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Abstract. Soar is an architecture for a system that is intended to be capable of general intelligence. Chunking, 
a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items 
of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. 
These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to deter- 
mine them. It is already well-establiShed that chunking improves performance in Soar when viewed in terms 
of the subproblems required and the number of steps within a subproblem. However, despite the reduction in 
number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due 
to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge 
base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's 
performance. 

In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose 
a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the represen- 
tational language to guarantee that the chunks formed will require only a limited amount of accessing effort. 
We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support 
our analysis. 
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of learning 

1. Introduct ion 

The  goal  o f  the Soar  pro jec t  is to build a system capable  of  genera l  intel l igent  behavior  

and autonomous existence (Laird,  Newel l ,  and Rosenbloom,  1987). One  central  hypothesis 

is that chunking (Laird,  Rosenb loom,  and Newel l ,  1986), an e lementary  exper ience-based  

learning mechan i sm,  can form the basis of  a general  learning mechan ism.  Soar  uses a pro-  

duct ion  system (rule-based system) to encode  its knowledge  base. Chunking  creates new 

productions (chunks), based on the results of  problem-solving,  and adds them to the produc- 

t ion system. These  chunks then fire in appropr ia te  later situations, direct ly  producing  a 
result in situations which once required problem-solving to determine. This chunking process 

is a form of  explanation-based learning (EBL) (DeJong and Mooney,  1986; Mitchell ,  Keller, 

and Kedar -Cabel l i ,  1986; Rosenb loom and Laird,  1986). 
It is a l ready wel l -es tabl ished that chunking  improves  pe r fo rmance  in Soar  when  v iewed 

in terms of  the subproblems requ i red  and the number  of  steps wi th in  a subprob lem (Steier, 
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et al., 1987). However, despite the reduction in number of steps, there may sometimes be 
a severe degradation in the total run time. This problem arises due to expensive chunks, 
i.e., learned productions that consume large amounts of processing in the match. In the 
worst case, matching expensive chunks is NP-hard (Tambe and Newell, 1988). Expensive 
chunks pose a major problem for Soar, since in their presence, no guarantees can be given 
about Soar's performance. 

This article is an investigation into expensive chunks. 1 We establish that expensive chunks 
exist and analyze their causes. This analysis reveals that expensive chunks are formed due 
to particular representations of tasks in Soar. We then present a solution to the problem 
of expensive chunks. The solution guarantees that chunking will create only cheap, i.e., 
inexpensive chunks, with a linear bound on the match. The central notion in the solution 
is to restrict the expressiveness of Soar's production system, so as to prohibit those task 
representations that lead to expensive chunks. As a result, tasks have to be encoded with 
a less expressive production system language. Thus, we trade off some amount of expres- 
siveness for a guarantee of inexpensive chunks. / 

Concern about degradation in performance due to learning has appeared widely in the 
EBL literature (Iba, 1989; Keller, 1987; Markovitch and Scott, 1988; Minton, 1985; Minton, 
1988a). Various approaches have been used to deal with this degradation, most focusing 
on some form of a cost-benefit analysis of the learned material. In contrast, the overall 
goal of this work is to achieve the safety of chunking, where safety of chunking is defined 
as a guarantee that chunking will not degrade Soar's performance. To do this, our solution 
for expensive chunks focuses on reducing the cost of chunks to a negligible level. Though 
the solution provides no explicit guarantees about the benefits of chunking, empirical and 
analytical case studies of several tasks suggest that the solution does help Soar obtain per- 
formance benefits via chunking. 

This article is organized as follows: Section 2 establishes that expensive chunks exist. 
Section 3 provides background information about Soar and its production matcher. Section 
4 uses the background material to decompose the causes of expensive chunks into two com- 
ponents. Section 5 presents the solution for expensive chunks based on restricting expressive- 
ness. Section 6 analyzes the tradeoffs involved in adopting the solution. Section 7 provides 
detailed experimental results bearing on expensive chunks. Section 8 presents a discussion 
of some issues related to expensive chunks. Section 9 discusses the relevance of this research 
to other research efforts. Finally, Section 10 summarizes the results and discusses the open 
issues remaining for future work. 

2. The problem of expensive chunks 

The problem of expensive chunks is Soar's particular version of a more general problem: 
the high cost of accessing learned knowledge in problem-solving systems (Minton, 1988a). 
This accessing cost arises from testing the applicability of the learned knowledge in a 
problem-solving situation. In the extreme, testing the applicability of a piece of learned 
knowledge can be so expensive that a problem-solver may slow down with learning, a clearly 
undesirable effect. 

To analyze this problem in the context of Soar, we need to separate out various aspects 
of what happens to Soar's performance with learning. Intelligent systems such as Soar, 
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that are based on symbolic architectures (Newell, Rosenbloom, and Laird, 1990), partition 
the complete system into two domains. Above the architecture is the cognitive domain of 
flexible symbol processing. Below the architecture is the implementation domain of fixed 
computational processes. In Soar, the cognitive domain consists of problem space search. 
It is a symbolic process that can itself be controlled by further symbol processing, i.e., 
the problem space search can be controlled using search control knowledge. The implemen- 
tation domain, on the other hand, performs production match, i.e., it tests applicability 
of the productions in the knowledge base. Production match is a fixed process that runs 
to completion unaffected by the knowledge in the cognitive domain, i.e., search control 
is unavailable in the implementation domain. 

Thus, the computations in the cognitive and implementation domains are quite distinct. 
Analogously, the phenomena in these domains that arise out of chunking are also qualitatively 
different in nature. Therefore, it is useful to partition the effects of learning on task perform- 
ance in the two domains into two different effects: the cognitive effect (in the cognitive 
domain) and the computational effect (in the implementation domain). The cognitive effect 
is the change in the number of cognitive operations required to perform the task. The com- 
putational effect is the change in the amount of time required to perform the individual 
cognitive steps. For Soar, the cognitive effect of chunking is the change in the number 
of (right-hand-side) actions of productions that are executed, since actions are the smallest 
cognitive operations. The computational effect of chunking is the change in the time required 
per action that is executed. The implementation domain performs production match for 
each action in the cognitive domain. This match computation per action in the implementa- 
tion domain cannot be terminated or altered by the addition of any amount of knowledge 
in the cognitive domain. Therefore, it is important to bound the match computation per 
action to guarantee the performance of the system. This constraint gives rise to the notion 
of an ideal computational model, which says that the time per action should be constant. 
This ideal computational model relates back to our goal of safety of chunking--achieving 
a constant time per action implies that chunking has not added any match cost. The compu- 
tational effect is then a measure of the amount of distortion in the ideal computational model 
due to chunking. 

Table 1 shows the effects of chunking for eight tasks implemented in Soar (a description 
of these tasks and the representations used in solving them appears in Appendix 1). Column 
1 gives the cognitive effect for the eight tasks. It is defined as the number of actions before 
chunking divided by the number of actions after chunking, i.e., the speedup, in number 
of actions, achieved due to chunking. Column 2 gives the computational effect, defined 
as the time-per-action before chunking divided by the time-per-action after chunking. Ideally 
the computational effect should be unity. Note that in calculating both the computational 
and cognitive effects, the before-chunking quantity is in the numerator and the after-chunking 
quantity is in the denominator. Thus, if the cognitive effect and the computational effects 
are multiplied, they provide the speedup in total match time. Column 3 gives this speedup 
in total match time. Column 4 gives the number of chunks added to the system in the course 
of the run. These measurements were done on Soar/PSM-E (Tambe, et al., 1988), a system 
that uses a highly optimized implementation of the Rete matcher, based on OPS83 software 
technology (Forgy, 1984)? 
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Table 1. Effects of chunking on performance. 

Task Cognitive Computational Total Number of 
Effect E ffec t Speedup Chunks 

Eight-puzzle 6.53 0.15 0.99 11 
2-Queens 5.21 0.06 0.32 3 
Grid 13.54 0.06 0.85 14 
Magic-square 6.59 0.04 0.25 5 
Syllogisms 11.59 0.89 10.27 10 
Monkey and 6.20 0.83 5.16 4 
Bananas 

Walerjug 9.13 0.57 5.22 11 
Farmer 11.09 0.45 5.04 14 

In all the tasks, chunking causes a large cognitive effect, i.e., it provides a big speedup 
in the number of actions. However, for the tasks in the upper half of the table, i.e., the 
Eight-puzzle, 2-Queens, Grid, and Magic-square, the speedup in terms of total match time 
is less than 1--the match time has actually increased  after chunking. For instance, the Magic- 
square task shows a total speedup of 0.25, i.e., a four-fold slowdown after chunking. This 
anomaly occurs because of the computational effect, which shows that the time per action 
for these four tasks has increased by as much as a factor of 25 (for the Magic-square). 
For other tasks, e.g., Syllogisms, Monkeys and Bananas, Waterjug, and Farmer, the speedup 
in terms of the number of actions due to chunking is followed by a concomitant speedup 
in the total match time. 

Thus, despite the optimized implementation, matching a few chunks causes a very large 
increase in time per action in some tasks, causing a gross violation of Soar's ideal compu- 
tation model. These chunks are called expens ive  chunks  4 The slowdowns caused by expen- 
sive chunks come from the large (combinatorial) match effort for individual chunks, rather 
than the number of chunks, or combinatoric firings of chunks. As shown later in this paper, 
in the set of tasks examined, this large match effort in the expensive chunks is due to the 
complexity of the match process rather than the total number of conditions in the chunks. 
Expensive chunks occur in the Eight-puzzle, 2-Queens, Grid, and Magic-square tasks, while 
the chunks in the other tasks are relatively cheap. 

In Table 1, the four tasks containing cheap chunks are typical of cheap-chunks tasks. 
The four expensive-chunks tasks in Table 1 were the only ones found that exhibit expensive 
chunks, out of several dozen tasks in the history of the Soar project (Steier, et al., 1987). 
Thus, expensive chunks do not occur often? But when they do occur, they clearly pose 
a big performance penalty for the system. 

Problems similar to expensive chunks can also arise in hand-coding of productions (recall 
that chunks are not hand-coded, they are learned productions). The analysis presented here 
applies to such hand-coded productions as well. However, hand-coding allows the flexibility 
of a detailed analysis of the problem; the programmer involved may then restructure the task 
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or rewrite the productions to remove inefficiencies (Brownston, Farrell, Kant, and Martin, 
1985; Steier, 1986). Therefore the issues of expensive productions are not (and have not 
been) as imperative in hand-coding as they are in an automated process like chunking. 

3. Background 

The first subsection below presents a brief overview of Soar. This overview helps to ground 
the discussion of expensive chunks in the following sections. The overview is divided into 
three portions describing the performance system, the non-penetrability of memory assump- 
tion, and the chunking mechanism. Readers familiar with these issues may wish to skip 
this overview. The second subsection presents a simple model of Soar's production matcher-- 
the k-search model--to free the analysis of expensive chunks from the complexities of the 
implementation. 

3.1. Soar 6 

Soar is based on formulating all symbolic goal-oriented processing as search in problem 
spaces. The problem space determines the set of states and operators that can be used during 
the processing to attain a goal. The states represent situations. There is an initial state, 
representing the initial situation, and a set of desired states that represent the goal. An 
operator, when applied to a state in the problem space, yields another state in the problem 
space. The goal is achieved when a desired state is reached as a result of a sequence of 
operator applications starting from the initial state. 

Each goal defines a problem-solving context. A context is a data structure in Soar's work- 
ing memory--a short-term declarative memory--that contains, in addition to a goal, roles 
for a problem space, a state, and an operator. Problem solving for a goal is driven by the 
acts of selecting problem space, states, and operators for the appropriate roles in the context. 
Each such deliberate act of the Soar architecture is accomplished by a decision cycle that 
consists of two phases: an elaboration phase and a decision phase. 

The elaboration phase proceeds in synchronous cycles. During each cycle of the elaboration 
phase, all of the productions in the production memory--a long-term procedural memory-- 
are matched against working memory, and then all of the resulting production instantiations 
are fired. The net effect of these production firings is to add information to working memory. 
New objects are created, new knowledge is added about existing objects, and preferences 
are generated. 

There is a fixed language of preferences, which is used to describe the acceptability and 
desirability of the alternatives being considered for selection. By using different preferences, 
it is possible to assert that a particular problem space, state or operator is acceptable (i.e., 
should be considered for selection), rejected (i.e., should not be considered for selection), 
better than another alternative, etc. When the elaboration phase reaches quiescence--that 
is, no more productions can fire--the second phase of the decision cycle, the decision pro- 
cedure, is entered. The decision procedure is a fixed body of code that interprets the prefer- 
ences in working memory according to their fixed semantics. If the preferences uniquely 
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specify an object to be selected for a role in a context, then a decision can be made, and 
the specified object becomes the current value of the role. The decision cycle then repeats, 
starting with another elaboration phase. 

If, when the elaboration phase reaches quiescence, the preferences in working memory 
are either incomplete or inconsistent, an impasse occurs in problem solving because the 
system does not know how to proceed. When an impasse occurs, a subgoal with an associated 
problem-solving context is automatically generated for the task of resolving the impasse. 
The impasses, and thus their subgoals, vary from problems of selection (of problem spaces, 
states, and operators) to problems of generation (e.g., operator application). Given a subgoal, 
Soar can bring its full problem-solving capability and knowledge to bear on resolving the 
impasse that caused the subgoal. In this reflective process, Soar can access all of the struc- 
tures in working memory and fire all of the productions which match this working memory. 
However, it cannot directly examine the production memory. Productions are compiled 
code, which is inaccessible, i.e., the production memory is non-penetrable. (This constraint 
has a major impact on the solution to the expensive chunks problem.) When impasses occur 
in the course of resolving other impasses, then subgoals occur within subgoals, and a goal 
hierarchy results. 

Chunking is Soar's sole learning mechanism. It acquires new productions, called chunks, 
that summarize the processing that leads to results of subgoals. Chunking only creates new 
productions; it does not delete, modify, or replace productions. The actions of the chunk 
are based on the results of the subgoal. The conditions of the chunk are based on those 
aspects of the goals above the subgoal (the supergoals) that are relevant to the determina- 
tion of the results. Relevance is determined by using the traces of the productions that fired 
during the subgoal. Starting from the production trace that generated the subgoal's result, 
those production traces that generated the working-memory elements in the condition 
elements are found, and so on, until elements are reached that exist in the supergoals. 

An example of this chunking process is shown schematically in Figure 1. (This is a highly 
simplified example of chunking. See (Laird, Rosenbloom, and Newell, 1986) for more de- 
mils.) The circled letters are objects in working memory. The two vertical bars mark the 
beginning and ending of the subgoal. The objects to the left of the first bar (A, B, C, D, 
E, and F) exist in the supergoals. The objects between the two bars (G, H, and I) are inter- 
nal to the subgoal. P1, P2, P3 and P4 are production traces; for example, production trace 
P1 records that a production fired which examined objects A and B and generated object G. 
The highlighted production traces are those that are involved in the backtracing process. 

Chunking in this figure begins by making the result object (J) the basis for the action 
of the chunk. The condition finding process then begins with object J, and determines which 
production trace produced it--trace P4. It then determines that the conditions of trace P4 
(objects H and I) are generated by traces P2 and P3, respectively. The condition elements 
of traces P2 and P3 (objects C, D, E and F) existed in the supergoals, so they form the 
basis for the conditions of the chunk. The resulting chunk is: 

C & D & E & F ~ J  

(In the actual chunking process, the objects C, D, E and F would be included in the 
conditions of the chunk after some variabilization.) Once a chunk has been learned, the 
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Figure 1. Schematic view of the chunking process in Soar. 

new production will fire during the elaboration phase in relevant situations, directly pro- 
ducing the required information. No impasse will occur, and problem solving will proceed 
smoothly. Chunking is thus a form of goal-based caching that avoids redundant efforts by 
directly producing a result that once required problem-solving to determine. 

3.2. Modeling Soar's production match 

The k-search model of production system match algorithms is based on the notion of tokens, 
i.e., partial instantiations of productions. Tokens indicate what conditions have matched 
and under what variable bindings. They allow analysis of expensive chunks independent 
of the complexities of the physical machine or match algorithms typically used in produc- 
tion systems. 

Consider the production shown in Figure 2(a). (This is not a real Soar production. See 
Figure 6 for an example of a real Soar production.) The production contains three condi- 
tion elements (CEs or conditions) and one action. In the figure, up-arrows (^) indicate 
attribute names and angled brackets (< >) indicate variables. Figure 2(b) shows the working 
memory in the production system. The working memory describes the directed graph shown 
in Figure 2(c). Note that the conditions in the production contain variables (<x>, <y>, 
etc.) or constants, while working memory elements (or WMEs) can only contain constants 
0B, C, etc.). The production in Figure 2(a) cannot be instantiated for the working memory 
in Figure 2(b), since there is no match for the first CE. 

Now, suppose the WME (cu r r e n t  - p o s  i t i on B) iS added to the system. The production 
will now match the working memory. While matching the production, tokens will be gener- 
ated, some of which are: (2; <x> = B, <z> = C), (2; <x> = B, <z> = D), etc. The first number 
in the token indicates the number of CEs matched and the other elements indicate the 
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(Production::Length-2 

(current-position <x>) 

(point <x> ^connected-to <z>) 

(point <z> ^connected-to <y>) 

--> 

(write exists-path of lenqth 2 from <x> to <y>)) 

(a) 

C 
/**  The workinq memory * * /  

{point B ^connected-to C) ] 

(point B ^connected-to D) 

(point B ^connected-to E) 

(point C ^connected-to A} 

(point D ^connected-to A) A \ 

(b) (c) 

D1 < 
Figure 2. An example production system: (a) a production, (b) working memory, (c) the directed graph described 
by the working memory. 

bindings for the variables. Thus, the first token shows that the first two condition elements 
were matched with the bindings B for variable <x>, and ¢ for variable <z>. 

The tokens generated in the match can be represented in the form of a match tree, as 
shown in Figure 3 (at every stage only the additional variable bindings are shown). This 
match tree represents the search conducted, using tokens, by the matcher in order to match 
the production. Since this search is done in the production system, i.e., in the knowledge 
base, it is called k-search, in order to distinguish it from problem space search. 

Measurements on Soar/PSM-E (Tambe, et al., 1988) indicate that the time spent in match 
per token is approximately constant. 7 Therefore, for Soar productions, the number of tokens 
in the k-search tree is a reasonable estimate of the work done in performing match. 

CEI 

<x> = B 

CE2 

<z> = C 

CE3 

Figure 3. The match tree of tokens generated when the production in Figure 2(a) matches the working memory 
in Figure 2(b). 
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The k-search model extends to various match algorithms such as Rete (Forgy, 1982), 
Treat (Miranker, 1987; Nayak, Gupta, and Rosenbloom, 1988), and Oflazer's algorithm 
(Oflazer, 1987). There are two important optimizations done in these matching algorithms-- 
sharing and state saving. Sharing common parts of CEs in a single production or across 
different productions reduces the number of tests required to do match. We do not do model 
sharing, since in practice, the effect of sharing has turned out to be quite limited (a factor 
of 1.1 to 1.6) both for hand-coded productions (Gupta, 1986; Miranker, 1987), and for learned 
productions (Tambe, et al., 1988). State saving accumulates partially completed k-search 
from previous decision/elaboration cycles for use in future cycles. Even if the WMEs 
generated in a cycle fall to match a production, the resulting k-search is saved. Thus, if 
a new WME is added in a new cycle, only the new WME has to be matched; the k-search 
from the previous cycles is not repeated. Typically, once the production fires, the state 
accumulated from previous cycles gets removed. The next firing requires a different 
k-search? Therefore, performing k-search on each production in isolation, for every firing 
of a production, appears to be a reasonable way of modeling the activity of matching a 
production. 

As shown in (Tambe and Newell, 1988), there are two key characteristics of k-search 
(as performed in Rete, Treat, and Oflazer's algorithm): 

1. K-search does not allow heuristics. 
2. K-search finds all possible solutions. 

Thus, the matcher performs an exhaustive search to find all possible ways in which a pro- 
duction can match working memory. The number of tokens in the k-search tree generated 
in this process determines the cost of a production (chunk). Consider a k-search tree of 
depth D and a constant branching factor of B. The cost of this k-search tree in tokens is: 

Cost  

D 

=~_~ B k > B D t o k e n s  
k = l  

Thus, the cost of this k-search tree is exponential in the depth D. A chunk with such 
a k-search tree is clearly an expensive chunk, since it consumes a large match effort (for 
large B and D). 

4. Expensive chunks: The contributing factors 

The previous section showed that the cost of matching a chunk is determined by the number 
of tokens in the k-search tree generated during the match. An expensive chunk generates 
a large number of tokens in the k-search tree. Two factors determine the number of tokens 
in the k-search tree--the height of the k-search tree and the branching of the k-search tree. 
An expensive chunk has a tall, branchy k-search tree. In this section, we look at these 
factors in detail. 
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4.1. Height of  k-search tree 

The height of  the k-search tree is determined by the size of the footprint, where a footprint 
is defined as the set of WMEs  in the supergoals examined during processing in a subgoal. 
These WMEs (after variabilization) form the conditions of the chunk that results from solving 
the subgoal. Thus, the size of the footprint determines the number of  conditions in a chunk, 
which in turn determines the height of the k-search tree. Although the footprint size can 
have a big impact on the cost of  a chunk (as shown in the example below), overall, the 
footprint size explains only a minor part of the expensive chunks phenomenon. 

An example demonstrating the effect of the footprint can be found in the Eight-puzzle 
task. The representation used for this task is described in Appendix I. It has eight numbered 
tiles in a 3×3  frame with one blank cell. There is a single general operator to move adja- 
cent tiles into the blank cell. For a given state, an instance of  this operator is created for 
each of the cells adjacent to the blank cell. This gives rise to an impasse to select the appro- 
priate instantiated operator to apply next. To resolve the impasse, the instantiated operators 
are evaluated in a subgoal using comparison of the tiles in the current state and the desired 
state. This evaluation is used in selecting the operator to apply next. (The evaluation scheme 
used is that if an operator moves a tile into its location in the desired state, it is given a 
positive evaluation; if it moves a tile out of its location in the desired state, it is given a 
negative evaluation; otherwise it is evaluated as zero.) Thus, to decide the better of two 
instantiated operators, the problem-solver examines the tiles in the current and desired states 
for both the operators. This creates a big footprint, given the representation used, since 
the current state and desired state form part of the supergoal. Figure 4(a) shows the evalua- 
tion of one of  the instantiated operators. The operator is indicated by an arrow ( ~ ) .  The 
figure shows how the tile to be moved (tile 2) is compared in the current and desired state. 
A similar comparison and evaluation is performed for the second instantiated operator. 
The big footprint generated via the two evaluations leads to a large number of CEs in the 
chunk (34), causing the chunk to be expensive, with a computational effect of 0.15 (recall 
from Section 2 that a low computational effect implies a big increase in time per action 
with chunking). 

compare 

I I 
1 2 3 1 2 3 

6 4 8 4 oper 

8 7 5 7 6 5 

Current state Desired state 

(a)  

in-place 

I 

1 2 3 

6 4 e p e r  

o u t - o f -  
place ---- 8 7 5 

Current state 

(b) 

Figure 4. The footprint for the Eight-puzzle (a) when comparison of tiles in the current and desired state for eval- 
uating an operator is required and Co) when a comparison of the tiles with the desired state is not required (in-place 
and out-of-place augmentations for only two of the tiles shown). 



THE PROBLEM OF EXPENSIVE CHUNKS 309 

Computational 

Effect 

1.0 

0.9 

0.8 

0.7 - 

0.6- 

0.5- 

0.4 

0.3 

0.2 

0.I 

B S 

W 

F 

GQ 
M 

ii0 I I I I I 
25 20 25 30 35 

Averaqe number of conditions per chunk 

Z - Zlght--puzzle 
- 2-Queenm 

G - Grid 
M - ~agic-sq~are 
S - Syllogism 

B - Monkey and 
Bananas 

W - Waterjug 

F - Parmer 

Figure 5. Average number of conditions in the chunks formed in various tasks (on the x-axis) and their correspond- 
ing computational effects (on the y-axis). The expensive-chunks tasks are highlighted. 

The representation of the Eight-puzzle can be changed, such that explicit in-place and 
out-of-place augmentations (attributes) are used to describe the position of each tile relative 
to the desired state? Thus for any given state, the in-place or out-of-place status of each 
tile is known; and it is updated after every move by an explicit comparison with the desired 
state. Therefore, the operator selection does not always require an examination of the desired 
state. For instance, as shown in Figure 4(b), evaluation of the operator moving tile 2 does 
not require a comparison with the desired state--the operator is moving tile 2 out of its 
location in the desired state. For evaluating this operator, the chunk formed includes only 
the in-place augmentation of the current-state tile in its conditions; it does not include the 
conditions for the corresponding tiles from the desired state. This reduction in the size 
of  the footprint reduces the cost of  the chunks. With this changed representtion, the same 
number of chunks are added, but the average number of CEs in the chunks reduces from 
34 to 22 and the computational effect increases from 0.15 to 0.25, i.e., the slowdown is 
lessened. 

Figure 5 graphically depicts the relation between the number of conditions in the chunks 
and the computational effects for the tasks from Table 1. It shows that tasks with larger 
footprint size (more conditions per chunk) tend to be the expensive-chunks tasks (with low 
computational effects), but not always. On average, expensive chunks have a somewhat larger 
footprint size (23.2 CEs) than cheap chunks (18.2 CEs). However, this separation in the 
average footprint size is quite small (this small separation is also reflected in Figure 5) 
indicating that the footprint explains only a minor part of the expensive-chtmks phenomenon. 

4.2. Branching of the k-search tree 

The branching of a production's k-search tree is a function of  the number of WMEs that 
match each condition and the amount of constraint provided by the variable tests. All the 
WMEs in Soar's production system are a priori candidates to match a condition. This match 
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would lead to a k-search tree with a number of tokens greater t h a n / ~ M E s  c°nditi°ns. How- 
ever, constants and variables bound in the conditions prior to the current condition can 
provide a strong filter on the set of WMEs that can possibly be bound. Most Soar condi- 
tions, referred to as object-conditions, have four fields: (class identifier attribute value). 
The condition (poi nt <x> " c o n n e c t e d -  to  <z>) from Figure 2(a) is an example of an 
object-condition. Two of the fields in object-conditions are constant [class and attribute] 
(almost always), one of the fields is a prebound variable [identifier] (almost always), and 
the remaining field can be a constant, a prebound variable, or an unbound variable [value]. 
Here, a prebound variable is a variable bound in a previous condition. Thus, an unbound 
varaible should only occur in the value field, and branching only occurs in matching a 
Soar condition if there are multiple possible values corresponding to the three already fixed 
fields; or, in more semantic terms, if there is more than one value for an attribute. 1° 

The other type of Soar conditions match preferences and are called preference-conditions. 
For the purposes of this article, it is not necessary to understand the details of these condi- 
tions, except that their identifier field is the only possible field which can be unbound. 
Thus, these conditions can give rise to multiplicity if similar preferences with distinct iden- 
tifiers are present in the system. 

Figure 6 presents a Soar production that demonstrates the restrictions described in the 
previous paragraphs. The conditions of the production test whether a block with an identi- 
fier matching < bl > is on top of a block with an identifier matching < b2 > ,  and there 
is a preference for an operator called put-down. The single action of the production gives 
a best preference to the put-down operator. Conditions one through four, and six are object- 
conditions. Their class and attribute fields contain constants, their identifier fields contain 
prebound variables (except for the first condition) and their value fields contain unbound 
variables or constants. The fifth condition is a preference-condition. Its identifier field-- 
the second field in the condition--is unbound. 

(Production::PUT-DOWN-is-beat 

CEI (goal <g> ^problem-space <p>) 

CE2 (goal <g> ^state <s>) 

CE3 (state <s> ^block <bl>) 

CE4 (block <bl> ^on-top-of <b2>} 

CE5 (preference <oi> ^role OPERATOR ^value ACCEPTABLE 
^goal <g> ^problem-space <p> ^state <s>) 

CE6 (operator <oi> ^name PUT-DOWN) 

--> 

(preference <oi> ^role OPERATOR ^value BEST 
^goal <g> ^problem-space <p> ^state <s>) 

Figure d A production from the blocks world domain. 
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Given these restrictions on matching Soar's conditions, there remain only two sources 
of branching in the k-search tree: multi-objects (multi-attributes and preferences) and poor 
condition ordering. We discuss these two factors in detail below. 

4.2.1. Multi-objects: Multi-attributes and preferences 

Multi-objects reter to a combination of multi-attributes and prelbrences. A multi-attribute 
refers to a set of WMEs with multiple values for a fixed class, identifier, and attribute, n 
For instance, if there are three blocks in the blocks world, they can be represented as a 
multi-attribute of the state (this is also referred to as the state pointing to the three blocks): 

( s t a t e  S1 ^block B1) ,  ( s t a t e  S1 ^block B2) ,  ( s t a t e  S1 ^b lock  B3) 

Figure 7 shows how multi-objects are a source of branching in the k-search tree. Figure 
7(a) shows the working memory, to be matched by the production in Figure 6. In Figure 
7(a), b lock  is a multi-attribute of the state, with the values B1, B2, and B3. The figure 

(goal G] ^problem-space PI) 
(goal GZ ^state Sl) 

(state S1 ^block BI) 
(state S2 ^block B2) 
(state S1 ^block B3) 

(block B2 ^on-top-of BI) 
(block B3 ^on-top-of BI) 

(preference Ol ^role OPERATOR ~value ACCEPTABLE 

^goal G1 ^problem-space Pl ^state SI) 

(operator Ol ^name PUT-ON-TOP-OF) 

(preference 02 ^role OPERATOR ^value ACCEPTABLE 
^goal G1 ^problem-space Pl ^state SI) 

(operator 02 ^name PUT-DOWN) 

(a) 

B2 B3 

B1 

State S1 

Qperators 

PUT-DOWN PUT-ON- 
TOP-OF 

~) 

CEI 

CE2 

CE3 

CE4 

CE5 

CE6 

<bl> =BI 

<oi> =O1 ~ 
<02> 

PUT-DOWN 

/ <@> = G11 <p> = P1 

/ <s> = SI 

<bl> =B2 <bl> =B3 

<b2> = B1 <b2> = B1 

~ o 2 >  =02 

PUT-DOWN 

(c) 

Figure 7. Blocks-world demonstration of branching in the k-search tree--(a) working memory, Co) situation repre- 
sented by the working memory, (c) k-search tree for production pUT-DOWN-is-best 
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indicate the maximum number of elements per multi-object in that task representation. The expensive-chunks 
tasks are highlighted. 

also shows two preference WMEs for the operators O1 (put-on-top-of) and 02 (put-down). 
Figure 7(b) shows the situation in the blocks world described by the working memory. 
Figure 7(c) shows the k-search tree generated in the match of the production in Figure 6. 
Since b lock  is a multi-attribute of the state, the k-search tree branches at the third condi- 
tion to match the blocks B1, B2, and B3. Similarly, since more than two matching prefer- 
ences are presnt, the k-search tree branches in the fifth conditon. At every other point, 
the matcher is able to make a unique choice of what to match using the name of the attribute. 

Thus, multi-objects are the only WMEs that can cause branching in the k-search tree. 
This conclusion suggests that expensive chunks, i.e., chunks with a large branching of the 
k-search tree, can only be formed in the presence of multi-objects. Figure 8 presents data 
on the eight tasks that supports the above analysis. The x-axis plots the average number 
of CEs per chunk that match multi-objects. The numbers in parentheses associated with 
each task are the maximum number of elements in any single multi-object used in the rep- 
resentation. The y-axis gives the maximum breadth of the k-search tree during the course 
of the run; i.e., the maximum number of tokens generated during the course of the run, 
for matching a single condition element in the chunk. The breadth of the k-search corre- 
sponds to the number of nodes at a particular height in the k-search tree, and maximum 
breadth is an indicator of the amount of branching in the k-search tree. The y-axis is actually 
plotted on a log scale. Figure 8 does not indicate any precise relation between branching 
and multi-objects. However, the figure shows that expensive chunks, i.e., chunks with a 
large amount of branching in their k-search trees, have a larger number of CEs matching 
multi-objects and a larger number of elements per multi-object. 

This analysis shows why in the presence of multi-attributes it is possible for the matcher 
to generate an exponential (in the depth of the k-search tree) number of tokens. With multi- 
attributes, it is possible to encode a general graph structure in both working memory and 
productions, thus implementing a subgraph isomorphism problem, which is a well-known 
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NP-complete problem (Garey and Johnson, 1978). It is quite possible for chunks encoding 
such graph structures to be generated in Soar (Tambe and Newell, 1988). Thus, matching 
expensive chunks is NP-hard. 

4.2.2. Condition element ordering 

The second source of branching in the k-search tree is the poor ordering of condition ele- 
ments. Recall that the intercondition variable tests in productions provide a constraint on 
the values of attributes. A poor condition ordering can reduce this constraint and thus gen- 
erate a large number of tokens in the k-search. 

As matching expensive chunks is NP-hard, in the extreme, the condition ordering mecha- 
nism cannot eliminate the exponential k-search. However, in practice, a good condition 
ordering can provide big speedups in production systems (Ishida, 1988). To investigate the 
impact of the ordering of CEs in the expensive chunks, an optimal ordering of CEs is helpful. 
The problem of generating an optimal ordering is, however, itself NP-complete (Ullman, 
1982). Currently, Soar has a simple ordering algorithm (Scales, 1986), that orders the CEs of 
the original productions and the chunks (the analysis of the prior section depended on this 
simple algorithm). Since Soar productions can have a large number of CEs (e.g., Cypress- 
Soar (Steier, 1987) has over 100 condition elements in some chunks), guaranteeing optimality 
could be very expensive. Hence the present ordering algorithm cuts down the number of 
orderings it has to search through, by using heuristics that sacrifice guaranteed optimality. 

We therefore created another ordering algorithm that .inputs estimates of the number of 
WMEs matching the CEs and some data about the generation of tokens. It then performs a 
complete search and outputs an optimal ordering (Tambe and Newell, 1988). The new algo- 
rithm performs branch and bound search and uses heuristics from (Smith and Genesereth, 
1986), which are guaranteed to preserve optimality. (Despite these heuristics, it may take 
up to an hour to order a production? 2 Therefore the new algorithm cannot replace the old 
one in running Soar tasks.) 

Figure 9 shows the result of the new ordering algorithm across the eight tasks. The figure 
shows a graph identical to Figure 5, except for the arrows. In Figure 9, the x-axis depicts 
the average number of conditions in the chunks formed in various tasks and the y-axis depicts 
the corresponding computational effect. The arrows indicate the change in the computational 
effect with the new ordering algorithm. Thus, in the Eight-puzzle task, the computational 
effect has increased from 0.15 to 0.35 with the new ordering algorithm. However, there 
are no arrows associated with the cheap-chunks tasks. This is because the cheap-chunks 
tasks show no difference in the computational effect with the new ordering algorithm. The 
branching of the k-search tree in the cheap chunks is very low. Thus, ordering cannot make 
a measurable difference in these tasks. In the expensive-chunks tasks, about 50% to 75 % 
of the cost is attributable to a bad ordering by the old Soar ordering scheme--the computa- 
tional effect in these tasks has increased by a factor of two to three? 3 This is because multi- 
objects and a large number of CEs exact a heavy price if the ordering heuristics do not 
work. The figure shows that the computational effect in the expensive-chunks tasks is still 
quite pronounced compared to the cheap-chunks tasks--although it is now closer to the 
computational effect of the Waterjug and Farmer tasks. 
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computational effect. The expensive-chunks tasks are highlighted. 

At this point, we summarize the main points of this section: expensive chunks are caused 
by big footprints, multi-objects, and bad condition orderings. A big footprint causes a tall 
k-search tree to be generated in matching an expensive chunk, while multi-objects and 
bad condition ordering cause branching in the k-search tree. Out of these three factors, 
big footprints explain a relatively minor portion of the expensive chunks phenomenon. 

5. Eliminating expensive chunks 

Before discussing the strategies to eliminate expensive chunks, we need to consider the 
following question: What does it mean to solve the expensive chunks problem? An ideal 
solution to this problem would impose a fixed upper bound on the cost of  each chunk, 
allowing the system to bound its time per action (there is still an issue if the number of  
chunks is unbounded, but we will deal with that issue later). Currently, this cost can be 
unbounded, since the cost of a chunk can be exponential in the number of  conditions, and 
there is no bound on the number of conditions in a chunk. Even if a fixed bound cannot 
be imposed, it would be prefereable to let the cost of the chunks be a small polynomial 
function rather than the existing exponential function. Such chunks will require only a 
few additional tokens to match them (when compared to the original system) and hence 
will only minimally distort the constant time per action model. 

5.1. Strategies for eliminating expensive chunks 

Among the various strategies for eliminating expensive chunks, two that initially look like 
potential solutions can immediately be ruled out by the inherently exponential nature of 
the production match. One technique is the use of  smarter match algorithms. This could 
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involve either better automated condition orderings, or other techniques such as selective 
backtracking (Pereira and Porto, 1982). A better conditon ordering can definitely reduce 
the amount of k-search, as shown in the previous section, but cannot completely eliminate 
it, or even make it non-exponential in general. Unfortunately, other smart match algorithms 
suffer from a similar problem--they cannot make the k-search non-exponential in general. 
In fact, smart match algorithms may adversely affect optimizations like state-saving and 
thus introduce additional overheads. The other technique that looks like a potential solution 
is the use of massive parallelism. However, given any amount of parallelism it is always 
possible to have an exponential match that will exceed the capacity of the machine. 

After eliminating the above approaches, the remaining known strategies addressing the 
problem of expensive chunks (or more generally, expensive learned rules) can be divided 
into two major categories: 

1. Selective solutions: These approaches depend on selectively avoiding the accessing of 
expensive learned rules from the knowledge base. They can be further divided into three 
subcategories: 
a. Selective learning and forgetting: The learning system goes through the process of 

creating the rule to be learned after solving a problem. It then determines if the rule 
is expensive or cheap. If the rule is expensive, the system does not add it to its knowl- 
edge base. The system may have an additional capability of selective forgetting. With 
selective forgetting, the system adds the rule to its knowledge base, but if it finds 
out that the rule becomes expensive while in use, it throws the rule away. 

Typically selective learning/forgetting systems adopt the following criterion for deter- 
mining the expense of a rule: a rule is expensive if its estimated processing cost ex- 
ceeds its estimated benefits (Keller, 1987; Markovitch and Scott, 1988; Minton, 1985; 
Minton, 1988b). 

b. Selective Matching: The learning system creates the rule to be learned and adds it 
to the knowledge base. The matcher reasons about the expense of the learned rules 
and other rules that may be applicable and decides the best rule to apply at that point 
in time. Thus, the compiled rule always remains in the knowledge base (Markovitch 
and Scott, 1989a); it is not ,thrown away. 

c. User Intervention: In this approach, the user of the system monitors its performance. 
If he/she notices a performance problem during learning, then he/she intervenes and 
removes the efficiency bugs in the system. 

2. Transforming the pattern to be matched: These approaches depend on uniformly reducing 
the cost of the learned rule by transforming it, so that expensive rules are not added to 
the knowledge base in the first place. They can be further divided into two subcategories: 
a. Modifying learned rules: This approach requires the system to modify learned rules. 

After learning a rule, its left-hand side is simplified to reduce its match cost. This 
reduction may be accomplished by processes such as compression (Minton, 1988b) 
and removing applicability conditions (Chase, et al., 1989). 

b. Restricting expressiveness: This approach requires the system to give up some expres- 
siveness of its language to guarantee that all learned rules are cheap. Thus, no eval- 
uation need be done to guarantee that the system will not degrade in performance. 
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Furthermore, the system is not required to modify learned rules. This tradeoffis similar 
to the tradeoff between the expressiveness of a representational language and its com- 
putational tractability (Levesque and Brachman, 1985). 

Two important criteria for adopting a particular approach from the above list are: (1) the 
effectiveness of the approach in addressing expensive chunks and (2) how well the approach 
integrates with the rest of the system, given the assumptions underlying the system. The 
approach adopted in this article is one of restricting expressiveness. Meeting the first criterion 
above, i.e., demonstrating the effectiveness of this approach, is the focus of the rest of 
this article. Meeting the second criterion, i.e., establishing that this approach best conforms 
with the assumptions in Soar, compared to the other approaches presented, is the focus 
of the following four paragraphs. 

Among the approaches presented, the user intervention approach is ruled out immediately, 
since the goal of the Soar project is to build a system capable of autonomous existence, 
i.e., a system that is not dependent on the user. In fact, the requirement for autonomy is 
one key way in which the problem of expensive chunks differs from the more general prob- 
lem of expensive productions. 

The selective learning/matching approaches depend on analyzing the cost and/or benefits 
of individual productions. This can be achieved by two different methods: 

1. Using a fixed piece of code as part of the architecture, i.e., using a mechanism in the 
implementation domain. 

2. By problem-solving, i.e., using a mechanism in the cognitive domain. 

Including a mechanism for cost/benefit analysis in the architecture is against one of Soar's 
major design principles--no fixed trap-state mechanisms (Newell, 1990). A trap-state mech- 
anism is one whose commands the system has to accept, but which has insufficient knowl- 
edge to cover all potential situations. The conflict-resolution phase in OPS5 is an example 
of a trap-state mechanism. When the knowledge encoded in the trap-state mechanism fails, 
as it necessarily has to if the enountered situations are diverse enough, the system can be 
led into problems from which it cannot recover--in this case matching a very expensive 
chunk. Resource bounds may help the system recover from such problems, e.g., they may 
impose some time-outs on the match. But these resource bounds are trap-state mechanisms 
in themselves. Consider the example of imposing time-outs on the match. Suppose there 
is a production that controls some important external device. The time-out may prevent 
the production from controlling the external device in a critical real-time situation, leading 
to a disaster. Thus, a time-out mechanism is a trap-state mechanism that could interfere 
in getting Soar to do real-time tasks sometime in the future. 

The cognitive domain approach for cost-benefit analysis does not suffer from the trap- 
state problem. However, this approach cannot be used, since it would require keeping track 
of the costs and benefits of the productions in the cognitive domain, which violates the 
non-penetrable memory assumption mentioned in Section 3.1. A similar argtmaent eliminates 
the possibility of modifying learned rules--it would be a trap-state mechanism in the imple- 
mentation domain and would violate the non-penetrable memory assumption in the cogni- 
tive domain. 
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The approach based on restricting expressiveness is not dependent on any mechanism, 
in either the cognitive or the implementation domain. Thus, it entirely avoids the issues 
of non-penetrability or trap-states faced by the other approaches and is in fact, the only 
approach that conforms with the assumptions underlying Soar. But how should schemes 
for restricting expressiveness be selected or even devised? An important constraint that 
will be used for selection is the guarantee of closure under chunking, i.e., if the produc- 
tions and working memory meet the restrictions imposed by a scheme before chunking, 
then the chunks should also meet the restrictions. I f  chunking violates the restrictions and 
creates expensive chunks, then that would clearly defeat the purpose of this exercise. 

In devising schemes for restricting expressiveness, two obvious candidates are: restricting 
the size of the footprint, and restricting the use of multi-objects. A restriction on the size 
of the footprint will bound the depth of the k-search tree. This will make the cost of the 
chunk a polynomial in the branching factor fo the k-search tree. However, unless this bound 
is small, it will not be useful. But a small bound on the number of CEs will require exten- 
sive modifications to the current methods of task representations in Soar. It would also 
be difficult to guarantee closure under chunking since chunks usually have a higher number 
of CEs than hand-written productions (Tambe, et al., 1988). Providing such guarantees 
may require modifications to chunking, and perhaps also to the rest of Soar. Thus, it would 
be preferable no to impose an arbitrary bound on the size of the footprint. 

The other alternative of restricting multi-objects seems more promising. One category 
of restrictions in this mode would be to impose a partial restriction on the use of multi- 
objects--for instance, to limit the number of conditions per production that can match multi- 
objects. However, it is difficult to guarantee closure under chunking for such partial restric- 
tions. In the previous example, the chunks formed can easily exceed the limit on conditions 
per production that match multi-objects. A better approach is to eliminate multi-objects 
altogether, which clearly guarantees closure under chunking. Multi-objects control the 
branching of the k-search tree. Therefore, eliminating multi-objects eliminates the exponen- 
tial from the cost (B °)  of the k-search tree--it reduces the branching factor of the k-search 
tree ot one. This limits the number of tokens in the k-search tree to the size of the foot- 
print. Thus, 

The c o s t  o f  m a t c h i n g a  chunk  w i l l  be l i n e a r  in  t h e  number  o f  c o n d i t i o n s .  

As stated earlier in this section, this is a very agreeable bound on the cost of the chunks. 
The size of the footprint grows at most linearly with the amount of time spent in the subgoal. 
Thus, eliminating multi-objects imposes a very reasonable limit on the cost of a chunk-- 
these chunks are cheap chunks. However, it is still possible for a chunk with a very large 
footprint to distort the constant time per action model. Dealing with such footprints will 
be the subject of future work. 

5.2. Eliminating multi-objects 

Recall that multi-objects refer to a combination of multi-attributes and preferences. The 
elimination of multi-attributes implies that the system is not allowed to assign two or more 
values to any attribute. The new restricted representation without the multi-attributes is 
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(state S1 ^block BI) 

J (block B1 ^next B2) 

(block B2 ^next B3) 

(block B2 ^on-top-of BI) 

(block B3 ^on-top-of BI) 

A linked list of blocks 

is introduced 

Figure 10. Unique-attribute encoding of the blocks world from Figure 7. 

referred to as the unique-attribute representation. Figure 10 shows how the blocks in the 
blocks world, represented originally as multi-attributes in Figure 7(a), are represented as 
unique-attributes. Note that the blocks are no longer a multi-attribute of the state. Instead, 
a linked list is introduced, with the state pointing the head of the list. The issues in adopt- 
ing such unique-attribute representations will be discussed in detail in Section 8.1. 

Preferences are dealt with somewhat differently. Recall that preferences cause branching 
in the k-search tree due to their unbound identifiers. Therefore, a restriction is imposed 
to require that all preference identifiers be prebound. However, chunking may violate this 
restriction, and create chunks which include preferences with unbound identifiers. Star's 
chunking algorithm has therefore been modified (on an experimental basis) so that prefer- 
ences with unbound identifiers are not included in the chunks. This modification prevents 
the preferences from causing branching in the k-search tree. 

The restrictions for the cheap chunks are summarized below: 4 

1. Mulfi-attrbutes are not allowed; only unique-attributes may be used. 
2. Preference identifiers must be prebound. 

One of the flexibilities not restricted is the ability to match multiple goals in the hierarchy. 
The number of goals in the goal-hierarchy can grow only linearly with time, as measured 
by the number of decision cycles. In fact, typically there are only about three to four goals 
in the goal-hierarchy. This causes a maximum k-search breadth of three to four tokens 
in the first one or two CEs of a chunk. This low cost appears to be worth the flexibility 
of matching multiple goals in the goal hierarchy, which allows a chunk to transfer to any 
of the goal-contexts in the context hierarchy. However, if matching multiple goals turns 
out to be a problem, then this capability can also be restricted. 

Except for the experimental modification to chunking, the other restrictions can be adopted 
in the current version of Soar using a set of conventions. We have used this version for 
the empirical analysis presented in this paper. In the actual implementation, assigning mul- 
tiple values to a single attribute should lead to the creation of an impasse, allowing the 
architecture to enforce a representation without multi-attributes. The new version of Soar 
(Soar 5) will allow a very straightforward incorporation of this mechanism (interestingly, 
unique-attributes did not influence the design of Soar 5). 

Table 2 presents data from nine different Soar tasks: 5 Except for the Tree task to be 
introduced in Section 6.2, these tasks are from Table 1. The main message of this table 
is that the unique-attributes eliminate expensive chunks. The first column gives the total 
run time before chunking, using the multi-attribute representation. The second column gives 
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Table 2. The total run  t ime af te r  chunking  wi th  two different  representat ions.  

Task Total Total Total Total Total Total 
run time run time number of run time run time number of 

multi-attr, multi-attr, chunks unique-attr, unique-attr, chunks 
before after multi-attr, before after unique-attr. 

chunking chunking chunking chunking 
(see.) (see.) (see.) (see.) 

Eight-puzzle 28.69 34.56 11 26.67 8.88 86 

2-Queens 4.48 13.52 3 3.55 0A0 3 

Grid 23.44 12.65 17 19,81 3,09 142 

Magic-square 13.92 18.72 5 12.62 2.72 5 

Tree 10.28 1.55 11 9.94 1.39 72 

Syllogisms 8.46 0.82 11 7.92 0.82 11 

Monkey 7.13 1.73 5 8.21 1.83 5 

Waterj ug 21.43 3.56 11 19.84 2.25 11 

Farmer 26.94 4.39 14 20.25 2.07 14 

the total run time after chunking, using the multi-attribute representation. The third column 
gives the number of chunks formed in the multi-attribute representation. The last three 
columns give comparable data for the unique-attribute representation. 

The table shows that the time to complete the task without chtmking in both representations 
is comparable. However, in the four expensive-chunks tasks, the multi-attribute representa- 
tion goes on to form expensive chunks. Chunks formed in the unique-attribute representation 
are cheap and the total run time after chunking is much lower than the total run time before 
chunking. The two cheap-chunks tasks (Waterjug and Farmer) that had a significant com- 
putational effect also show a speedup with the unique-attributes. 

Note that, in some tasks, a significantly larger number of unique-attribute chunks are 
learned. This effect is due to a secondary impact of unique-attributes--the chunks that are 
learned may be less general. This reduction in generality occurs because a multi-attribute 
condition can match any element of a set, while a unique-attribute conditon can match 
only one possible element. When the unique-attribute chunks were less general than the 
multi-attribute ones, additional trials were run on the same task until enough chunks had 
been learned to cover the same scope as the multi-attribute chunks. For this experiment, 
these trials were selected by hand so as to cover chunks not yet learned. (This issue is 
picked up in more detail in the following sections.) However, the table shows that even 
after learning the larger number of chunks, the unique-attribute run times are much lower 
than the multi-attribute run times. 

6. Complexity analyses of two illustrative tasks 

The previous section presented the unique-attributes restriction on the expressiveness of 
Soar's production system language. Unique-attributes allow us to guarantee that only cheap 
chunks will be produced by the system. This section presents complexity analyses of two 
simple tasks to demonstrate the expressiveness-efficiency tradeoff involved in unique- 
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B 

A 

Figure 11. The Grid task. 

attributes. The first subsection use the Grid task to illustrate this tradeoff. The Second sub- 
section uses the Tree task to present a best- and worst-case analysis of the expressiveness- 
efficiency tradeoff. 

6.1. The Grid task: An illustration of  the expressiveness-efficiency tradeoff 

Consider an example from the Grid task, shown in Figure 11. To simplify some of the follow- 
ing analysis, assume that this grid is infinite. The problem is to go from point A to point 
B, a path of length four. This problem is solved first using multi-attributes and then using 
unique-attributes. 

In the multi-attribute version, the grid is represented using connected as a multi-attribute 
of apoint on the grid. Any point Y adjacent to a point X On the grid is represented as: 
(po i  n t  X ^ c o n n e c t e d  V). Thus,  the multi-attribute connected represents an unstructured 
set of connections between a point and all of its immediate neighbors. The problem space 
has only one operator: move. The state contains a pointer to the current position on the 
grid. If  the current position is at point x, then for each point y connected to point x, the 
operator move will be instantiated. The problem-solver will solve the problem using some 
heuristics, or outside guidance, generating a k-search tree of tokens as shown in Figure 
12(a). This process generates 16 tokens, with four tokens per each step generated from 
the four options available to the problem-solver at each point on the grid. Even if the 
heuristics do not directly lead the problem-solver to the solution, the matcher will generate 
only 4 tokens per step. Note that this is a highly simplified version of the real Soar produc- 
tion system. For instance, we have not accounted for the cost of subgoaling, or for the 
cost of the heuristics. However, since the purpose here is to analyze the cost of multi- and 
unique-attribute chunks, we will use this simple model. 

The chunk formed in solving the task is shown in Figure 12(b). The chunk says that 
if the goal is to reach a point < d > ,  and if the current position is point < x > ,  and if 
there is a path of length four between them, then prefer the instantiated move operator along 
that path. (The prefer action indicates a preference for a path from < x > to < y > over 
all other paths; recall from Section 3.2 that < > indicates variables.) This chunk does 
not consider the points along which the path goes or the direction the path takes. The chunk 
will therefore transfer to all pairs of points with a path length of four between them. 
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A 

B 

(a) 

(Chunk::Multi-~ttr 

(current-state <x>) 

(point <x> ^connected <y>) 

(point <y> ^connected <z>) 

(point <z> ^connected <w>) 

(point <w> ^connected <d>) 

(desired <d>) 

--> 

(prefer path <x> ^to <y>)} 

(b) 

B B . .  

(c) 

Figure 12. The Grid task with multi-attributes: (a) the k-search tree for the entire task consisting of four problem 
solving steps; (b) the chunk formed (prefer action indicates a preference for a path from < x > to < y > over 
all other paths); and (c) the k-search tree formed in matching the chunk (generated for one problem-solving step). 

Figure 12(c) shows the k-search tree formed in matching the chunk. For the sake of sim- 
plicity in the analysis, only the conditions of class-namepoint in the chunk are considered. 
(Considering other conditions does not change the results.) Here, each condition has multi- 
plied the number of  tokens by four, which is the number of  points connected to any given 
point. Since there are four c0nditons in the chunk (for a path of length four), the total 
number of tokens (4 + 16 + 64 + 256 =) 340 tokens. These 340 tokens are generated 
in one step. Comparing this with the four tokens per step in the original problem-solving, 
we see that the chunk is expensive. The 340 tokens correspond to all possible paths origi- 
nating from point A that have a length of four. 

In the unique-attribute version, the state points to the current location on the grid, similar 
to the multi-attribute version. However, each location points to its four adjacent locations 
using specific unique-attributes; up, down, left, and right. Instead of one move operator, 
there are four different operators, move-up, move-left, move-right, and move-down. Again, 
the problem-solver moves from A to B using heuristics or outside guidance, generating 
the tree of tokens shown in Figure 13(a). 

However, the chunk formed in this process is different. The chunk is shown in Figure 
13Co). It says that if the goal is to move to point < d > from point < x > and if the connec- 
tion between the two points is through the specific relation (up-right-up-right) described, 
then choose the appropriate operator: move-up. The k-search tree formed is shown in Figure 
13(c). There are only four tokens per step formed in this case. The chunk formed is much 
cheaper than the chunk in the multi-attribute case. However, the chunk will transfer only 
if the two points are connected in a specific manner--up-right-up-right in this case, as 
opposed to any arbitrary connection of  length four in the earlier case. 16 

Table 3 summarizes the cost and generality of  the two representations. The generality 
is measured in terms of  the number of  transfers in an nxn grid, i.e., the number of source 
destination pairs that the chunk can transfer (or apply) to. The length of the path traversed 
in the grid is assumed to be p. However, boundary effects are ignored for simplicity. (See 
Appendix II for the derivations.) 
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A 

B 

(a) 

(Chunk::Unique-attr 

(current-state <x>) 

(point <x> ^up-connected <y>) 

(point <y> ^right-connected <z>) 

(poknt <z> ^up-connected <w>) 

(point <w> ^right-connected <d>) 

(desired <d>) 

--> 

(prefer Fath <x> ^to <y>)) 

(h) 

A 

B 

(c) 

Figure 13. The Grid task with unique-attributes: (a) the k-search tree for the entire task consisting of four problem- 
solving steps; (b) the chunk formed (prefer action indicates a preference for a path from <x>  to < y >  over 
all other paths); and (c) the k-search tree formed in matching the chunk (generated for one problem-solving step). 

Table 3. The cost and generality of the multi- and unique-attribute representations for the Grid task. Here n is 
the number of nodes in the grid and p is the path length. 

Representation Cost Generality Number of Cost 
used in tokens in number of chunks required in tokens 

per chunk transfers for same level after achieving 
per chunk of generality the same level 

as multi-attr, of generality 

Multi-attributes (4P +1 - 4)/3 ne*(p+l) 2 1 (4p+1 _ 4)/3 

Unique-attributes p n 2 (p+l) 2 (p+l)2*p 

Comparing the multi-attributes and unique-attributes, we see that the multi-attributes 
allow generality that is (p + 1) 2 times more than the generality achieved by a single unique- 
attribute chunk. Thus to achieve the same generality, the unique-attribute system has to 
learn (p + 1) z chunks. However, even after learning all those chunks, the cost of matching 
all of the productions is only a polynomial number of tokens in the unique-attribute system. 
It is exponential (in p) in the multi-attribute system. 

Thus, the unique-attribute system has paid polynomial space to eliminate exponential 
t ime--which may, at first, appear counterintuitive. This apparent anomaly can be explained 
as follows. Figure 14 shows the number  of positions tht can be reached in the Grid task 
by the chunk shown in Figure 12(b) (a path length of four). The node marked x indicates 

the source location. The nodes marked with small circles indicate the positions that can 
be reached. The chunk shown in Figure 12(b) is an expensive chunk, based on multi- 
attributes. This single expensive chunk can generalize to all the situations shown, with 
the source fixed at the location marked x. There are only a polynomial number of positions 
that can be reached from x: (p + 1) 2 --- 25; however, there are an exponential number 
of paths of length four, to these positions: 4 p = 256. When given the goal of reaching 
one particular position, the chunk from Figure 12(b) finds all possible paths of length four, 
discovering all 256 paths to all 25 posi t ions--an excessive amount of k-search, since only 
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Figure 14. Locations reached by a path of length four in the Grid task. 

a single path to any particular position is required. This k-search of all paths to each of 
the positions gives rise to the exponential factor. 

In contrast, a chunk learned by the unique-attribute representation performs the minimal 
k-search of finding a single path to a single position, as shown in Figure 13(c). Even after 
learning all (p + 1) 2 chunks in this representation, the total amount of k-search done is 
proportional to the number of destinations (25), and not to the total number of paths to 
each of the destinations (256). The unique-attribute system avoids the useless computation 
of finding all paths to each position. 17 Thus, it is able to trade off polynomial space for 
exponential time. 

This example also illustrates the relation between k-search and generality. Consider a 
single unique-attribute chunk. It can perform a limited amount of k-search. In the Grid 
task, it can find a single path to a single position. The multi-attribute chunk performs more 
k-search. In the Grid task, it uses k-search to reach all the locations marked with small 
circles in Figure 14. Thus, the difference in the two representations is the amount of k-search 
that can be performed to find situations in which the conditions of a chunk match. The 
inability of unique-attributes to perform k-search manifests itself as an effective loss of 
generality. To make up for this, the unique-attribute system learns more chunks, where 
each chunk performs a limited amount of k-search. 

Thus, the multi-attribute representation uses k-search to gain generality. Comparing the 
k-search performed by the multi- and unique-attributes in the Grid example, we see that 
the amount of k-search done (and the generality obtained thereby) by the multi-attributes 
is composed of two portions: (1) an essential portion, (2) an excessive portion. The essen- 
tial portion of the k-search consists of a single k-search path to each of the destinations 
on the grid. The excessive portion of the k-search, a typical characteristic of the multi- 
attribute representation (Tambe and Newell, 1988), consists of everything except the essential 
portion. This excessive portion does not provide any useful generality. The unique-attribute 
system only performs the essential portion of the k-search; it entirely avoids the excessive 
portions. 
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In summary, more expressiveness provides greater generality in chunking. However, the 
price paid for the higher level of generality is an increase in the amount of k-search at 
performance time. The k-search for a chunk in the two representations can be characterized 
as follows: 

1. Multi-attributes: The number of tokens in the k-search tree can be exponential in the 
number of CEs. However, the depth of the k-search is bounded by the number of CEs. 

2. Unique-attributes: The number of tokens in the k-search tree is bounded by the number 
of CEs in the chunk. 

The restriction on multi-attributes does not imply that a Soar system has lost all of its 
sources of generality. Other sources of generality, which are independent of the amount 
of k-search done, can still be exploited. For example: 

1. Implicit generalization: Chunks are based only on those aspects of the situation that 
were referenced during problem-solving in the subgoal to produce results (Laird, Rosen- 
bloom, and Newell, 1986). For example, in subsection 3.1, the CEs of the chunk are 
based on only a fraction of the existing working memory. 

2. Focus: The notion of focus is based on the notion of relative representation, i.e., represent- 
ing objects or positions relative to a particular object or a position called focus. For 
example, positions on the grid are up-down-left-right relative to the current focus, i.e., 
the current position. Chunks learned reflect the representation relative to the current 
focus, allowing transfer if the focus shifts. 

3. Decomposition: If a task is decomposed into smaller subtasks, then chunking the smaller 
subtasks independently provides another source of generafity. For instance the Seibel task 
requires reacting to the on-off conditions of ten lights (Rosenbloon and Newell, 1986). 
Instead of considering all the lights at once, if  small subgroups (of 2-4 lights) are con- 
sidered independently, then chunking on those provides an alternative source of generality. 
The smaller subgroups will transfer to subparts of some other combination of lights. 

The unique-attribute representation for the Grid task exploits all three sources of generality 
listed above: 

1. Implicit generalization: Chunks are based only on the path traversed. The rest of the 
grid does not appear in the chunks. The chunks can therefore transfer irrespective of 
the grid formation, as long as the given path exists. 

2. Focus: The chunk uses a path relative to the current focus, i.e., the current position 
on the grid. This allows a translational transfer, if the focus is moved to a different source. 

3. Decomposition: The process of solving a particular problem for a path length of four 
generates subgoals for all intermediate path lengths, and hence generates chunks for 
all intermediate path lengths. 

6.2. The best and the worst case for the expressiveness-efficiency tradeoff 

The previous subsection illustrated the expressiveness-efficiency tradeoff involved in the 
Grid task. This subsection presents a best and worst case analysis for the tradeoff. In the 
best case of the expressiveness-efficiency tradeoff, a single unique-attribute chunk is just 
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source 

destinotions 

Figure 15. The Tree task. 

as general as the corresponding multi-attribute chunk, but a lot cheaper (the unique-attribute 
chunk saves time). In the worst case for the expressiveness-efficiency tradeoff, a single 
unique-attribute chunk is quite specific and a large number of unique-attribute chunks are 
required to reach the same level of generality as a multi-attribute chunk. However, the large 
number of unique-attribute chunks are just as expensive as the multi-attribute chunk. A 
good example for demonstration of these cases is the Tree task shown in Figure 15. The 
Tree task is just like the Grid task except that the structure to be searched is a binary tree 
of uniform depth, and the path to be found is always from the root to one of  the leaves. 

The multi-attribute and unique-attribute representations in this task are similar to those 
in the Grid task, except for the use of left-connected and right-connected rather than up, 
down, left, and right for the unique-attributes. The most general chunk (with multi-attributes) 
is shown in Figure 16(a). It covers all the destinations (the leaves), given the root of the 
tree as the source. One particular unique-attribute chunk is shown in Figure 16(b). The 
unique-attribute chunk will  cover only one particular leaf of the tree. This observation reveals 
an important characteristic of  the Tree task--the only source of  generality available is 
k-search. The unique-attribute system does not benefit from any other sources of generality. 
It does not benefit from using a focus, implicit generalization, or decomposition, since 
(1) the source for this task is always the root, (2) the destination is always one of the leaves, 
(3) the path length is fixed, and (4) the path to each destination is unique. 

(Chunk::Multi-attr 

(current-state <x>) 

(point <x> ^connected <y>) 

(point <y> ^connected <z>) 

(point <z> ^connected <d>) 

(desired <d>) 

(prefer path <x> ^to <y>)) 

(a) 

(Chunk::Unique-attr 

(current-state <x>) 

(point <x> ^left-connected <y>) 

(poin t  <y> ^ r i g h t - c o n n e c t e d  <z>) 

(point <z> ^left-connected <d>) 

(desired <d>) 

--> 

(prefer path <x> ^to <y>)) 

(b) 

Figure 16. Chunk formed in the Tree task with the two representations. 
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Table 4. The cost and generality of the multi-attribute and unique-attribute representations for the Tree task, assuming 
a branching factor of B and a depth of D. In deriving the cost for unique-attributes worst case, sharing (Section 
3.2) is assumed for conditions in the chunks. The best and worst case refers to the best and worst case of the 
expressiveness-e fficienc2¢ tradeoff. 

Representation Cost Generality Number of Cost 
used in tokens in number of chunks required in tokens 

per chunk Transfers for same level after learning 
of generality all chunks 
as Multi-attr. 

Multi-attribtltes B*(Bd-1)/(B-1) B d 1 B*(Bd-1)/(B-1) 

Unique-attributes d 1 1 d 
best case 

Unique-attributes d l B d B*(Bd-I)/(B- 1) 
worst case 

Since k-search is the only source of generality in this task, it exhibits the expressiveness- 
efficiency tradeoff in its clearest form. Table 4 presents data on the cost and the generality 
of the chunks for the multi- and unique-attributes (for both the best and worst cases) assuming 
a Tree task with a branching factor of B and a depth of D. In the best case for the unique- 
attributes, the lask is to reach only one of the leaves, i.e., only a single destination has to 
be chunked. This task is accomplished by learning a single chunk, with a cost proportional 
to the depth of the tree. In this case, almost all of the exponential k-search of the multi- 
attributes--except for the one required k-search path--is excessive. Thus, the unique-attribute 
system exhibits a big efficiency gain, without any losses in terms of generality. 

In the worst case for the unique-attributes, all of the destinations (or leaves) of the tree have 
to be chunked. In this case, the cost of matching all unique-attribute chunks (one chunk per 
path) is equal to the cost of matching one multi-attribute chunk. There is no excessive k- 
search involved in matching the multi-attribute chunk. Since there is no excessive k-search, 
this task demonstrates the worst-case for the expressiveness-efficiency tradeoff. Furthermore, 
the lower generality of the unique-attribute chtmks demands an exponential number of chunks 
(exponential in the depth D) to cover the level of generality of one multi-attribute chunk. 

An obvious question that the worst case analysis raises is: I f  the unique-attribute version 
is going to have to acquire an exponential match anyway (to match the exponential number 
of productions), why not acquire it all at once via the multi-attribute chunk? The answer 
to this question lies in the issue of the safety of chunking, i.e., the issue that chunking 
should not hurt Soar's performance. The multi-attribute chunk can add an arbitrarily large 
exponential cost in a single learning trial. In contrast, the unique-attribute version learns 
about the individual branches as they are encountered. The match cost always increases 
gradually (at worst), and remains bounded by the number of branches that have been encoun- 
tered. At worst the number of branches that have been encountered is equal to the number 
in the tree, but in many domains only a small portion of the entire exponential space is 
ever encountered. A related point is that the system is also protected from learning an expo- 
nential number of chunks by its fmite lifetime. If the chunking rate is approximately constant 
over time (see Section 8.2), then there is a finite number of chunks that the system will 
ever be able to acquire. Under these circumstances the system can work in arbitrarily large 
exponential domains, but it will never have enough time to learn everything about the domain 
(as opposed to learning everything about the domain quickly, but never having enough time 
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to use it). Of course, not having enough time to learn everything about a domain also implies 
that Soar may not actually benefit from chunking. 

In the interest of clarity of exposition, this section analyzed a simple tree-structure (with 
uniform branching factor B) to demonstrate the best and worst cases of the expressiveness- 
efficiency tradeoff. The actual complexity expressions for the best and the worst cases can 
vary according to the individual problem being solved e.g., instead of the simple tree- 
structure, it is possible to consider a complex tree-structure where the branching factor 
grows exponentially with depth. 

It is useful to analyze how unfavorable the expressiveness-efficiency tradeoff can get in 
performing the Tree task. Note that for performing this task, the tree-structure must be 
present in working memory. If  this tradeoff is to be heavily set against the unique-attribute 
system, the tree-structure present in working memory must be very large. However, the 
tree-structure is exponential in the depth of the tree. An exponential amount of time must 
be spent in generating such an exponential structure. (In this respect, the Tree task is to 
be contrasted with the Grid task, where the size of the structure is limited, but matching 
the structure requires exponential time due to connectivity.) The unique-attribute system 
is thus protected by its finite lifetime--it is unlikely that the problem-solver will be able 
to generate such large tree-structures in its lifetime. If  the tree-structure is not large, the 
expressiveness-efficiency tradeoff is not very unfavorable to begin with; the unique-attribute 
system will be able to obtain the required coverage fairly quickly. Thus, this tradeoff is 
expected to not be set heavily against unique-attributes. Interestingly, none of the tasks 
from Table 2 have exhibited the worst case of the expressiveness-efficiency tradeoff in the 
unique-attribute representation. 

In conclusion, in the worst case (the tree search) of the expressiveness-efficiency tradeoff, 
there is no excessive k-search involved. However, from the example of the best case in 
this section, the Grid task in the previous subsection, and the analysis of the expensive- 
chunks tasks (Tambe and Newell, 1988), we expect that in the general case, multi-attribute 
chunks will generate excessive k-search. There is no tradeoff involved in this excessive 
k-search; the unique-attribute representation simply gets rid of it. 

7. Experimental analysis 

This section provides a detailed comparative performance analysis of the multi- and unique- 
attribute based systems. It first compares the computational effects of multi- and unique- 
attribute representations for the four expensive chunks tasks from Table 1: Grid, Eight-puzzle, 
2-Queens, and Magic-square. It then presents a freer grained analysis of the impact of chunk- 
ing on the overall performance of the multi- and unique-attribute systems. 

For each representation and task, the system was run without chunking. The tokens per 
action and the time per action in performing the task were noted. The system was then 
allowed to chunk on the problem. It was then run on the same problem, i.e., after having 
chunked on the problem, and the tokens per action and the time per action in performing 
the task were noted. A sequence of such experiments was performed with the unique-attribute 
representation to accumulate a set of chunks yielding the same level of generality as the 
multi-attribute system. (See Sections 6.1 and 6.2 for examples of how this same level of 
generality is determined.) 
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Figure 17. Computational effects in the Grid task. 

In the Grid task, a 5 x 5 grid was chosen, with p, the length of the path, set at six. 
Recall that we had assumed an unbounded grid in obtaining the results in Table 3. The 
results of our experiments will be somewhat different from those results, since these experi- 
ments are run with a bounded grid. However, a large grid size would make the chunks 
in the multi-attribute representation too expensive to allow running the experiments. The 
multi-attribute and unique-attribute representations used for this task were the ones intro- 
duced in the previous section. Figure 17 shows the change in tokens per action and time 
per action with the addition of chunks for the two representations. The time is measured 
in milliseconds. The multi-attribute representation learns 17 chunks and causes an increase 
in tokens per action from about 3 tokens per action to 24 tokens per action 18 and causes 
a computational effect of about 0.11; i.e., the time per action has gone up by about a factor 
of 9. The unique-attribute representation requires learning on more problems to reach the 
same level of generality (each asterisk (*) represents one problem). It accumulates 142 
chunks in this process, but its tokens per action and time per action are seen not to increase 
as much. Even after achieving the same level of generality as the multi-attribute system, 
the computational effect here is much more limited (about 0.46). These graphs thus sup- 
port the analysis of the Grid task presented in the previous section--the unique-attribute 
system is able to avoid large portions of the k-search performed by the multi-attribute system. 

Although the computational effect of the unique-attribute system in the Grid task is limited 
to 0.46, it is not unity, as required for the ideal computational model. This deviation from 
the ideal computational model occurs because, even though the chunks in the unique-attribute 
system are individually cheap, each chunk does add something to the match cost. This 
issue is picked up in more detail in Section 8.2. 

The Eight-puzzle task requires arranging eight numbered tiles in a 3 x3 frame in a specific 
order. One of the cells in the 3x3 frame is always blank and adjacent tiles can be moved 
into the blank cell. In the multi-attribute representation, a state points to nine bindings, 
each of which connects a cell from the static 3 x3 structure of cells to a tile. For example, 
(binding B1 Acell C!) (binding B1 Atile T1) connects cell C1 to tile T1. A cell points to all 
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Figure 18. Computational effects in the Eight-puzzle task. 

its neighboring cells. For example, (cell CI ^next C2), (cell C1 ^next C3), etc. In the 
unique-attribute representation, bindings are not used. The state points to the blank cell. 
The blank cell points to its neighbors, which in turn point to their neighbors, using attri- 
butes up, down, right and left. For example, (cell C1 ^up C2), (cell C1 ^down C3), etc. 
The cells directly point to tiles. For example, (cell C1 ^tile I1). Figure 18 shows data from 
runs with both representations. The analysis of these graphs is very similar to the analysis 
of  the graphs in Figure 17 for the Grid task. There is only a limited (less than a factor 
of  2) increase in time per action in the unique-attribute system. 

It is important to analyze the sources of generality available in the Eight-puzzle task, 
in a manner analogous to the Grid task. The chunks learned in the Eight-puzzle are search 
control rules that give a preference to one operator over the other. For instance, in Figure 
19, it is possible to move the blank in two directions: right and up. Depending on the tiles 
in the current state and their situation in the desired state, the search control chunk formed 
will prefer one operator over the other. There are three sources of generality available to 
the multi-attribute version: 

• Implicit Generalization: The chunk does not take into account the position of  the other 
tiles and cells, except the ones affected by the move operator. It also does not take into 
account what numbers are on the tiles. 

• Focus: The chunk is relative to the position of  the blank cell. The chunk will transfer 
to other situations based on the position of the blank cell. 

• K-search: The chunk will transfer to any other configuration of two operators; it is not 
sensitive to directions, such as right and up. 

Of  the three sources listed above, the unique-attribute version cannot use k-search for 
generalization. The chunks learned will be specific to the direction of the operators. For 
instance, in Figure 19 the operators under consideration have to move the blank right and 
up. However the important point is not how much generality is lost. Rather it is how much 
has remained, in comparison to a no-transfer situation (no-transfer chunks refer to chunks 
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Figure 19. Move operators in the Eight-puzzle task. 

Table 5. Number of chunks required in three representations to achieve the same generality for the Eight-puzzle. 

Eight-puzzle 
Representations 

Multi- Unique- 
attributes atlributes 

Number of Clmnks 5 

No-transfer 

60 8 million 

which have absolutely no source of generality available. Calculations using a somewhat 
simplified version of the chunks learned in this task show the ratio in Table 5 (see Appendix 
HI for the derivations). 

Thus, a substantial amount of transfer is still available to the unique-attribute representa- 
tion. Although the unique-attribute system forms chunks of lower generality, it obtains a 
big reduction in the match effort by avoiding excessive k-search. 

The results for the 2-Queens and Magic-square tasks are presented in Figure 20. The 
tokens-per-action graphs in these two cases are similar. Both graphs show the advantage 
of going with unique-attributes. (For details of the representations employed see (Tambe 
and Rosenbloom, 1988).) An important point here is that these two tasks are such that 
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THE PROBLEM OF EXPENSIVE CHUNKS 331 

the unique-attribute system does not have to learn any extra chunks to achieve the same 
level of generality as the multi-attribute system. 

The results presented in this section so far, along with those in Table 2, show that the 
unique-attribute version is more efficient after reaching the same level of generality as the 
multi-attribute version, hut they don't show the finer-grained behavior of what happens 
during the learning process. Specifically, they don't address the issue of the extra time spent 
by the unique-attributes version in acquiring the extra chunks. To understand this issue, 
a set of randomly generated problems in the Eight-puzzle domain were run with both ver- 
sions. Both versions started off with no chunks, and solved the set of problems with chunking 
turned on, i.e., chunking continuously across the set of problems. Thus, the systems used 
the chunks learned in one problem to solve the subsequent problems, simultaneously learn- 
ing more chunks in situations where the earlier chunks did not applyJ 9 

Figure 21(a) shows the cumulative times for the two systems on the 20 problems. The 
unique-attribute system consistently outperforms the multi-attribute system. Figure 21(b) 
compares the time required by the two versions for the individual problems. This graph 
shows that even in each individual problem, the performance of the unique-attribute version 
dominates the performance of the multi-attribute version. Figure 21(c) shows the time per 
decision for the two systems. Decisions are typically used in Soar to measure the amount 
of problem-solving effort. The point corresponding to the zeroth problem shows the time 
per decision prior to learning. The main message of this graph is that time per decision 
remains fairly constant in the unique-attribute version, while it takes some fairly large jumps 
in the multi-attribute version. Thus, the number of decisions does not accurately reflect 
the problem-solving time in the multi-attribute system, but it does so in a unique-attribute 
system. Finally, Figure 21(d) compares the number of decisions required for solving the 
problems in the two systems. This graph shows that unique-attributes require more decision 
cycles than multi-attributes in achieving the goal. The chunks learned by the multi-attribute 
system are more general, and hence the reduction in the number of decisions per problem 
happens more quickly than with unique-attributes. However, as more problems are solved, 
and more unique-attribute chunks are acquired, the difference in number of decisions 
decreases. Similar results were obtained for the Grid task (Tambe and Rosenbloom, 1988). 

8. Discussion 

A detailed comparative analysis of the efficiency (and efficiency-related tradeoffs) of the 
more expressive multi-attributes and the less expressive unique-attributes was presented 
in Sections 5, 6, and 7. This section focuses on various issues related to unique-attributes: 
the difficulty of encoding tasks in unique-attributes, the average growth effect, the bounded 
elaboration phases, and others. 

&l. Difficulty of  encoding tasks with unique-attributes 

The approach adopted in this article to deal with expensive chunks is to restrict the expres- 
siveness of the production system language. Such restrictions are to be contrasted with 
the trends in some EBL systems to make the language more expressive (Cohen, Mostow, 
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Figure 21. Results for the set of random problems from the Eight-Puzzle task. 

and Borgida, 1988; Shavlik and DeJong, 1987). This contrast raises an important  question: 
with the elimination of  multi-attributes, would it be considerably more difficult to encode 
tasks in Soar? 

Multi-attributes are used for representing unstructured sets in working memory. In the 
blocks-world example (see Figure 7(a)), it is possible to keep all the blocks as a structure- 
less collection of items. A single production accesses all three of the blocks via match 
(see Figure 6). Thus, from a task-encoding perspective, the following features of a multi- 
attribute based set representation emerge: 



THE PROBLEM OF EXPENSIVE CHUNKS 333 

1. The elements of the set are accessed using production match, i.e., using k-search in 
the implementation domain. 

2. Since the elements of the set are accessed using production match, they are accessed 
in parallel, i.e., the matcher returns the set of  all matching elements simultaneously. 

3. Some set operations, such as search, add, delete, etc., are facilitated. 

The elimination of multi-attributes implies that unstructured sets cannot be represented 
directly in working memory. All sets in working memory have to be structured as lists, 
trees, or some other task-specific structures. Figure 10 showed how the set of blocks can 
be structured as a list. (Note that the list structure is chosen in the interests of clarity. This 
might not be the most suitable encoding for performing this task.) To access individual 
elements of such structures via production match, multiple productions would have to be 
written, one for each element in the structure. This requirement poses a problem--a large 
number of productions would have to be written--especially if the structure contains a large 
number of elements. This problem can be avoided by accessing the structure in the cognitive 
domain, i.e., using states and operators, z° In the example from Figure 10, the execution 
of an operator can examine one block from the list of blocks (the current focus), and advance 
the focus to the next block in the list. Thus, from a task-encoding perspective, the follow- 
ing features of a unique-attribute representation for sets emerge: 

1. The elements of a set are accessed using problem space search, i.e., using search in 
the cognitive domain. 

2. Since the elements of the set are accessed using problem space search, they are accessed 
in a serial fashion. (Problem space search is serial because it requires moving from 
state to state in a serial fashion.) 

3. Set operations such as search, add, delete, etc. are performed using operators in the 
problem space. 

As revealed by the features listed above, the principal impact of encoding tasks with unique- 
attributes is the removal of the combinatorial k-search from the implementation domain. 
Some of the combinatorics is transferred to the cognitive domain in the form of problem 
space search, while some, like the excessive portion of the k-search in the Grid task, just 
disappears. A task encoded with unique-attributes must bear the overheads associated with 
problem space search (selection of states, operators, etc.). These overheads can cause the 
system to slow down by a constant factor. The advantage of carrying out the search in the 
problem space lies in the ability to use search-control knowledge to terminate or control 
it. This ability can avoid the possibility of exponential slowdowns, which can occur in the 
implementation domain if multi-attributes arc used. Moreover, chunking in a space encoded 
using unique-attributes will gradually reduce and ultimately eliminate the overheads associ- 
ated with the problem space search (selection of states, operators, etc.). In the process 
of eliminating the overheads of problem-space search, chunking will increase the match 
effort in the implementation domain; however, this increase will always be gradual at worst 
(the next subsection discusses this issue in more detail). Chunking will also return to the 
implementation domain the capability of retrieving all elements of a (structured) set in 
parallel. Consider the structured set shown in Figure 10. If  chunks are formed in that domain, 
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(chunk::access-block-Bl 
(goal <g> ^problem-space <p>) 
(goal <g> ^state <s>) 
(state <s> ^block <bl>) 

(chunk::aecess-block-B2 
(goal <g> ^problem-space <p>) 
(goal <g> ^~ta~e <8>) 
(state <s> ^block <bl>) 
(block <bl> ^ne~% <b2>) 

(ch~nk::access-block-B3 
(goal <g> ^problem-space <p>) 
(goal <g> ^~tate <~>} 
(state <s> ^block <bl>) 
(block <bl> ^next <b2>} 
(block <b2> ^next <b3>) 

Figure 22. Access with unique-attributes. 

they will access the three blocks as shown in Figure 22, without any problem space search 
to access the three blocks. Furthermore, by matching the three chunks, the mateher can 
access the blocks B1, B2, and B3 in parallel. But now, the structure of the set represented 
by the unique-attributes is reflected in the chunks formed; the chunks encode the next rela- 
tion. The structure of the set is used by the matcher to restrict the k-search branching factor 
to one, e.g., only one block is next to the current block, guaranteeing the chtmks to be cheap. 

To further facilitate the encoding of common set operations like search, add, delete, etc., 
a set of operators which can perform many common set operations has been implemented. 
These operators are expected to effectively replace the functionality provided by multi- 
attributes. 

To gain a better understanding of the difficulties in encoding tasks, some complex task 
domains need to be converted to unique-attributes. Toward this end, R1-Soar (Rosenbloom, 
et al., 1985), a large Soar task with about 450 productions, which forms part of an expert 
system task for computer configuration, was converted into the unique-attribute representa- 
tion. This conversion was expected to take about a week or two. However, the conversion 
took only about two person days. This was mainly because R1-Soar uses only four different 
multi-attribute-based unstructured sets. Furthermore, R1-Soar does not form expensive 
chunks; thus, there was only about a 5-10% change in decisions and run time due to the 
conversion. Conversions of other Soar tasks are not always expected to be as easy--especially 
if a particular Soar task makes more extensive use of multi-attributes. In any event, it would 
obviously be preferable to automate such conversions. We are currently working on this 
automatic conversion problem in collaboration with an independent research effort in Soar 
called RTAQ (Yost and Newell, 1989; Yost and Altmann, 1989), which aims at acquiring 
new tasks (or problem spaces) from external descriptions. 

8.2. Average growth effect 

This article has considered techniques whereby, instead of learning a single expensive chunk, 
the system may learn a number of individually cheap chunks. For the cheap chunks, the 
growth of tokens is at worst linear in the number of chunks. However, learning a large 
number of cheap chunks could clearly overwhelm the system after some time. This effect 
is called the average growth effect--the distortion in Soar's computational model due to 
the addition of a large number of cheap chunks. The average growth effect is seen in all 
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of the unique-attribute tasks examined in Section 7. For instance, in Figure 17, the accumu- 
lation of 142 chunks causes a computational effect of 0.46. 

The point to be noted here is that the average growth effect increases the intrinsic or 
available parallelism in the system (Tambe, et al., 1988). Therefore, we speculate that this 
problem could be solved by parallelism (Tambe, 1988). More specifically, we expect that 
with future research in parallel production systems (Gupta, 1986; Gupta and Tambe, 1988; 
Tambe, et al., 1988), it will be possible to convert the increase in concurrency into real 
parallelism, allowing Soar to preserve its ideal computational model (modulo the footprint 
size issue mentioned in Section 5.1). 

However, even at this level of speculation about parallelism, some important issues need 
to be addressed. The first issue is bounding the number of chunks in the system. As in 
Section 6.2, if we assume a fmite lifetime for the problem-solver, then the number of chunks 
that the system will be able to acquire is bounded. Given the finite lifetime, if the rate 
of chunking is known, it is possible to estimate the increase in concurrency with chunking 
over the lifetime. It is then possible to estimate the quantity of processor and memory 
resources that will be required for converting that increase in concurrency into real 
parallelism and provide those processor and memory resources ahead of time. Note that 
the discussion here is only regarding cheap chunks, hence the argument about exponential 
matches for individual chunks raised in Section 5.1 does not apply. 

The previous paragraph raises a second important issue: establishing a polynomial bound 
on the rate of growth of cheap chunks. An exponential growth in the number of chunks, 
even with a f'mite lifetime, would be highly problematical in terms of processor and memory 
resources. In Soar, the growth of chunks is assumed to be linear in the number of decision 
cycles--the constant rate of chunking is one of the bases of the chunking theory of learning 
(Newell and Rosenbloom, 1981). This article is not focused on establishing the validity 
of this assumption. However; some evidence for the assumption is provided in Figure 23. 
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It shows the growth in the number of chunks in the two unique-attribute tasks that learn 
a large number of chunks. For both tasks, the increase in number of chunks plotted against 
the number of decision cycles for learning on 20 different random problems presented to 
the system. For the Eight-puzzle these problems are the same as those shown in Figure 
21; for the Grid task, the problems are from (Tambe and Rosenbloom, 1988). In both these 
tasks, the growth of chunks is seen to be linear (or sublinear) in the number of decision 
cycles. Since these chunks are cheap, the graph indicates that the average growth effect 
will cause the time per action to grow linearly with the number of decision cycles. 

In fact, the following two effects would further reduce the impact of the average growth 
effect: 

1. Sharing: As mentioned in Section 3.2, the effect of sharing in general is quite limited 
in the multi-object based matcher. However, for cheap chunks, this property could become 
important. For example, in (Prieditis and Mostow, 1987) a problem about learning mem- 
bership of an item in a list is presented. This task leads to learning a large number of 
chunks, one for each position of the item in the list. However, the chunks have a large 
number of conditions that are common. All these common conditions get shared if the 
Rete algorithm is used. Thus, with matching algorithms like Rete, the addition of large 
numbers of similar chunks requires very little additional processing. 

2. Problem-space decomposition: Large Soar tasks are composed of many distinct search 
spaces (called problem spaces). It is unlikely that all the chunks learned will belong 
to a single one of these problem spaces. Thus, only a fraction of the chunks learned, 
i.e., those belonging to the current problem space, will be actively matched at a time. 
The rest will require only one comparison (of their problem space) to determine that 
they do not belong to the current problem space and will not participate in the match. 
Furthermore, the total number of problem spaces itself is not fixed--new problem spaces 
can be constructed at run time (Newell, 1990, Chapter 8), thus reducing the match effort. 

Thus, the growth in the processing requirement with chunking is at worst linear, making 
an effective elimination of the average growth effect with parallelism seem plausible. 

8.3. Unique-attributes bound the elaboration phase 

Recall from Section 3.1 that a decision cycle in Soar consists of an elaboration phase fol- 
lowed by a decision phase. An elaboration phase consists of multiple elaboration cycles, 
where multiple productions are fired in each elaboration cycle. With a multi-attribute rep- 
resentation, these elaboration phases are not bounded, i.e., it is possible for elaboration 
cycles to follow each other in an unbounded fashion in a single elaboration phase. For in- 
stance, it is possible to start counting the natural numbers in a single elaboration phase. 
Figure 24 presents a single production for counting the natural numbers in a single elabora- 
tion phase. This production will repeatedly add 1 to the existing value of the attribute count 
and fire with the new value. Note that count is a multi-attribute, which increases in size 
with each firing of the production. 
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(Production::Count-natural-numbers 

(current-state <x>) 

(state <x> ^count <y>) 
--> 

(state <x> ^count (add 1 <y>) )) 

Figure 24. Counting the natural numbers in a single elaboration phase. 

Here, unique-attributes provide another useful bound--they bound the elaboration phase. 
This bound follows from the following argument. Since the k-search tree of a unique-attribute 
production has a branching factor of unity, it is clear that a unique-attribute production 
can generate only a single instantiation at a time (assuming a single goal). Furthermore, 
the WMEs (and the values) that instantiate the production cannot change within a single 
elaboration phase, so that new instantiations for this already instantiated production cannot 
be generated within a single elaboration phase. Since only a single instantiation is generated, 
a unique-attribute production can fire only once in a single elaboration phase. For instance, 
with unique-attributes, the production in Figure 24 can fire only once in a single elaboration 
phase, since only a unique value of count is possible in a single decision cycle. (In reality, 
this production's action would have to be changed with unique-attributes, since firing the 
production introduces a multi-attribute.) Thus, the number of productions that can fire in 
an elaboration phase is bounded by the number of productions in the production system. 21 
However, bounding the elaboration phase also implies that arbitrarily large working memory 
structures cannot be processed in a single decision. These structures require multiple deci- 
sions for processing. Again, if these large structures are fixed, then with chunking, the 
system can learn more productions to deal with them. 

8.4. Effect of  macro-operator learning on branching factor 

A problem related to expensive chunks is that of the increase in the branching factor of a 
search space with macro-operator learning. This increase in the branching factor can poten- 
tially cause a slowdown in a system, as it tries to apply the macro-operators in situations 
where they are incapable of efficiently solving the problem at hand. In (Mooney, 1989; 
Iba, 1989; Markovitch and Scott, 1989b; Greiner and Likuski, 1989), various strategies are 
described to deal with this branching-factor problem, to avoid the slowdown with learning. 

The branching-factor problem is related to expensive chunks in that both can cause a 
slowdown with learning. However, the problem of expensive chunks is not concerned with 
the branching factor of the search space--it is only concerned with the match for individual 
productions/chunks. The branching factor problem could arise in Soar, if Soar learns new 
operators for a problem space, without learning the appropriate search control knowledge 
for that space. The research in (Mooney, 1989; lba, 1989; Markovitch and Scott, 1989b; 
Greiner and Likuski, 1989) could potentially be relevant to Soar in that situation. However, 
the chunks learned in the various tasks (especially the expensive-chunks tasks) in this paper 
are search control chunks that select among various existing operators; these tasks do not 
learn new operators. 
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8.5. Restricting expressiveness versus enriching expressiveness 

In sharp contrast to the research reported in this article, some research efforts have focused 
on enriching the expressiveness of the rule language. These efforts are aimed at learning 
iterative concepts, especially by allowing looping constructs in the rule language (Shavlik 
and DeJong, 1987; Cohen, 1988; Shavlik, 1989). Iterative rules will reduce the average 
growth effect, since they avoid the necessity of learning multiple rules, one for each value 
of the loop variable. However, iterative constructs raise difficulties in guaranteeing bounded- 
ness of the match process. 

In (Shell and Carbonell, 1989), the problem of expensive chunks is explicitly addressed. 
They are also exploring ways of enriching the operator language to allow iterative and dis- 
junctive macro-operators. As we noted in footnote 2 (on page 1), there are a number of 
paths that need to be explored to fully understand how to deal with expensive chunks. Fur- 
thermore, the advantages and disadvantages of going along different paths remain ill- 
understood. Thus, the issue of restricting expressiveness versus enriching expressiveness 
remains an interesting open research issue. 

9. Relevance to other research efforts 

An important question is the relevance of this research for the non-Soar community. The 
representation in Soar and the unique-attribute restriction presented in this paper are both 
based on attribute-value representations. Rule-based systems with attribute-values and a 
combinatorial match are fairly widespread in AI, e.g., OPS5 (Brownston, Farrell, Kant, 
and Martin, 1985) and Prodigy (Minton, 1988a; Minton et al., 1989). The unique-attribute 
representation should map over to some of those systems and help in eliminating combina- 
torics from the match. Even if the unique-attribute representation does not map over directly, 
it is possible to look at the idea of restricting k-search in the production match and map 
that over. Given the tradeoffs involved in the unique-attribute representation, it is not clear 
exactly when such mappings would be helpful. However, it appears that the mappings might 
at least be helpful in those situations where excessive k-search is involved. 

Unique-attributes appear to be relevant to frame-based systems as well. Recently, Chalasani 
and Altmann (Chalasani and Altmann, 1989) pointed out that the knowledge representation 
scheme adopted by Theo, a frame-based architecture for problem-solving and learning 
(Mitchell et al., 1989), corresponds to the unique-attribute representation. This correspon- 
dence makes a plausibility argument for unique-attributes, since it shows that an entire 
symbolic architecture, considerably different from Soar, is based on the unique-attribute 
representation. Theo's knowledge-access language is restricted so that it works within the 
unique-attributes framework. Sets in the knowledge base are represented in Theo in the 
form of linked lists. Such lists are then processed by user-written Lisp routines (rather than 
by constructs in the query language). 

10. Summary and future work 

Expensive chunks are caused by three factors: multi-objects (multi-attributes and prefer- 
ences), big footprints, and bad condition ordering. Multi-objects allow combinatorial 
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searches to occur in the match. These searches can result in exponential slowdowns. Elim- 
inating multi-objects from the representation bounds the cost of a chunk to be linear in 
the number of its condition elements. The new restricted representation is referred to as 
the unique-attribute representation. The principal impact of the unique-attribute representa- 
tion is the removal of the combinatorics from the matcher. The combinatorics can still 
occur in the problem space, where they can (in principle) be controlled or terminated using 
search control knowledge. Analytical and empirical evidence was presented to show that 
the unique-attribute representation not only guarantees cheap chunks, but it actually elimi- 
nates some excessive (and expensive) match. Two issues arise with the representational 
restrictions in unique-attributes: (1) all sets in working memory have to be structured as 
lists, trees, or some other task specific structures, (2) the chunks formed are less general. 
The paper addressed both these issues in some detail. 

However, the issue of big footprints remains to be addressed. A chunk can still have 
an arbitrary number of condition elements. This issue will be one of the subjects of investi- 
gation in the near future. The space of match algorithms that would be better suited for 
the unique-attribute system also needs to be explored. The issue of match algorithms has 
been addressed in the context of the Soar system with multi-objects (Nayak, Gupta, and 
Rosenbloom, 1988), with the conclusion that the state-saving Rete algorithm is better suited 
for Soar than the Treat algorithm, which saves less state. However, the conclusions in the 
absence of multi-objects are not clear. 

The results presented in this paper are based on a variety of toy tasks, such as the Eight- 
puzzle, Waterjug, and others. To complete the analysis of the impact of unique-attributes, 
some of the larger Soar tasks need to be converted to the unique-attribute representation. 
Toward this end, R1-Soar (Rosenbloom, et al., 1985), a large Soar task with about 450 
productions was converted into the unique-attribute representation. The possibility of con- 
verting other large Soar tasks, such as Neomycin-Soar (Washington and Rosenbloom, 1988) 
and Merl-Soar (Hsu, Prietula, and Steier, 1989) to unique-attributes is being investigated. 

Another interesting topic for future work is automating the conversion of tasks in Soar 
from the current representation to the unique-attribute representation. This work will be 
in collaboration with an independent research effort called RTAQ (Yost and Newell, 1989; 
Yost and Altmann, 1989), which aims at acquiring new tasks (or problem spaces) from 
external descriptions. We are currently also investigating other schemes besides unique- 
attributes for restricting expressiveness (Tambe and Rosenbloom, 1990). We hope that these 
investigations will allow us to gain a better understanding of the interaction between learn- 
ing, representation, and efficiency. 

Appendix I. Descriptions of the nine tasks 

Eight-Puzzle 

Problem-statement: There are eight numbered movable tiles in a 3x3 frame. One cell 
of the frame is always blank, making it possible to move an adjacent tile into the blank 
cell. The problem is to transform one configuration to a second by moving the tiles. 

States: The state is described in terms of nine bindings each of which connects a cell 
from a static 3 x3 structure of cells to a tile from a dynamic structure of individual tiles. 
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Operators: There is only one operator: move-tile. The instances of this operator are the 
only instantiated operators and there can be up to four of  them at a time. These instantiated 
operators move the dynamic structure around until the desired configuration is reached. 

2-Queens 

Problem-statement: Placing 2 queens on a 3 x 3  chessboard such that no queen takes 
another. 

States: The states are represented as a 3x3  array of positions. Each position has one 
horizontal, one vertical and two diagonal attributes. 

Operators: There is only one operator: place-queen. Up to nine instantiations of this 
operator may be created at a time. 

Grid 

Problem-statement: Finding a path between two points on a 4 × 4  grid. 
States: The grid-structure with nodes and the paths that connect nodes. The destination 

node is marked with a desired flag. 
Operators: There is only one operator: goto. There can be up to four instantiated goto 

operators at one time, for moving to the points adjacent to the current position on the grid. 

Magic-Square 

Problem statement: Completing a 3x3  magic-square. In a magic-square, the sums of 
the numbers along each of  the columns, rows and diagonals equal one another. 

States: A state has nine bindings that associate a number with a square. 
Operators: There is only one operator for placing a number in a square and it can create 

up to nine instantiations. 

Tree 

Problem-statement: Finding a path between the root and a destination point in a tree 
of  height 4 and branching factor of 2. 

States: The tree-structure with nodes and the paths that connect nodes. The destination 
node is marked with a desired flag. 

Operators: There is only one operator: goto. There can be up to two instantiated goto 
operators at one time, for moving to the points adjacent to the current position on the tree. 

Syllogisms 

Problem-statement: A syllogism is a logic puzzle where two assertions involving pairs 
of terms (e.g., All P are Q; All Q are R) are given. From these given assertions some 
conclusion (in this example: All P are R) is to be drawn. 

States: Each state is made up of  two premises or statements, one model built out of two 
to three objects, and the focus (on one object in the model). See (Polk and Newell, 1988) 
for details. 
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Operators: There are four different operators that can add an object, focus on a premise, 
focus on an object, and augment an object. 

Monkeys and Bananas 

Problem-statement: A monkey has to get the bananas hung from the ceiling in a room. 
A ladder is placed under the bananas. The task for the monkey is to climb the ladder and 
get the bananas. 

States: The position of the Monkey in terms of its position on the ground and its height, 
and the position of the bananas. 

Operators: There are five different operators available to the Monkey: climb the ladder, 
eat the bananas, get the bananas, climb down the ladder, and move. 

Water jug 

Problem-statement: Given a five gallon jug and a three gallon jug, how can precisely 
one gallon of water be put into the three gallon jug? There is a well nearby, but no measur- 
ing devices are available, other than the jugs themselves. 

States: The amounts of water in the five gallon and three gallon jugs. 
Operators: Six operators are available, one for each combination of pouring water be- 

tween the well and the two jugs. Each operator specifies what container it is pouring water 
to and what it is pouring water from. Each operator must empty the source or fill the destina- 
tion container. 

Farmer 

Problem-statement: A farmer has to cross a river with a wolf, a sheep and some cabbage. 
There is a boat that can carry him and one more load at a time. The farmer cannot leave 
the sheep and the wolf together unattended and cross the river with the cabbage, since 
the wolf may eat the sheep. Similarly, he cannot leave the sheep and the cabbage together. 

States: The status of four different objects: The farmer, the sheep, the wolf, and the 
cabbage. 

Operators: Two operators are available: one for the farmer to cross the river alone and 
one for the farmer to cross the river with one load. Three or four instantiations of the 
two operators combined are available in any one state. 

Appendix II. Cost and generality of chunks in the grid world 

A grid of size n x n is assumed. In the interests of simplicity, boundary effects are ignored. 

Multi-attribute representation 

• Cost: As shown in Figure 12, each condition element multiplies the number of tokens 
in the chunk by four, the number of connections emerging from any given point. The 
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cost of the chunk is the total number  of tokens generated by the match. I f  the path length 
is p,  and the cost of  the chunk is C m, then: 

Cm = 4 + 42 + 43 + . . .  + 4 p 

= E~=l 4 k = (4 p+I - 4)/(4 - 1) 

= ( 4  p + I  - 4 ) / 3  

• Generality: The chunk transfers to any two points on the grid connected by a path of 
lengthp.  There are n 2 points on the grid that can act as a source. To calculate the number 
of  destinations possible from a given source, consider Figure 14. The points reached 
from the source form squares (or euclidean circles), around the source. I f  the path length 
i sp ,  then the squares are at a distance of 2, 4, 6, . . . ,  p (for an evenp) ,  and at a distance 

of  1, 3, 5 . . . .  , p (for an odd p).  Let  us call this distance the radius of  the square. 
Let k be the radius of  a square. Let  x and y be the cartesian coordinates of a destina- 

tion point on the square with the source as the origin. Then the number of  possible des- 
tinations is obtained by enumerating the solutions of  the following equation for integer 
values of  x and y. 

Ixl + lyl = k 

There are 4*k solutions to this equation, since both x and y can vary between - k ,  . . .  
0 ,  . . . ,  k. Thus there are 4*k destinations on a square of  radius k. 

I f  M is the total number of points that can be reached from a given source, then for 
an even p (the analysis is very similar for an odd p):  

M =  1 + 4 * 2  + 4 * 4  + 

= 1 +  8 ( 1 + 2  + . . .  

= (40 + 1) 2 

. . . .  + 4 * p [1 is for the source] 

+ p /2 )  = 1 + pZ + 2p 

The total number  of  transfers 

= sources * destinations per  source 

= n 2 * (t7 + 1) z 

. Total cost: The total cost is the product  of the cost  per  chunk and the number  of  chunks. 
Since only one chunk is learned, the total cost is equal to the cost of that one chunk. 

Unique-attribute representation 

• Cost: As  shown in Figure 13, the number  of tokens in the chunk is linear in the length 
of  the path (p). 
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• Generality: The chunk can transfer to any two points connected in a specific manner, 
e.g., up-right-up-right. Thus, for one given source, the chunk will transfer to one destina- 
tion. There are n 2 points on the grid. Therefore the generality is n 2 

• Total cost: The total cost (without sharing) is the product of the cost (p) of one chunk 
and the total number ((/7 + 1) 2) of chunks learned. The total number of  chunks learned 
in this representation is obtained from the discussion in Section 6.1. 

Appendix III. Generality of chunks in the Eight-puzzle task 

This analysis compares the generality of chunks in three different representations: no-transfer, 
multi-attributes, and unique-attributes. We assume that some simple search-control chunks 
are to be learned. Given two possible operators (see Figure 19 for examples of operators 
in the Eight-puzzle domain), the chunks give a preference to one operator over the other. 
The operators are evaluated as follows: 

• I f  an operator moves a tile from out-of-place to in-place: + 1 
• If  an operator moves a tile from in-place to out-of-place: - 1 
• If  an operator moves a tile from out-of-place to out-of-place: 0 

In-place and out-of-place are determined by explicit comparison of the positions of  the 
tiles in the present state and the desired state. I f  the two operator evaluations result in the 
same value, then an indif ferent  preference is generated, i.e., the two operators are equally 
preferable (or unpreferable). 

No-transfer  chunks. A no-transfer chunk has the format shown in Figure 25. Note that this 
chunk does not have any variables. It first matches the entire present state, then the entire 
desired state, then the two operators, and then prefers one operator over the other. 

(Production::No-transfer-case-78200 

Desired-state-position ii ^tile ]) 
Desired-state-position 12 ^tile 2) 
Desired-state-positlon 13 ^tile 3) 

Present-state-position Ii ^tile i) 
Prcsent-state-posltion 12 ^tile 0) 
Present-state-position 13 ^tiLe 2) 

(Operator-mere-tile OPl ^tile i) 
(Operator-move-tile OP2 ^tile 2) 

(Preference Operator-move-tile OPl werse-than 

Figure 25. A no-transfer chunk in the Eight-puzzle domain. 

Operator-move-tile OP2)) 
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For each possible present and desired state, we require one such chunk. There are 9! 
possible desired states in the Eight-puzzle. There are 9? possible present states. The total 
number of configurations of the present and desired states cannot be simply multiplied 
together, since depending on the position of the blank-tile, the number of two-operator 
combinations in each state is different. There are nine possible positions of the blank-tile. 
For each, the number of present-state and operator combinations need to be computed. 

• If  the blank-tile is in the center, four operators are available. The four operators can be 
combined in (4 choose 2 =) 6 ways. The rest of the tiles can be permuted in 8? ways--a 
total of 6"(8!) ways. 

• I f  the blank-tile is in a comer, only two operators are available. There are four corner- 
positions for the blank-tile. For each of those, there are 8? permutations of the other 
tiles--a total of 4*(8?) ways. 

• For the other positions of the blank-tile, three operators are available. We can combine 
them in three (3 choose 2) ways. There are four such positions of the blank-tile, and 
for each of those, there are 8? permutations of the other tiles--a total of 4*3*(8?) ways. 

Combining all the above numbers, we get 9? (for the desired-state) * 8!*(4"3 + 4 + 6) 
(for the present state) = 7983360 ( =  8 million) no-transfer chunks to cover the entire space. 

Multi-attributes. Consider a multi-attribute equivalent of the chunk in Figure 25. This chunk 
has the following features: it includes variables and uses the representation presented in 
Appendix I. Instead of matching the entire present state and desired state, it matches only 
the relevant tiles. Since it performs the match using multi-attributes and variables, it is 
completely general in terms of the operators being considered, the present state and the 
desired state. This implies that only a single chunk should be able to cover the entire space. 
However, since the two operators being considered in one search control chunk may still 
evaluate to different values, five different chunks would be required: 

• One chunk each would be required for the following combinations of operator evalua- 
tions: (-1,  -1), ( -1,  0), (0, 0), (-1,  1), (0, 1) 

• The combination of (1, 1) is not possible, as that would mean two tiles from the present 
state occupy the same cell in the desired state. 

Therefore, five multi-attribute chunks suffice to cover the entire space covered by the 
8 million no-transfer chunks. 

Unique attributes. Consider a unique-attribute equivalent of the chunk in Figure 25. The 
analysis is similar to the analysis for the multi-attribute chunks. However, the operators 
in unique-attribute chunks have to be in specific directions up, down, right, left. There 
are six (4 choose 2) possible combinations of the four directions. Furthermore, for each 
possible combination of directions, there are 10 possible combinations of evaluations. For 
instance, one unique-attribute chunk will compare an operator for moving a tile up with 
an evaluation of -1,  to an operator moving a tile down with an evaluation of 0. Therefore, 
(6"10 =) 60 unique-attribute chunks are needed to cover the entire space. 
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Notes 

1. This article is an expanded version of the following two conference papers: (Tambe and Newell, 1988) and 
(Tambe and Rosenbloom, 1989). 

2. The particular scheme for restricting expressiveness presented here is not the only one possible. Various 
other schemes are also possible (Tambe and Rosenbloom, 1990). However, this scheme remains one of the 
most interesting ones and deserves extended treatment. 

3. Soar/PSM-E is implemented on the Encore multi-processor. For these measurements, the system was run 
in a uniprocessor mode. 

4. Note that in all of the tasks above, where expensive chunks occurred, problem size was reduced to reduce 
the cost of the chunks. Without such a reduction, the problems would have been intractable after chunking. 
For instance, the N-queens task was converted to a 2-Queens task. 

5. Since the completion of this investigation three other cases of expensive chunks were detected in (Washington 
and Rosenbloom, 1988), (Hsu, Prietula, and Steier, 1989), and (Reich, 1988). The analysis in this paper 
applies to those systems as well. 

6. The Soar version decribed here and used in the experiments in this article is Soar 4.5 (Laird, et al., 1989). 
7. Variations of about a factor of 2 have been seen in time/token. Therefore, a model built on tokens will not 

be extremely precise. However, the purpose here is to allow us to compare expensive and cheap chunks, 
independent of the machine implementation. Given the order of magnitude difference in the costs of those 
chunks, a token-based model seems to serve the purpose. 

8. This assertion follows from a detailed analysis of the chunks learned in the tasks from Table 1 and an informal 
analysis of the productions and chunks in various other Soar tasks. This particular effect usually occurs because 
these productions/chunks test the current state in the problem space. After a single firing of the production, 
this state typically changes, removing previously accumulated k-search. Actually, even if the production does 
not fire, the k-search model manages to estimate the production's match cost. However, the k-search model 
may not work well if the production fires many different times without requiring any additional k-search. 

9. We thank John Laird for this representation. 
10. Having variables in the class and attribute fields is very rare in Soar. None of the tasks in this paper use 

such variabilized class and attribute fields. In fact, variab'flization in these two fields is on the verge of elimination 
from Soar. The only consistent exception to the prebound variable in the identifier field is, obviously, the 
first condition in the production. This condition is the one that matches the current goal, and hence usually 
only a single WME--thus it does not change the main conclusion here about multiplicity in matching. 

11. These multi-attributes should not be confused with the multi-attributes used in file indexing (Wiederhold, 1987). 
12. Written in C, and running on a Vax 8800, which is about 6 MIPs. 
13. The large speedup in Magic-square is partly because the original ordering required a large number of tokens, 

which cluttered up some of the hash tables used in this implementation, increasing the time per token. 
14. Some other minor restrictions are also required: (1) Variable attributes must be prebound. (2) Star's Rete 

match algorithm needs a small modification to handle conjunctive negations in Soar. The impact of these 
restrictions is expected to be very limited. See (Tambe and Rosenbloom, 1988) for details. 
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15. These and other subsequent measurements were done using a Common Lisp version of Soar running on 
a Vax 8800. Due to the differences in the implementation, and some small change in the Grid and Magic- 
square task sizes, the execution times of the multi-attributes presented here do not completely correspond 
with the numbers in Table 1. Also, the measurements here present the total run time as opposed to the match 
time in Table 1. 

16. In addition to the unique- and multi-attributes, a representation that allows no generality whatsoever is also 
possible. For a comparative analysis of such a representation, see (Tarnbe and Rosenbloom, 1988). 

17. Note that once Soar learns a chunk to solve a problem, it will not create more chunks to solve the same 
problem. In this particular case, once the unique-attribute system has learned a chunk covering a single path 
to a destination, it will not learn more chunks covering different paths for the same destination. 

18. The large number of chunks (17) result from a variety of subgoals being chunked. 
19. For this experiment, problems were generated by randomly walking back (a maximum of 12 steps) from 

a fixed goal-state. Both the number of steps and the move at each step were randomly generated using the 
microsecond clock of the Vax 8800. 

20. Macros for writing productions may be another way to address this problem. 
21. The result of  the unique-attribute representation bounding the elaboration phase holds even if multiple goals 

are present in the goal hierarchy. However, the argument becomes somewhat more complex. 
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