characteristic of the multi-
attribute representation (Tambe and Newell, 1988), consists of everything except the essential
portion. This excessive portion does not provide any useful generality. The unique-attribute
system only performs the essential portion of the k-search; it entirely avoids the excessive
portions.

324 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

In summary, more expressiveness provides greater generality in chunking. However, the
price paid for the higher level of generality is an increase in the amount of k-search at
performance time. The k-search for a chunk in the two representations can be characterized
as follows:

1. Multi-attributes: The number of tokens in the k-search tree can be exponential in the
number of CEs. However, the depth of the k-search is bounded by the number of CEs.

2. Unique-attributes: The number of tokens in the k-search tree is bounded by the number
of CEs in the chunk.

The restriction on multi-attributes does not imply that a Soar system has lost all of its
sources of generality. Other sources of generality, which are independent of the amount
of k-search done, can still be exploited. For example:

1. Implicit generalization: Chunks are based only on those aspects of the situation that
were referenced during problem-solving in the subgoal to produce results (Laird, Rosen-
bloom, and Newell, 1986). For example, in subsection 3.1, the CEs of the chunk are
based on only a fraction of the existing working memory.

2. Focus: The notion of focus is based on the notion of relative representation, i.e., represent-
ing objects or positions relative to a particular object or a position called focus. For
example, positions on the grid are up-down-left-right relative to the current focus, i.e.,
the current position. Chunks learned reflect the representation relative to the current
focus, allowing transfer if the focus shifts.

3. Decomposition: If a task is decomposed into smaller subtasks, then chunking the smaller
subtasks independently provides another source of generafity. For instance the Seibel task
requires reacting to the on-off conditions of ten lights (Rosenbloon and Newell, 1986).
Instead of considering all the lights at once, if small subgroups (of 2-4 lights) are con-
sidered independently, then chunking on those provides an alternative source of generality.
The smaller subgroups will transfer to subparts of some other combination of lights.

The unique-attribute representation for the Grid task exploits all three sources of generality
listed above:

1. Implicit generalization: Chunks are based only on the path traversed. The rest of the
grid does not appear in the chunks. The chunks can therefore transfer irrespective of
the grid formation, as long as the given path exists.

2. Focus: The chunk uses a path relative to the current focus, i.e., the current position
on the grid. This allows a translational transfer, if the focus is moved to a different source.

3. Decomposition: The process of solving a particular problem for a path length of four
generates subgoals for all intermediate path lengths, and hence generates chunks for
all intermediate path lengths.

6.2. The best and the worst case for the expressiveness-efficiency tradeoff

The previous subsection illustrated the expressiveness-efficiency tradeoff involved in the
Grid task. This subsection presents a best and worst case analysis for the tradeoff. In the
best case of the expressiveness-efficiency tradeoff, a single unique-attribute chunk is just

THE PROBLEM OF EXPENSIVE CHUNKS 325

source

destinotions

Figure 15. The Tree task.

as general as the corresponding multi-attribute chunk, but a lot cheaper (the unique-attribute
chunk saves time). In the worst case for the expressiveness-efficiency tradeoff, a single
unique-attribute chunk is quite specific and a large number of unique-attribute chunks are
required to reach the same level of generality as a multi-attribute chunk. However, the large
number of unique-attribute chunks are just as expensive as the multi-attribute chunk. A
good example for demonstration of these cases is the Tree task shown in Figure 15. The
Tree task is just like the Grid task except that the structure to be searched is a binary tree
of uniform depth, and the path to be found is always from the root to one of the leaves.

The multi-attribute and unique-attribute representations in this task are similar to those
in the Grid task, except for the use of left-connected and right-connected rather than up,
down, left, and right for the unique-attributes. The most general chunk (with multi-attributes)
is shown in Figure 16(a). It covers all the destinations (the leaves), given the root of the
tree as the source. One particular unique-attribute chunk is shown in Figure 16(b). The
unique-attribute chunk will cover only one particular leaf of the tree. This observation reveals
an important characteristic of the Tree task--the only source of generality available is
k-search. The unique-attribute system does not benefit from any other sources of generality.
It does not benefit from using a focus, implicit generalization, or decomposition, since
(1) the source for this task is always the root, (2) the destination is always one of the leaves,
(3) the path length is fixed, and (4) the path to each destination is unique.

(Chunk::Multi-attr

(current-state <x>)

(point <x> ^connected <y>)

(point <y> ^connected <z>)

(point <z> ^connected <d>)

(desired <d>)

(prefer path <x> ^to <y>))

(a)

(Chunk::Unique-attr

(current-state <x>)

(point <x> ^left-connected <y>)

(poin t <y> ^ r i g h t - c o n n e c t e d <z>)

(point <z> ^left-connected <d>)

(desired <d>)

-->

(prefer path <x> ^to <y>))

(b)

Figure 16. Chunk formed in the Tree task with the two representations.

326 M. TAMBE, A. NEWELL AND RS. ROSENBLOOM

Table 4. The cost and generality of the multi-attribute and unique-attribute representations for the Tree task, assuming
a branching factor of B and a depth of D. In deriving the cost for unique-attributes worst case, sharing (Section
3.2) is assumed for conditions in the chunks. The best and worst case refers to the best and worst case of the
expressiveness-e fficienc2¢ tradeoff.

Representation Cost Generality Number of Cost
used in tokens in number of chunks required in tokens

per chunk Transfers for same level after learning
of generality all chunks
as Multi-attr.

Multi-attribtltes B*(Bd-1)/(B-1) B d 1 B*(Bd-1)/(B-1)

Unique-attributes d 1 1 d
best case

Unique-attributes d l B d B*(Bd-I)/(B- 1)
worst case

Since k-search is the only source of generality in this task, it exhibits the expressiveness-
efficiency tradeoff in its clearest form. Table 4 presents data on the cost and the generality
of the chunks for the multi- and unique-attributes (for both the best and worst cases) assuming
a Tree task with a branching factor of B and a depth of D. In the best case for the unique-
attributes, the lask is to reach only one of the leaves, i.e., only a single destination has to
be chunked. This task is accomplished by learning a single chunk, with a cost proportional
to the depth of the tree. In this case, almost all of the exponential k-search of the multi-
attributes--except for the one required k-search path--is excessive. Thus, the unique-attribute
system exhibits a big efficiency gain, without any losses in terms of generality.

In the worst case for the unique-attributes, all of the destinations (or leaves) of the tree have
to be chunked. In this case, the cost of matching all unique-attribute chunks (one chunk per
path) is equal to the cost of matching one multi-attribute chunk. There is no excessive k-
search involved in matching the multi-attribute chunk. Since there is no excessive k-search,
this task demonstrates the worst-case for the expressiveness-efficiency tradeoff. Furthermore,
the lower generality of the unique-attribute chtmks demands an exponential number of chunks
(exponential in the depth D) to cover the level of generality of one multi-attribute chunk.

An obvious question that the worst case analysis raises is: I f the unique-attribute version
is going to have to acquire an exponential match anyway (to match the exponential number
of productions), why not acquire it all at once via the multi-attribute chunk? The answer
to this question lies in the issue of the safety of chunking, i.e., the issue that chunking
should not hurt Soar's performance. The multi-attribute chunk can add an arbitrarily large
exponential cost in a single learning trial. In contrast, the unique-attribute version learns
about the individual branches as they are encountered. The match cost always increases
gradually (at worst), and remains bounded by the number of branches that have been encoun-
tered. At worst the number of branches that have been encountered is equal to the number
in the tree, but in many domains only a small portion of the entire exponential space is
ever encountered. A related point is that the system is also protected from learning an expo-
nential number of chunks by its fmite lifetime. If the chunking rate is approximately constant
over time (see Section 8.2), then there is a finite number of chunks that the system will
ever be able to acquire. Under these circumstances the system can work in arbitrarily large
exponential domains, but it will never have enough time to learn everything about the domain
(as opposed to learning everything about the domain quickly, but never having enough time

THE PROBLEM OF EXPENSIVE CHUNKS 327

to use it). Of course, not having enough time to learn everything about a domain also implies
that Soar may not actually benefit from chunking.

In the interest of clarity of exposition, this section analyzed a simple tree-structure (with
uniform branching factor B) to demonstrate the best and worst cases of the expressiveness-
efficiency tradeoff. The actual complexity expressions for the best and the worst cases can
vary according to the individual problem being solved e.g., instead of the simple tree-
structure, it is possible to consider a complex tree-structure where the branching factor
grows exponentially with depth.

It is useful to analyze how unfavorable the expressiveness-efficiency tradeoff can get in
performing the Tree task. Note that for performing this task, the tree-structure must be
present in working memory. If this tradeoff is to be heavily set against the unique-attribute
system, the tree-structure present in working memory must be very large. However, the
tree-structure is exponential in the depth of the tree. An exponential amount of time must
be spent in generating such an exponential structure. (In this respect, the Tree task is to
be contrasted with the Grid task, where the size of the structure is limited, but matching
the structure requires exponential time due to connectivity.) The unique-attribute system
is thus protected by its finite lifetime--it is unlikely that the problem-solver will be able
to generate such large tree-structures in its lifetime. If the tree-structure is not large, the
expressiveness-efficiency tradeoff is not very unfavorable to begin with; the unique-attribute
system will be able to obtain the required coverage fairly quickly. Thus, this tradeoff is
expected to not be set heavily against unique-attributes. Interestingly, none of the tasks
from Table 2 have exhibited the worst case of the expressiveness-efficiency tradeoff in the
unique-attribute representation.

In conclusion, in the worst case (the tree search) of the expressiveness-efficiency tradeoff,
there is no excessive k-search involved. However, from the example of the best case in
this section, the Grid task in the previous subsection, and the analysis of the expensive-
chunks tasks (Tambe and Newell, 1988), we expect that in the general case, multi-attribute
chunks will generate excessive k-search. There is no tradeoff involved in this excessive
k-search; the unique-attribute representation simply gets rid of it.

7. Experimental analysis

This section provides a detailed comparative performance analysis of the multi- and unique-
attribute based systems. It first compares the computational effects of multi- and unique-
attribute representations for the four expensive chunks tasks from Table 1: Grid, Eight-puzzle,
2-Queens, and Magic-square. It then presents a freer grained analysis of the impact of chunk-
ing on the overall performance of the multi- and unique-attribute systems.

For each representation and task, the system was run without chunking. The tokens per
action and the time per action in performing the task were noted. The system was then
allowed to chunk on the problem. It was then run on the same problem, i.e., after having
chunked on the problem, and the tokens per action and the time per action in performing
the task were noted. A sequence of such experiments was performed with the unique-attribute
representation to accumulate a set of chunks yielding the same level of generality as the
multi-attribute system. (See Sections 6.1 and 6.2 for examples of how this same level of
generality is determined.)

328 M, T A M B E , A. N E W E L L A N D P.S. R O S E N B L O O M

45.00
I

~ 4o.oo!
35.00

30.00

25.00

20.00

1500

1Q.O0

5.00

0.001
0 2O

I I ' ' Mulii I

d, Unm e
I

]
40 60 80 100 120 140 160

Number of chunks

(a) Tokens per action

5.00

0.00 , Multi

5.00 , Uniol

0.00

:5.00

:0.00

5.00

0.00 ~ E ~

500:/~ y '~ "*" '=- ~

0.00
0 20 40 60 80 100 120 140 160

Number of chunks

Co) T i m e per action

Figure 17. Computational effects in the Grid task.

In the Grid task, a 5 x 5 grid was chosen, with p, the length of the path, set at six.
Recall that we had assumed an unbounded grid in obtaining the results in Table 3. The
results of our experiments will be somewhat different from those results, since these experi-
ments are run with a bounded grid. However, a large grid size would make the chunks
in the multi-attribute representation too expensive to allow running the experiments. The
multi-attribute and unique-attribute representations used for this task were the ones intro-
duced in the previous section. Figure 17 shows the change in tokens per action and time
per action with the addition of chunks for the two representations. The time is measured
in milliseconds. The multi-attribute representation learns 17 chunks and causes an increase
in tokens per action from about 3 tokens per action to 24 tokens per action 18 and causes
a computational effect of about 0.11; i.e., the time per action has gone up by about a factor
of 9. The unique-attribute representation requires learning on more problems to reach the
same level of generality (each asterisk (*) represents one problem). It accumulates 142
chunks in this process, but its tokens per action and time per action are seen not to increase
as much. Even after achieving the same level of generality as the multi-attribute system,
the computational effect here is much more limited (about 0.46). These graphs thus sup-
port the analysis of the Grid task presented in the previous section--the unique-attribute
system is able to avoid large portions of the k-search performed by the multi-attribute system.

Although the computational effect of the unique-attribute system in the Grid task is limited
to 0.46, it is not unity, as required for the ideal computational model. This deviation from
the ideal computational model occurs because, even though the chunks in the unique-attribute
system are individually cheap, each chunk does add something to the match cost. This
issue is picked up in more detail in Section 8.2.

The Eight-puzzle task requires arranging eight numbered tiles in a 3 x3 frame in a specific
order. One of the cells in the 3x3 frame is always blank and adjacent tiles can be moved
into the blank cell. In the multi-attribute representation, a state points to nine bindings,
each of which connects a cell from the static 3 x3 structure of cells to a tile. For example,
(binding B1 Acell C!) (binding B1 Atile T1) connects cell C1 to tile T1. A cell points to all

THE PROBLEM OF EXPENSIVE CHUNKS 329

.~ loo.oo I ' I ~'_ loo.oo I
o !

oo.oo [,~ult ~ 90.00 ,M.t.

80.00 , Uni ue E 80.00 Unil llJn

70.00 i~ 70.00 P

60.00 60.00 1 50.00 50.00
40,00 40.00

30.00 I 30.00
!

20,00 "~- r 20.00

! I 10.00 , ~ 10.00 ~1 ~ I , ,i(~ ~ . - - " " ' " "] ~

0.00 - - '"1 "" I I 0.oo !
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50

Number of chunks

(a) Tokens per action (b) Time per action

60 70 80 90
Number of chunks

Figure 18. Computational effects in the Eight-puzzle task.

its neighboring cells. For example, (cell CI ^next C2), (cell C1 ^next C3), etc. In the
unique-attribute representation, bindings are not used. The state points to the blank cell.
The blank cell points to its neighbors, which in turn point to their neighbors, using attri-
butes up, down, right and left. For example, (cell C1 ^up C2), (cell C1 ^down C3), etc.
The cells directly point to tiles. For example, (cell C1 ^tile I1). Figure 18 shows data from
runs with both representations. The analysis of these graphs is very similar to the analysis
of the graphs in Figure 17 for the Grid task. There is only a limited (less than a factor
of 2) increase in time per action in the unique-attribute system.

It is important to analyze the sources of generality available in the Eight-puzzle task,
in a manner analogous to the Grid task. The chunks learned in the Eight-puzzle are search
control rules that give a preference to one operator over the other. For instance, in Figure
19, it is possible to move the blank in two directions: right and up. Depending on the tiles
in the current state and their situation in the desired state, the search control chunk formed
will prefer one operator over the other. There are three sources of generality available to
the multi-attribute version:

• Implicit Generalization: The chunk does not take into account the position of the other
tiles and cells, except the ones affected by the move operator. It also does not take into
account what numbers are on the tiles.

• Focus: The chunk is relative to the position of the blank cell. The chunk will transfer
to other situations based on the position of the blank cell.

• K-search: The chunk will transfer to any other configuration of two operators; it is not
sensitive to directions, such as right and up.

Of the three sources listed above, the unique-attribute version cannot use k-search for
generalization. The chunks learned will be specific to the direction of the operators. For
instance, in Figure 19 the operators under consideration have to move the blank right and
up. However the important point is not how much generality is lost. Rather it is how much
has remained, in comparison to a no-transfer situation (no-transfer chunks refer to chunks

330 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

1 2 3

8 7 4

'6-- 6 5

Figure 19. Move operators in the Eight-puzzle task.

Table 5. Number of chunks required in three representations to achieve the same generality for the Eight-puzzle.

Eight-puzzle
Representations

Multi- Unique-
attributes atlributes

Number of Clmnks 5

No-transfer

60 8 million

which have absolutely no source of generality available. Calculations using a somewhat
simplified version of the chunks learned in this task show the ratio in Table 5 (see Appendix
HI for the derivations).

Thus, a substantial amount of transfer is still available to the unique-attribute representa-
tion. Although the unique-attribute system forms chunks of lower generality, it obtains a
big reduction in the match effort by avoiding excessive k-search.

The results for the 2-Queens and Magic-square tasks are presented in Figure 20. The
tokens-per-action graphs in these two cases are similar. Both graphs show the advantage
of going with unique-attributes. (For details of the representations employed see (Tambe
and Rosenbloom, 1988).) An important point here is that these two tasks are such that

~" lOO.O0 g

g 90.00

i.~ 80.00

70.00

60,00

50,00

40.00

• 30.00

20.00

10.00

0.00

(peaks 03d~. [t i _ _
at 3,225)

__ _ ~ Ur q u e ~

5 10 15 20 25
Number of chunks

(a) Time per action ill the 2-Queens task

" • ' 60.00

g

~" 50.00 ~ M I II1

¢_
40.00 [~ Ur [nuo

30.00

20.00

10.00 y

0.00
0 5 10 15 20 25

Number of chunks

Ca) Time per action in the Magic-square task

Figure 20 Computational effects in the 2-Queens and Magic-square tasks.

THE PROBLEM OF EXPENSIVE CHUNKS 331

the unique-attribute system does not have to learn any extra chunks to achieve the same
level of generality as the multi-attribute system.

The results presented in this section so far, along with those in Table 2, show that the
unique-attribute version is more efficient after reaching the same level of generality as the
multi-attribute version, hut they don't show the finer-grained behavior of what happens
during the learning process. Specifically, they don't address the issue of the extra time spent
by the unique-attributes version in acquiring the extra chunks. To understand this issue,
a set of randomly generated problems in the Eight-puzzle domain were run with both ver-
sions. Both versions started off with no chunks, and solved the set of problems with chunking
turned on, i.e., chunking continuously across the set of problems. Thus, the systems used
the chunks learned in one problem to solve the subsequent problems, simultaneously learn-
ing more chunks in situations where the earlier chunks did not applyJ 9

Figure 21(a) shows the cumulative times for the two systems on the 20 problems. The
unique-attribute system consistently outperforms the multi-attribute system. Figure 21(b)
compares the time required by the two versions for the individual problems. This graph
shows that even in each individual problem, the performance of the unique-attribute version
dominates the performance of the multi-attribute version. Figure 21(c) shows the time per
decision for the two systems. Decisions are typically used in Soar to measure the amount
of problem-solving effort. The point corresponding to the zeroth problem shows the time
per decision prior to learning. The main message of this graph is that time per decision
remains fairly constant in the unique-attribute version, while it takes some fairly large jumps
in the multi-attribute version. Thus, the number of decisions does not accurately reflect
the problem-solving time in the multi-attribute system, but it does so in a unique-attribute
system. Finally, Figure 21(d) compares the number of decisions required for solving the
problems in the two systems. This graph shows that unique-attributes require more decision
cycles than multi-attributes in achieving the goal. The chunks learned by the multi-attribute
system are more general, and hence the reduction in the number of decisions per problem
happens more quickly than with unique-attributes. However, as more problems are solved,
and more unique-attribute chunks are acquired, the difference in number of decisions
decreases. Similar results were obtained for the Grid task (Tambe and Rosenbloom, 1988).

8. Discussion

A detailed comparative analysis of the efficiency (and efficiency-related tradeoffs) of the
more expressive multi-attributes and the less expressive unique-attributes was presented
in Sections 5, 6, and 7. This section focuses on various issues related to unique-attributes:
the difficulty of encoding tasks in unique-attributes, the average growth effect, the bounded
elaboration phases, and others.

&l. Difficulty of encoding tasks with unique-attributes

The approach adopted in this article to deal with expensive chunks is to restrict the expres-
siveness of the production system language. Such restrictions are to be contrasted with
the trends in some EBL systems to make the language more expressive (Cohen, Mostow,

600.00

=
E
o 400.00

200.00

0,00 0

3.00

2.00

Multi /

Unique

J
J

5 10 15 20
Problems Solved {eight-puzzle}

(a) Cumulative time

80.00

i~ • Multi

60.00 ~ i i ni¢lll~_

40.00

20.00

0.00
0 5 10 15 20

Problems Solved (eight-puzzle)

(b) Time per problem

1.00

,MuI~

0.00

, Multi
. Uni~u~

I

|
5 10 15 20

Problems Solved (eight-puzzle)
(c) Time per decision

o = I ~ Unique

7.

I
10 15 20

Problems Solved (eight-puzzle)

(d) Decisions per problem

332 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

Figure 21. Results for the set of random problems from the Eight-Puzzle task.

and Borgida, 1988; Shavlik and DeJong, 1987). This contrast raises an important question:
with the elimination of multi-attributes, would it be considerably more difficult to encode
tasks in Soar?

Multi-attributes are used for representing unstructured sets in working memory. In the
blocks-world example (see Figure 7(a)), it is possible to keep all the blocks as a structure-
less collection of items. A single production accesses all three of the blocks via match
(see Figure 6). Thus, from a task-encoding perspective, the following features of a multi-
attribute based set representation emerge:

THE PROBLEM OF EXPENSIVE CHUNKS 333

1. The elements of the set are accessed using production match, i.e., using k-search in
the implementation domain.

2. Since the elements of the set are accessed using production match, they are accessed
in parallel, i.e., the matcher returns the set of all matching elements simultaneously.

3. Some set operations, such as search, add, delete, etc., are facilitated.

The elimination of multi-attributes implies that unstructured sets cannot be represented
directly in working memory. All sets in working memory have to be structured as lists,
trees, or some other task-specific structures. Figure 10 showed how the set of blocks can
be structured as a list. (Note that the list structure is chosen in the interests of clarity. This
might not be the most suitable encoding for performing this task.) To access individual
elements of such structures via production match, multiple productions would have to be
written, one for each element in the structure. This requirement poses a problem--a large
number of productions would have to be written--especially if the structure contains a large
number of elements. This problem can be avoided by accessing the structure in the cognitive
domain, i.e., using states and operators, z° In the example from Figure 10, the execution
of an operator can examine one block from the list of blocks (the current focus), and advance
the focus to the next block in the list. Thus, from a task-encoding perspective, the follow-
ing features of a unique-attribute representation for sets emerge:

1. The elements of a set are accessed using problem space search, i.e., using search in
the cognitive domain.

2. Since the elements of the set are accessed using problem space search, they are accessed
in a serial fashion. (Problem space search is serial because it requires moving from
state to state in a serial fashion.)

3. Set operations such as search, add, delete, etc. are performed using operators in the
problem space.

As revealed by the features listed above, the principal impact of encoding tasks with unique-
attributes is the removal of the combinatorial k-search from the implementation domain.
Some of the combinatorics is transferred to the cognitive domain in the form of problem
space search, while some, like the excessive portion of the k-search in the Grid task, just
disappears. A task encoded with unique-attributes must bear the overheads associated with
problem space search (selection of states, operators, etc.). These overheads can cause the
system to slow down by a constant factor. The advantage of carrying out the search in the
problem space lies in the ability to use search-control knowledge to terminate or control
it. This ability can avoid the possibility of exponential slowdowns, which can occur in the
implementation domain if multi-attributes arc used. Moreover, chunking in a space encoded
using unique-attributes will gradually reduce and ultimately eliminate the overheads associ-
ated with the problem space search (selection of states, operators, etc.). In the process
of eliminating the overheads of problem-space search, chunking will increase the match
effort in the implementation domain; however, this increase will always be gradual at worst
(the next subsection discusses this issue in more detail). Chunking will also return to the
implementation domain the capability of retrieving all elements of a (structured) set in
parallel. Consider the structured set shown in Figure 10. If chunks are formed in that domain,

334 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

(chunk::access-block-Bl
(goal <g> ^problem-space <p>)
(goal <g> ^state <s>)
(state <s> ^block <bl>)

(chunk::aecess-block-B2
(goal <g> ^problem-space <p>)
(goal <g> ^~ta~e <8>)
(state <s> ^block <bl>)
(block <bl> ^ne~% <b2>)

(ch~nk::access-block-B3
(goal <g> ^problem-space <p>)
(goal <g> ^~tate <~>}
(state <s> ^block <bl>)
(block <bl> ^next <b2>}
(block <b2> ^next <b3>)

Figure 22. Access with unique-attributes.

they will access the three blocks as shown in Figure 22, without any problem space search
to access the three blocks. Furthermore, by matching the three chunks, the mateher can
access the blocks B1, B2, and B3 in parallel. But now, the structure of the set represented
by the unique-attributes is reflected in the chunks formed; the chunks encode the next rela-
tion. The structure of the set is used by the matcher to restrict the k-search branching factor
to one, e.g., only one block is next to the current block, guaranteeing the chtmks to be cheap.

To further facilitate the encoding of common set operations like search, add, delete, etc.,
a set of operators which can perform many common set operations has been implemented.
These operators are expected to effectively replace the functionality provided by multi-
attributes.

To gain a better understanding of the difficulties in encoding tasks, some complex task
domains need to be converted to unique-attributes. Toward this end, R1-Soar (Rosenbloom,
et al., 1985), a large Soar task with about 450 productions, which forms part of an expert
system task for computer configuration, was converted into the unique-attribute representa-
tion. This conversion was expected to take about a week or two. However, the conversion
took only about two person days. This was mainly because R1-Soar uses only four different
multi-attribute-based unstructured sets. Furthermore, R1-Soar does not form expensive
chunks; thus, there was only about a 5-10% change in decisions and run time due to the
conversion. Conversions of other Soar tasks are not always expected to be as easy--especially
if a particular Soar task makes more extensive use of multi-attributes. In any event, it would
obviously be preferable to automate such conversions. We are currently working on this
automatic conversion problem in collaboration with an independent research effort in Soar
called RTAQ (Yost and Newell, 1989; Yost and Altmann, 1989), which aims at acquiring
new tasks (or problem spaces) from external descriptions.

8.2. Average growth effect

This article has considered techniques whereby, instead of learning a single expensive chunk,
the system may learn a number of individually cheap chunks. For the cheap chunks, the
growth of tokens is at worst linear in the number of chunks. However, learning a large
number of cheap chunks could clearly overwhelm the system after some time. This effect
is called the average growth effect--the distortion in Soar's computational model due to
the addition of a large number of cheap chunks. The average growth effect is seen in all

THE PROBLEM OF EXPENSIVE CHUNKS 335

of the unique-attribute tasks examined in Section 7. For instance, in Figure 17, the accumu-
lation of 142 chunks causes a computational effect of 0.46.

The point to be noted here is that the average growth effect increases the intrinsic or
available parallelism in the system (Tambe, et al., 1988). Therefore, we speculate that this
problem could be solved by parallelism (Tambe, 1988). More specifically, we expect that
with future research in parallel production systems (Gupta, 1986; Gupta and Tambe, 1988;
Tambe, et al., 1988), it will be possible to convert the increase in concurrency into real
parallelism, allowing Soar to preserve its ideal computational model (modulo the footprint
size issue mentioned in Section 5.1).

However, even at this level of speculation about parallelism, some important issues need
to be addressed. The first issue is bounding the number of chunks in the system. As in
Section 6.2, if we assume a fmite lifetime for the problem-solver, then the number of chunks
that the system will be able to acquire is bounded. Given the finite lifetime, if the rate
of chunking is known, it is possible to estimate the increase in concurrency with chunking
over the lifetime. It is then possible to estimate the quantity of processor and memory
resources that will be required for converting that increase in concurrency into real
parallelism and provide those processor and memory resources ahead of time. Note that
the discussion here is only regarding cheap chunks, hence the argument about exponential
matches for individual chunks raised in Section 5.1 does not apply.

The previous paragraph raises a second important issue: establishing a polynomial bound
on the rate of growth of cheap chunks. An exponential growth in the number of chunks,
even with a f'mite lifetime, would be highly problematical in terms of processor and memory
resources. In Soar, the growth of chunks is assumed to be linear in the number of decision
cycles--the constant rate of chunking is one of the bases of the chunking theory of learning
(Newell and Rosenbloom, 1981). This article is not focused on establishing the validity
of this assumption. However; some evidence for the assumption is provided in Figure 23.

100.00

90.00

80.00

70,00

60.00

50.00

40.00

30.00

20,00

10.00

0.00

Grid

. S
J

.,,7

100 200 300 400 500 600 700
Decision Cycles

Figure 23. The rate of growth of chunks for the Eight-puzzle and Grid tasks.

336 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

It shows the growth in the number of chunks in the two unique-attribute tasks that learn
a large number of chunks. For both tasks, the increase in number of chunks plotted against
the number of decision cycles for learning on 20 different random problems presented to
the system. For the Eight-puzzle these problems are the same as those shown in Figure
21; for the Grid task, the problems are from (Tambe and Rosenbloom, 1988). In both these
tasks, the growth of chunks is seen to be linear (or sublinear) in the number of decision
cycles. Since these chunks are cheap, the graph indicates that the average growth effect
will cause the time per action to grow linearly with the number of decision cycles.

In fact, the following two effects would further reduce the impact of the average growth
effect:

1. Sharing: As mentioned in Section 3.2, the effect of sharing in general is quite limited
in the multi-object based matcher. However, for cheap chunks, this property could become
important. For example, in (Prieditis and Mostow, 1987) a problem about learning mem-
bership of an item in a list is presented. This task leads to learning a large number of
chunks, one for each position of the item in the list. However, the chunks have a large
number of conditions that are common. All these common conditions get shared if the
Rete algorithm is used. Thus, with matching algorithms like Rete, the addition of large
numbers of similar chunks requires very little additional processing.

2. Problem-space decomposition: Large Soar tasks are composed of many distinct search
spaces (called problem spaces). It is unlikely that all the chunks learned will belong
to a single one of these problem spaces. Thus, only a fraction of the chunks learned,
i.e., those belonging to the current problem space, will be actively matched at a time.
The rest will require only one comparison (of their problem space) to determine that
they do not belong to the current problem space and will not participate in the match.
Furthermore, the total number of problem spaces itself is not fixed--new problem spaces
can be constructed at run time (Newell, 1990, Chapter 8), thus reducing the match effort.

Thus, the growth in the processing requirement with chunking is at worst linear, making
an effective elimination of the average growth effect with parallelism seem plausible.

8.3. Unique-attributes bound the elaboration phase

Recall from Section 3.1 that a decision cycle in Soar consists of an elaboration phase fol-
lowed by a decision phase. An elaboration phase consists of multiple elaboration cycles,
where multiple productions are fired in each elaboration cycle. With a multi-attribute rep-
resentation, these elaboration phases are not bounded, i.e., it is possible for elaboration
cycles to follow each other in an unbounded fashion in a single elaboration phase. For in-
stance, it is possible to start counting the natural numbers in a single elaboration phase.
Figure 24 presents a single production for counting the natural numbers in a single elabora-
tion phase. This production will repeatedly add 1 to the existing value of the attribute count
and fire with the new value. Note that count is a multi-attribute, which increases in size
with each firing of the production.

THE PROBLEM OF EXPENSIVE CHUNKS 337

(Production::Count-natural-numbers

(current-state <x>)

(state <x> ^count <y>)
-->

(state <x> ^count (add 1 <y>)))

Figure 24. Counting the natural numbers in a single elaboration phase.

Here, unique-attributes provide another useful bound--they bound the elaboration phase.
This bound follows from the following argument. Since the k-search tree of a unique-attribute
production has a branching factor of unity, it is clear that a unique-attribute production
can generate only a single instantiation at a time (assuming a single goal). Furthermore,
the WMEs (and the values) that instantiate the production cannot change within a single
elaboration phase, so that new instantiations for this already instantiated production cannot
be generated within a single elaboration phase. Since only a single instantiation is generated,
a unique-attribute production can fire only once in a single elaboration phase. For instance,
with unique-attributes, the production in Figure 24 can fire only once in a single elaboration
phase, since only a unique value of count is possible in a single decision cycle. (In reality,
this production's action would have to be changed with unique-attributes, since firing the
production introduces a multi-attribute.) Thus, the number of productions that can fire in
an elaboration phase is bounded by the number of productions in the production system. 21
However, bounding the elaboration phase also implies that arbitrarily large working memory
structures cannot be processed in a single decision. These structures require multiple deci-
sions for processing. Again, if these large structures are fixed, then with chunking, the
system can learn more productions to deal with them.

8.4. Effect of macro-operator learning on branching factor

A problem related to expensive chunks is that of the increase in the branching factor of a
search space with macro-operator learning. This increase in the branching factor can poten-
tially cause a slowdown in a system, as it tries to apply the macro-operators in situations
where they are incapable of efficiently solving the problem at hand. In (Mooney, 1989;
Iba, 1989; Markovitch and Scott, 1989b; Greiner and Likuski, 1989), various strategies are
described to deal with this branching-factor problem, to avoid the slowdown with learning.

The branching-factor problem is related to expensive chunks in that both can cause a
slowdown with learning. However, the problem of expensive chunks is not concerned with
the branching factor of the search space--it is only concerned with the match for individual
productions/chunks. The branching factor problem could arise in Soar, if Soar learns new
operators for a problem space, without learning the appropriate search control knowledge
for that space. The research in (Mooney, 1989; lba, 1989; Markovitch and Scott, 1989b;
Greiner and Likuski, 1989) could potentially be relevant to Soar in that situation. However,
the chunks learned in the various tasks (especially the expensive-chunks tasks) in this paper
are search control chunks that select among various existing operators; these tasks do not
learn new operators.

338 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

8.5. Restricting expressiveness versus enriching expressiveness

In sharp contrast to the research reported in this article, some research efforts have focused
on enriching the expressiveness of the rule language. These efforts are aimed at learning
iterative concepts, especially by allowing looping constructs in the rule language (Shavlik
and DeJong, 1987; Cohen, 1988; Shavlik, 1989). Iterative rules will reduce the average
growth effect, since they avoid the necessity of learning multiple rules, one for each value
of the loop variable. However, iterative constructs raise difficulties in guaranteeing bounded-
ness of the match process.

In (Shell and Carbonell, 1989), the problem of expensive chunks is explicitly addressed.
They are also exploring ways of enriching the operator language to allow iterative and dis-
junctive macro-operators. As we noted in footnote 2 (on page 1), there are a number of
paths that need to be explored to fully understand how to deal with expensive chunks. Fur-
thermore, the advantages and disadvantages of going along different paths remain ill-
understood. Thus, the issue of restricting expressiveness versus enriching expressiveness
remains an interesting open research issue.

9. Relevance to other research efforts

An important question is the relevance of this research for the non-Soar community. The
representation in Soar and the unique-attribute restriction presented in this paper are both
based on attribute-value representations. Rule-based systems with attribute-values and a
combinatorial match are fairly widespread in AI, e.g., OPS5 (Brownston, Farrell, Kant,
and Martin, 1985) and Prodigy (Minton, 1988a; Minton et al., 1989). The unique-attribute
representation should map over to some of those systems and help in eliminating combina-
torics from the match. Even if the unique-attribute representation does not map over directly,
it is possible to look at the idea of restricting k-search in the production match and map
that over. Given the tradeoffs involved in the unique-attribute representation, it is not clear
exactly when such mappings would be helpful. However, it appears that the mappings might
at least be helpful in those situations where excessive k-search is involved.

Unique-attributes appear to be relevant to frame-based systems as well. Recently, Chalasani
and Altmann (Chalasani and Altmann, 1989) pointed out that the knowledge representation
scheme adopted by Theo, a frame-based architecture for problem-solving and learning
(Mitchell et al., 1989), corresponds to the unique-attribute representation. This correspon-
dence makes a plausibility argument for unique-attributes, since it shows that an entire
symbolic architecture, considerably different from Soar, is based on the unique-attribute
representation. Theo's knowledge-access language is restricted so that it works within the
unique-attributes framework. Sets in the knowledge base are represented in Theo in the
form of linked lists. Such lists are then processed by user-written Lisp routines (rather than
by constructs in the query language).

10. Summary and future work

Expensive chunks are caused by three factors: multi-objects (multi-attributes and prefer-
ences), big footprints, and bad condition ordering. Multi-objects allow combinatorial

THE PROBLEM OF EXPENSIVE CHUNKS 339

searches to occur in the match. These searches can result in exponential slowdowns. Elim-
inating multi-objects from the representation bounds the cost of a chunk to be linear in
the number of its condition elements. The new restricted representation is referred to as
the unique-attribute representation. The principal impact of the unique-attribute representa-
tion is the removal of the combinatorics from the matcher. The combinatorics can still
occur in the problem space, where they can (in principle) be controlled or terminated using
search control knowledge. Analytical and empirical evidence was presented to show that
the unique-attribute representation not only guarantees cheap chunks, but it actually elimi-
nates some excessive (and expensive) match. Two issues arise with the representational
restrictions in unique-attributes: (1) all sets in working memory have to be structured as
lists, trees, or some other task specific structures, (2) the chunks formed are less general.
The paper addressed both these issues in some detail.

However, the issue of big footprints remains to be addressed. A chunk can still have
an arbitrary number of condition elements. This issue will be one of the subjects of investi-
gation in the near future. The space of match algorithms that would be better suited for
the unique-attribute system also needs to be explored. The issue of match algorithms has
been addressed in the context of the Soar system with multi-objects (Nayak, Gupta, and
Rosenbloom, 1988), with the conclusion that the state-saving Rete algorithm is better suited
for Soar than the Treat algorithm, which saves less state. However, the conclusions in the
absence of multi-objects are not clear.

The results presented in this paper are based on a variety of toy tasks, such as the Eight-
puzzle, Waterjug, and others. To complete the analysis of the impact of unique-attributes,
some of the larger Soar tasks need to be converted to the unique-attribute representation.
Toward this end, R1-Soar (Rosenbloom, et al., 1985), a large Soar task with about 450
productions was converted into the unique-attribute representation. The possibility of con-
verting other large Soar tasks, such as Neomycin-Soar (Washington and Rosenbloom, 1988)
and Merl-Soar (Hsu, Prietula, and Steier, 1989) to unique-attributes is being investigated.

Another interesting topic for future work is automating the conversion of tasks in Soar
from the current representation to the unique-attribute representation. This work will be
in collaboration with an independent research effort called RTAQ (Yost and Newell, 1989;
Yost and Altmann, 1989), which aims at acquiring new tasks (or problem spaces) from
external descriptions. We are currently also investigating other schemes besides unique-
attributes for restricting expressiveness (Tambe and Rosenbloom, 1990). We hope that these
investigations will allow us to gain a better understanding of the interaction between learn-
ing, representation, and efficiency.

Appendix I. Descriptions of the nine tasks

Eight-Puzzle

Problem-statement: There are eight numbered movable tiles in a 3x3 frame. One cell
of the frame is always blank, making it possible to move an adjacent tile into the blank
cell. The problem is to transform one configuration to a second by moving the tiles.

States: The state is described in terms of nine bindings each of which connects a cell
from a static 3 x3 structure of cells to a tile from a dynamic structure of individual tiles.

340 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

Operators: There is only one operator: move-tile. The instances of this operator are the
only instantiated operators and there can be up to four of them at a time. These instantiated
operators move the dynamic structure around until the desired configuration is reached.

2-Queens

Problem-statement: Placing 2 queens on a 3 x 3 chessboard such that no queen takes
another.

States: The states are represented as a 3x3 array of positions. Each position has one
horizontal, one vertical and two diagonal attributes.

Operators: There is only one operator: place-queen. Up to nine instantiations of this
operator may be created at a time.

Grid

Problem-statement: Finding a path between two points on a 4 × 4 grid.
States: The grid-structure with nodes and the paths that connect nodes. The destination

node is marked with a desired flag.
Operators: There is only one operator: goto. There can be up to four instantiated goto

operators at one time, for moving to the points adjacent to the current position on the grid.

Magic-Square

Problem statement: Completing a 3x3 magic-square. In a magic-square, the sums of
the numbers along each of the columns, rows and diagonals equal one another.

States: A state has nine bindings that associate a number with a square.
Operators: There is only one operator for placing a number in a square and it can create

up to nine instantiations.

Tree

Problem-statement: Finding a path between the root and a destination point in a tree
of height 4 and branching factor of 2.

States: The tree-structure with nodes and the paths that connect nodes. The destination
node is marked with a desired flag.

Operators: There is only one operator: goto. There can be up to two instantiated goto
operators at one time, for moving to the points adjacent to the current position on the tree.

Syllogisms

Problem-statement: A syllogism is a logic puzzle where two assertions involving pairs
of terms (e.g., All P are Q; All Q are R) are given. From these given assertions some
conclusion (in this example: All P are R) is to be drawn.

States: Each state is made up of two premises or statements, one model built out of two
to three objects, and the focus (on one object in the model). See (Polk and Newell, 1988)
for details.

THE PROBLEM OF EXPENSIVE CHUNKS 341

Operators: There are four different operators that can add an object, focus on a premise,
focus on an object, and augment an object.

Monkeys and Bananas

Problem-statement: A monkey has to get the bananas hung from the ceiling in a room.
A ladder is placed under the bananas. The task for the monkey is to climb the ladder and
get the bananas.

States: The position of the Monkey in terms of its position on the ground and its height,
and the position of the bananas.

Operators: There are five different operators available to the Monkey: climb the ladder,
eat the bananas, get the bananas, climb down the ladder, and move.

Water jug

Problem-statement: Given a five gallon jug and a three gallon jug, how can precisely
one gallon of water be put into the three gallon jug? There is a well nearby, but no measur-
ing devices are available, other than the jugs themselves.

States: The amounts of water in the five gallon and three gallon jugs.
Operators: Six operators are available, one for each combination of pouring water be-

tween the well and the two jugs. Each operator specifies what container it is pouring water
to and what it is pouring water from. Each operator must empty the source or fill the destina-
tion container.

Farmer

Problem-statement: A farmer has to cross a river with a wolf, a sheep and some cabbage.
There is a boat that can carry him and one more load at a time. The farmer cannot leave
the sheep and the wolf together unattended and cross the river with the cabbage, since
the wolf may eat the sheep. Similarly, he cannot leave the sheep and the cabbage together.

States: The status of four different objects: The farmer, the sheep, the wolf, and the
cabbage.

Operators: Two operators are available: one for the farmer to cross the river alone and
one for the farmer to cross the river with one load. Three or four instantiations of the
two operators combined are available in any one state.

Appendix II. Cost and generality of chunks in the grid world

A grid of size n x n is assumed. In the interests of simplicity, boundary effects are ignored.

Multi-attribute representation

• Cost: As shown in Figure 12, each condition element multiplies the number of tokens
in the chunk by four, the number of connections emerging from any given point. The

342 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

cost of the chunk is the total number of tokens generated by the match. I f the path length
is p, and the cost of the chunk is C m, then:

Cm = 4 + 42 + 43 + . . . + 4 p

= E~=l 4 k = (4 p+I - 4)/(4 - 1)

= (4 p + I - 4) / 3

• Generality: The chunk transfers to any two points on the grid connected by a path of
lengthp. There are n 2 points on the grid that can act as a source. To calculate the number
of destinations possible from a given source, consider Figure 14. The points reached
from the source form squares (or euclidean circles), around the source. I f the path length
i sp , then the squares are at a distance of 2, 4, 6, . . . , p (for an evenp) , and at a distance

of 1, 3, 5 , p (for an odd p). Let us call this distance the radius of the square.
Let k be the radius of a square. Let x and y be the cartesian coordinates of a destina-

tion point on the square with the source as the origin. Then the number of possible des-
tinations is obtained by enumerating the solutions of the following equation for integer
values of x and y.

Ixl + lyl = k

There are 4*k solutions to this equation, since both x and y can vary between - k , . . .
0 , . . . , k. Thus there are 4*k destinations on a square of radius k.

I f M is the total number of points that can be reached from a given source, then for
an even p (the analysis is very similar for an odd p):

M = 1 + 4 * 2 + 4 * 4 +

= 1 + 8 (1 + 2 + . . .

= (40 + 1) 2

. . . . + 4 * p [1 is for the source]

+ p /2) = 1 + pZ + 2p

The total number of transfers

= sources * destinations per source

= n 2 * (t7 + 1) z

. Total cost: The total cost is the product of the cost per chunk and the number of chunks.
Since only one chunk is learned, the total cost is equal to the cost of that one chunk.

Unique-attribute representation

• Cost: As shown in Figure 13, the number of tokens in the chunk is linear in the length
of the path (p).

THE PROBLEM OF EXPENSIVE CHUNKS 343

• Generality: The chunk can transfer to any two points connected in a specific manner,
e.g., up-right-up-right. Thus, for one given source, the chunk will transfer to one destina-
tion. There are n 2 points on the grid. Therefore the generality is n 2

• Total cost: The total cost (without sharing) is the product of the cost (p) of one chunk
and the total number ((/7 + 1) 2) of chunks learned. The total number of chunks learned
in this representation is obtained from the discussion in Section 6.1.

Appendix III. Generality of chunks in the Eight-puzzle task

This analysis compares the generality of chunks in three different representations: no-transfer,
multi-attributes, and unique-attributes. We assume that some simple search-control chunks
are to be learned. Given two possible operators (see Figure 19 for examples of operators
in the Eight-puzzle domain), the chunks give a preference to one operator over the other.
The operators are evaluated as follows:

• I f an operator moves a tile from out-of-place to in-place: + 1
• If an operator moves a tile from in-place to out-of-place: - 1
• If an operator moves a tile from out-of-place to out-of-place: 0

In-place and out-of-place are determined by explicit comparison of the positions of the
tiles in the present state and the desired state. I f the two operator evaluations result in the
same value, then an indif ferent preference is generated, i.e., the two operators are equally
preferable (or unpreferable).

No-transfer chunks. A no-transfer chunk has the format shown in Figure 25. Note that this
chunk does not have any variables. It first matches the entire present state, then the entire
desired state, then the two operators, and then prefers one operator over the other.

(Production::No-transfer-case-78200

Desired-state-position ii ^tile])
Desired-state-position 12 ^tile 2)
Desired-state-positlon 13 ^tile 3)

Present-state-position Ii ^tile i)
Prcsent-state-posltion 12 ^tile 0)
Present-state-position 13 ^tiLe 2)

(Operator-mere-tile OPl ^tile i)
(Operator-move-tile OP2 ^tile 2)

(Preference Operator-move-tile OPl werse-than

Figure 25. A no-transfer chunk in the Eight-puzzle domain.

Operator-move-tile OP2))

344 M. TAMBE, A. NEWELL AND ES. ROSENBLOOM

For each possible present and desired state, we require one such chunk. There are 9!
possible desired states in the Eight-puzzle. There are 9? possible present states. The total
number of configurations of the present and desired states cannot be simply multiplied
together, since depending on the position of the blank-tile, the number of two-operator
combinations in each state is different. There are nine possible positions of the blank-tile.
For each, the number of present-state and operator combinations need to be computed.

• If the blank-tile is in the center, four operators are available. The four operators can be
combined in (4 choose 2 =) 6 ways. The rest of the tiles can be permuted in 8? ways--a
total of 6"(8!) ways.

• I f the blank-tile is in a comer, only two operators are available. There are four corner-
positions for the blank-tile. For each of those, there are 8? permutations of the other
tiles--a total of 4*(8?) ways.

• For the other positions of the blank-tile, three operators are available. We can combine
them in three (3 choose 2) ways. There are four such positions of the blank-tile, and
for each of those, there are 8? permutations of the other tiles--a total of 4*3*(8?) ways.

Combining all the above numbers, we get 9? (for the desired-state) * 8!*(4"3 + 4 + 6)
(for the present state) = 7983360 (= 8 million) no-transfer chunks to cover the entire space.

Multi-attributes. Consider a multi-attribute equivalent of the chunk in Figure 25. This chunk
has the following features: it includes variables and uses the representation presented in
Appendix I. Instead of matching the entire present state and desired state, it matches only
the relevant tiles. Since it performs the match using multi-attributes and variables, it is
completely general in terms of the operators being considered, the present state and the
desired state. This implies that only a single chunk should be able to cover the entire space.
However, since the two operators being considered in one search control chunk may still
evaluate to different values, five different chunks would be required:

• One chunk each would be required for the following combinations of operator evalua-
tions: (-1, -1), (-1, 0), (0, 0), (-1, 1), (0, 1)

• The combination of (1, 1) is not possible, as that would mean two tiles from the present
state occupy the same cell in the desired state.

Therefore, five multi-attribute chunks suffice to cover the entire space covered by the
8 million no-transfer chunks.

Unique attributes. Consider a unique-attribute equivalent of the chunk in Figure 25. The
analysis is similar to the analysis for the multi-attribute chunks. However, the operators
in unique-attribute chunks have to be in specific directions up, down, right, left. There
are six (4 choose 2) possible combinations of the four directions. Furthermore, for each
possible combination of directions, there are 10 possible combinations of evaluations. For
instance, one unique-attribute chunk will compare an operator for moving a tile up with
an evaluation of -1, to an operator moving a tile down with an evaluation of 0. Therefore,
(6"10 =) 60 unique-attribute chunks are needed to cover the entire space.

THE PROBLEM OF EXPENSIVE CHUNKS 345

Acknowledgments

W e t h a n k J o h n L a i r d , S teve M i n t o n , D a v i d Steier , D o n C o h e n , B o b M a c G r e g o r , a n d m e m -

b e r s o f t h e S o a r g r o u p fo r m a n y i n t e r e s t i n g d i s c u s s i o n s o n e x p e n s i v e c h u n k s . J a c k M o s t o w

a n d t h e t h r e e a n o n y m o u s r e v i e w e r s p r o v i d e d v a l u a b l e f e e d b a c k fo r i m p r o v i n g the qua l i t y

o f th is p a p e r . W e a l s o t h a n k K a t h y S w e d l o w fo r t e c h n i c a l ed i t ing .

T h i s r e s e a r c h was s p o n s o r e d by t h e D e f e n s e A d v a n c e d R e s e a r c h P r o j e c t s A g e n c y (D o D)

u n d e r c o n t r a c t n u m b e r s F33615-87-C-1499 a n d N 0 0 0 3 9 - 8 6 C - 0 0 3 3 (via s u b c o n t r a c t f r o m

the K n o w l e d g e S y s t e m s L a b o r a t o r y , S t a n f o r d U n i v e r s i t y) , by t h e N a t i o n a l A e r o n a u t i c s a n d

S p a c e A d m i n i s t r a t i o n u n d e r c o o p e r a t i v e a g r e e m e n t n u m b e r N C C 2-538, a n d by E n c o r e

C o m p u t e r C o r p o r a t i o n .

Notes

1. This article is an expanded version of the following two conference papers: (Tambe and Newell, 1988) and
(Tambe and Rosenbloom, 1989).

2. The particular scheme for restricting expressiveness presented here is not the only one possible. Various
other schemes are also possible (Tambe and Rosenbloom, 1990). However, this scheme remains one of the
most interesting ones and deserves extended treatment.

3. Soar/PSM-E is implemented on the Encore multi-processor. For these measurements, the system was run
in a uniprocessor mode.

4. Note that in all of the tasks above, where expensive chunks occurred, problem size was reduced to reduce
the cost of the chunks. Without such a reduction, the problems would have been intractable after chunking.
For instance, the N-queens task was converted to a 2-Queens task.

5. Since the completion of this investigation three other cases of expensive chunks were detected in (Washington
and Rosenbloom, 1988), (Hsu, Prietula, and Steier, 1989), and (Reich, 1988). The analysis in this paper
applies to those systems as well.

6. The Soar version decribed here and used in the experiments in this article is Soar 4.5 (Laird, et al., 1989).
7. Variations of about a factor of 2 have been seen in time/token. Therefore, a model built on tokens will not

be extremely precise. However, the purpose here is to allow us to compare expensive and cheap chunks,
independent of the machine implementation. Given the order of magnitude difference in the costs of those
chunks, a token-based model seems to serve the purpose.

8. This assertion follows from a detailed analysis of the chunks learned in the tasks from Table 1 and an informal
analysis of the productions and chunks in various other Soar tasks. This particular effect usually occurs because
these productions/chunks test the current state in the problem space. After a single firing of the production,
this state typically changes, removing previously accumulated k-search. Actually, even if the production does
not fire, the k-search model manages to estimate the production's match cost. However, the k-search model
may not work well if the production fires many different times without requiring any additional k-search.

9. We thank John Laird for this representation.
10. Having variables in the class and attribute fields is very rare in Soar. None of the tasks in this paper use

such variabilized class and attribute fields. In fact, variab'flization in these two fields is on the verge of elimination
from Soar. The only consistent exception to the prebound variable in the identifier field is, obviously, the
first condition in the production. This condition is the one that matches the current goal, and hence usually
only a single WME--thus it does not change the main conclusion here about multiplicity in matching.

11. These multi-attributes should not be confused with the multi-attributes used in file indexing (Wiederhold, 1987).
12. Written in C, and running on a Vax 8800, which is about 6 MIPs.
13. The large speedup in Magic-square is partly because the original ordering required a large number of tokens,

which cluttered up some of the hash tables used in this implementation, increasing the time per token.
14. Some other minor restrictions are also required: (1) Variable attributes must be prebound. (2) Star's Rete

match algorithm needs a small modification to handle conjunctive negations in Soar. The impact of these
restrictions is expected to be very limited. See (Tambe and Rosenbloom, 1988) for details.

346 M. TAMBE, A. NEWELL AND P.S. ROSENBLOOM

15. These and other subsequent measurements were done using a Common Lisp version of Soar running on
a Vax 8800. Due to the differences in the implementation, and some small change in the Grid and Magic-
square task sizes, the execution times of the multi-attributes presented here do not completely correspond
with the numbers in Table 1. Also, the measurements here present the total run time as opposed to the match
time in Table 1.

16. In addition to the unique- and multi-attributes, a representation that allows no generality whatsoever is also
possible. For a comparative analysis of such a representation, see (Tarnbe and Rosenbloom, 1988).

17. Note that once Soar learns a chunk to solve a problem, it will not create more chunks to solve the same
problem. In this particular case, once the unique-attribute system has learned a chunk covering a single path
to a destination, it will not learn more chunks covering different paths for the same destination.

18. The large number of chunks (17) result from a variety of subgoals being chunked.
19. For this experiment, problems were generated by randomly walking back (a maximum of 12 steps) from

a fixed goal-state. Both the number of steps and the move at each step were randomly generated using the
microsecond clock of the Vax 8800.

20. Macros for writing productions may be another way to address this problem.
21. The result of the unique-attribute representation bounding the elaboration phase holds even if multiple goals

are present in the goal hierarchy. However, the argument becomes somewhat more complex.

References

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1985). Programming expert systems in OPS5: An introduc-
tion to rule-based programming. Reading, MA: Addison-Wesley.

Chalasani, P. and Altmann, E. (1989). Comparing the representations in Soar and Theo. Unpublished, School
of Computer Science, Carnegie Mellon University.

Chase, M.P., Zweben, M., Piazza, R.L., Burger, J.D., Maglio P.P. and Hirsh, H. (1989). Approximating learned
search control knowledge. Proceedings of International Workshop on Machine Learning (pp. 218-220).

Cohen, W. (1988). Generalizing number and learning from multiple examples in explanation-based learning. Pro-
ceedings of the Fifth International Conference on Machine Learning (pp. 256-269).

Cohen, W., Mostow, J. and Borgida, A. (1988). Generalizing number in explanation-based learning. Proceedings
of the Spring Symposium on Explanation-Based Learning (pp. 68-72).

DeJong, G.E and Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1,
145-176.

Forgy, C.L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial
Intelligence, 19, 17-37.

Forgy, C.L. (1984). The 0PS83 Report (Technical Report CMU-CS-84-133) Pittsburgh, PA: Carnegie Mellon
University, Computer Science Department.

Garey, M.R. and Johnson, D.S. (1978). Computers and intractability: A guide to the theory of NP-completeness.
San Francisco, CA: W.H. Freeman and Company.

Greiner, R. and Likuski, J. (1989). Incorporating redundant learned rules: A preliminary formal analysis of EBL.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 744-749).

Gupta, A. (1986). Parallelism in production systems. Doctoral dissertation, Computer Science Department, Carnegie
Mellon University. Also a book, Morgan Kaufmann, (1987).

Gupta, A. and Tambe, M. (1988). Suitability of message passing computers for implementing production systems.
Proceedings of the Seventh Conference on Artificial Intelligence (pp. 687-692).

Hsu, W., Prietula, M. and Steier, D. (1989). Merl-Soar: Scheduling within a general architecture for intelligence.
Proceedings of the Third International Conference on Expert Systems and the Leading Edge in Production and
Operations Management (pp. 467-481).

Iba, G.A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning, 3, 285-318.
Ishida, T. (1988). Optimizing rules in production system programs. Proceedings of the Seventh National Confer-

ence on Artificial Intelligence (pp. 699-704).
Keller, R. (1987). Defining operationality for explanation-based learning. Proceedings of the Sixth National Confer-

ence on Artificial Intelligence (pp. 482-487).

THE PROBLEM OF EXPENSIVE CHUNKS 347

Laird, J.E., Swedlow, K.R., Altmann, E.M., Co ngdon, C.B. and Wiesmeyer, M. (1989). Soar 4. 5 user's manual.
School of Computer Science, Carnegie Mellon University and Department of Electrical Engineering and Computer
Science, University of Michigan, June, 1989.

Laird, J.E., Newell, A. and Rosenbloom, P.S. (1987). Soar: An architecture for general intelligence. Artificial
Intelligence, 33 1-64.

Laird, J.E., Rosenbloom, P.S. and Newell, A. (1986). Chunking in Soar: The anatomy of a general learning
mechanism: Machine Learning, 1, 11-46.

Levesque, H.J. and Brachman, R. J. (1985). A fundamental tradeoff in knowledge representation and reasoning.
In Brachman, R.J. and Levesque, H.J. (Eds.), Readings in Knowledge Representation. Los Altos, CA: Morgan
Kaufmann Publishers, Inc.

Markovitch, S. and Scott, P.D. (1988). The role of forgetting in learning. Proceedings of the Fifth International
Conference on Machine Learning (pp. 459-465).

Markovitch, S. and Scott, P.D. (1989). Information filters and their implementation in the SYLLOG system. Pro-
ceedings of the Sixth International Workshop on Machine Learning (pp. 404-407).

Markovitch, S. and Scott, P.D. (1989). Utilization filtering: a method for reducing the inherent harmfulness of
deductively learned knowledge. Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence (pp. 738-743).

Minton, S. (1985). Selectively generalizing plans for problem-solving. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence (pp. 596-599).

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. Proceedings of the
Seventh National Conference on Artificial Intelligence (pp. 564-569).

Minton, S. (1988). Learning Effective Search Control Knowledge: An explanation-based approach. Doctoral disser-
tation, Computer Science Department, Carnegie Mellon University.

Minton, S., Carbonell, J.G., Knoblock, C.A., Kuokka, D.R., Etzioni, O. and Gil, Y. (1989). Explanation-based
learning: A problem solving perspective. Machine Learning, Vol. 40 (pp. 63-118).

Mimnker, D.P. (1987). Treat: A better match algorithm for AI production systems. Proceedings of the Sixth National
Conference on Artificial Intelligence (pp. 42-47).

Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J., Etzioni, O., Ringuette, M. and Schlimmer, J.C. (1989). Theo:
A framework for self-improving systems. In VanLehn, K. (Ed.), Architectures for Intelligence. Hillsdale, N J:
Lawrence Erlbaum Associates.

Mitchell, T.M., Keller, R.M. and Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying view.
Machine Learning, 1, 47-80.

Mooney, R. (1989). The effect of rule use on the utility of explanation-based learning. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (pp. 725-730).

Nayak, P., Gupta, A. and Rosenbloom, P. (1988). Comparison of the Rete and Treat production matchers for
Soar (A summary). Proceedings of the Seventh National Conference on Artificial Intelligence (pp. 693-698).

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press. In press.
Newell, A. and Rosenbloom, P.S. (1981). Mechanisms of skiU acquisition and the law of practice. In Anderson,

J.R. (Ed.), Cognitive Skills and Their Acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates.
Newell, A., Rosenbloom, P.S. and Laird, J.E. (1990). Symbolic architectures for cognition. In M.I. Posner (Ed.),

Foundations of Cognitive Science. Cambridge,/VIA: Bradford Books/MIT Press. In press.
Oflazer, K. (1987). Partitioning in Parallel Processing of Production Systems. Doctoral dissertation, Computer

Science Department, Carnegie Mellon University.
Pereira, L.M. and Porto, A. (1982). Selective backtracking. In Clark, K.L. and Tarniund, S.A. (Eds.), Logic

Programming. NY: Academic Press.
Polk, T.A. and Newell, A. (1988). Modeling human syllogistic reasoning in Soar. Proceedings of the Annual

Conference of the Cognitive Science Society (pp. 181-187).
Preiditis, A. and Mostow, J. (1987). PROLEARN: Towards a Prolog interpreter that learns. Proceedings of the

Sixth National Conference on Artificial Intelligence (pp. 494-498).
Reich, Y. (1988). Learning plans as a weak method for design. Department of Civil Engineering, Carnegie Mellon

University, Unpublished.
Resenbloom, P.S. and Laird, J.E. (1986). Mapping explanation-based generalization onto Soar. Proceedings of

the Fifth National Conference on Artificial Intelligence (pp. 561-567).

348 M. TAMBE, A. NEWELL AND RS. ROSENBLOOM

Rosenbloom, P.S. and Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice.
In Laird, J.E., Rosenbloom, ES., and Newell, A. (Eds.), Universal Subgoaling and Chunking: The Automatic
Generation and Learning of Goal Hierarchies. Boston, MA: Kluwer Academic Publishers.

Rosenbloom, ES., Laird, J.E., McDermott, J., Newell, A. and Orciuch, E. (1985). R1-Soar: An experiment
in knowledge-intensive programming in a problem-solving architecture. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 7, 561-569.

Scales, D.J. (1986). Efficient matching algorithms for the Soar/Ops5 production system (Technical Report
KSL-86-47). Palo Alto, CA: Stanford University, Knowledge Systems Laboratory, Department of Computer
Science.

Shavlik, J. (1989). Acquiring recursive concepts with explanation-based learning. Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (pp. 688-693).

Shavlik, J.W. and DeJong, G.E (1987). An explanation-based approach to generalizing number. Proceedings of
the Tenth International Joint Conference on Artificial Intelligence (pp. 236-238).

Shell, E and Carbonell, J_ (1989). Towards a general framework for composing disjunctive and iternative macro-
operators. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (pp. 596-602).

Smith, D.E. and Genesereth, M.R. (1986). Ordering conjunctive queries. Artificial Intelligence, 26, 171-215.
Steier, D.M. (1986). Speeding up Soarware. School of Compuer Science, Carnegie Mellon University, Unpublished.
Steier, D.M. (1987). Cypress-Soar: A case study in search and learning in algorithm design. Proceedings of the

Tenth International Joint Conference on Artificial Intelligence (pp. 327-330).
Steier, D.M., Laird, J.E., Newell, A., Rosenbloom, ES, Flynn, R.A., Golding, A., Polk, T.A., Shivers, O.G.,

Unruh, A. and Yost, G.R. (1987). Varieties of learning in Soar: 1987. Proceedings of the Fourth International
Workshop on Machine Learning (pp. 300-311).

TamBe, M. (1988). Speculations on the computational effects of chunking. Computer Science Depa~nent, Carnegie
Mellon University, Unpublished.

Tambe, M. and Newell, A. (1988). Some chunks are expensive. Proceedings of the Fifth International Conference
on Machine Learning (pp. 451-458).

Tambe, M. and Rosenbloom, E (1988). Eliminating expensive chunks (Technical Report CMU-CS-88-189). Pitts-
burgh, PA: Carnegie Mellon University, Computer Science Department.

Tambe, M. and Rosenbloom, E (1989). Eliminating expensive chunks by restricting expressiveness. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence (pp. 731-737).

Tambe, M. and Rosenbloom, E (1990). A framework for investigating production ~stem formulations with poly
nomially bounded match. Proceedings of the Eighth National Conference on Artificial Intelligence. (To appear.)

Tambe, M., Kalp, D., Gupta, A., Forgy, C.L., Milnes, B.G. and Newell, A. (1988). Soar/PSM-E: Investigating
match parallelism in a learning production system. Proceedings of the ACM/SIGPLAN Symposium on Parallel
Programming: Experience with applications, languages, and systems (pp. 146-160).

Ullman, J.D. (1982). Principles of database systems. Rockville, MD: Computer Science Press.
Washington, R. and Rosenbloom, ES. (1988). Applying problem solving and learning to diagnosis. Knowledge

Systems Laboratory, Stanford University, December, 1988, Unpublished.
Wiederhold, G. (1987). File organization for database design. NY: McGraw-Hill.
Yost, G.R. and Altmarm, E.M. (1989). TAQL 3.0: Soar task acquisition system user's manual. School of Computer

Science, Carnegie Mellon University, December, 1989, Unpublished.
Yost, G.R. and Newell, A. (1989). A problem space approach to expert system specification. Proceedings of

the Eleventh International Joint Conference on Artificial Intelligence (pp. 621-627).

