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Abstract. Various criteria have been proposed for deciding which split is best at a given node of a binary 
classification tree. Consider the question: given a goodness-of-split criterion and the class populations of the 
instances at a node, what distribution of the instances between the two children nodes maximizes the goodness- 
of-split criterion? The answers reveal an interesting distinction between the gini and entropy criterion. 
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1. Introduction 

There are different splitting criteria in use for growing binary decision trees. The CART 
program offers the choice of the gini or twoing criteria. Many other programs use the entropy 
criterion. Recently Fayyad (t 991) and Fayyad and Irani (1990, 1992, 1993) proposed other 
criteria, which give improved accuracy on a number of  data sets. Taylor and Silverman 
(1993) also explore alternative criteria, and Buntine and Niblet (1992) compare various 
splitting rules. 

To be more specific, suppose that a class of splits {s} is defined on the data in a node t. A 
"goodness-of-split" function O(s, t) is defined and the best split taken as the maximizer of 
O(s, t). Let there be J classes numbered 1 , . . . ,  J ,  and denote the proportions of tbe  classes 
in t by p = Pl, • • •, pJ.  If  s sends a proportion Pc of the t population left and PR = 1 - Pc 
right, then assume 

O(s, t) = f ( P L ,  PR, PL, PR) 

where PL = (Pa,L, . . .  ,PJ, L) is the proportion of the J classes in the left node tL and 
similarly for PR. 

Equivalently, for every split s, there are numbers a j, 0 _< c~j _< 1, and/3j = 1 - c~j such 

tha t  PL = ~ j o t j p j ,  PR = ~ / 3 j p j ,  Pj,L = ~ j P j / P L , P j , R  = / 3 j p j / P R  a n d  O(s, t )  = 
f(oL, p) .  In practice, the set of  splits is restricted, e.g. univariate, but what we explore 
here is the question of what happens if all possible splits are allowed. That is, over the 
set of all o~ E [0, l] J ,  w h i c h  o~ maximizes O(s, t)? We answer this question for goodness- 
of-split criteria generated by impurity functions (Breiman, et al., 1984). We call the split 
corresponding to the maximizing ct the optimum split even though it may not be realizable 
in terms of  splits on the input variables. 

If  p = (P l , - . .  ,P J) are the node proportions, then ¢(p)  is an impurity function if it is 
convex in p, has a maximum when all pj are equal and is a minimum when one of the 
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pj = 1. For ¢(p) an impurity function the associated goodness-of-split is defined as 

O(s,t) = ¢(p) --PL¢(PL) --PR¢(PR). 

The most commonly encountered impurity functions are the gini: 

¢(p) = E p j ( 1 - P j )  
J 

and the entropy 

¢(p) = - E p  j logpj. 
J 

Another criterion discussed in Breiman et al. (1984) (pp. 104-106) is twoing. The idea is 
to find that grouping of all J classes into two superclasses so that considered as a two-class 
problem, the greatest decrease in node impurity is realized. If the gini impurity measure is 
used in the two class problem, then it is shown that the best twoing split at a node maximizes 

PLPR IN-" 0 ( s , t )  - -  IPj,L -- Pj,RI] 
J 

and that when the split maximizing 0 is used, the two superclasses are 

Cl = {j;Pj,L >_ Pj,R} 

C2 = {j;Pj,L < Pj,R}. 

For splitting criteria generated by impurity functions, our approach reveals interesting 
differences. For example, the optimum split for the gini criterion sends all data in the class 
with the largest pj to tL and all other classes to tR. Thus the best gini splits try to produce 
pure nodes. But the optimal split under the entropy criterion breaks the classes up into 
two disjoint subsets CI,C~ C {1 , . . . ,  J}  such that C1 minimizes [~jEcPJ - "51 among 
all subsets C C {1 , . . . ,  J}. Thus, optimizing the entropy criterion tends to equalize the 
sample sizes in tL, tR. The twoing criterion also tries to equalize. 

The outline is as follows: in Section 2 we show that the split optimizing O(s, t) has the 
property that all O/j a re  zero or one. That is, no classes have parts both in tL and t•. In 
Section 3 we find the optimal splits under the gini, entropy, and twoing measures. Section 4 
gives conclusions. In particular, the results for the entropy measure suggest use of a partial 
look-ahead strategy. 

2. Optimal Splits Do Not Split Classes 

Let ¢(x) be defined and twice differentiable for x E [0, 1] J. Assume that ¢(x) is convex, 
i.e. the matrix (020/Ox~Ozj) is non-positive definite for all x E [0, 1] J. Let the impurity 
of t be ¢(p) and the goodness-of-split be the decrease in impurity, i.e. 

t )  = ¢ ( p )  - P L ¢ ( P L )  - -  PR (PR). 
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THEOREM 1 Let PL-= ~ c~jpj, Pj,L = ajpj/PL, PR = 1 - PL, Pj,R = (1 -- cU) pSPR. 
Then the maximum impurity decrease over c~ E [0, 1] J is achieved at a vertex of [0, 1] J. 

Proof:  Suppose PLC(PL) + PRC(PR) is convex in ~. Then its minimum over [0, 1] J is 
at an extreme point of [0, 1] J, i.e. a vertex. It is sufficient to show that PL¢(PL) is convex 
in c~, since PR¢(PR)  is the same function of /3  = e - ot (e = (1, . . . ,  1)) as PL¢(PL) is 
of  c~ and the sum of convex functions is convex. • 

where 

The rest of the proof comes from using the result that 

0 2 1 --~L )WJh PL ) (2.1) 
l,h 

0 2 ¢ ( x )  

¢eh - Oz~Oxh Lx=pL- 

Equation (2.1) is derived in the Appendix. To show PL¢(PL) convex in c~, it is sufficient 
to show that for any J-vector  u ,  

0 2 
E u~uj (PLO(PL)) < O. ij Oc~iOaj 

For any J-vector  u, define the J -vector  v by 

~gpg ) c~epe ( E  u@~). 
i i 

Then 
0 2 1 ~ v~vh¢~h. 

E U i U j ~ ( P L ¢ ( P L ) )  = ~ e,n 

Since (p is convex, this last term is non-positive, and thus, PL¢(PL) is convex in a .  
Both the gini and entropy criteria are of the form 

¢(x)  = E f(x3) 
J 

with f (x)  convex implying • convex. The gini f is x(1 - x) and entropy f is - x  log x. 
The twoing criterion is 

PLPR 
0 ( s , t )  - ]- I;j,L - ;j,RII 2. (2.2)  

J 

This is not given by a difference in impurities, so the theorem above does not directly apply. 
Recall that the twoing criterion is derived from dividing the classes into two superclasses, 
finding the best gini split in this two class problem, and then optimizing the decrease in 
impurity over all divisions into two superclasses. I f  all splits are allowed, then the above 
theorem implies that each optimum two class split sends all of one class to tL and all of the 
other to tR. Thus, the best twoing split is also at a vertex of [0, 1] J. 
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3. Specific Optima 

This section answers the question of which vertex of [0, 1] J is optimum for the entropy, 
gini, and twoing criteria. For the entropy measure, we want to maximize 

J J 

For a given vertex, let Co = {j; c U = 0}, G1 : { j ;  O~j = 1}.  The above expression 
becomes 

P~ ~ (pj/P~)log(pj/P~) + P~ ~ (pj/P~)loz.(pj/P~) 
jCga jECo 

= Z PJ log pj  - PL log PL -- PR log PR- 
J 

The optimum vertex maximizes 

-- PL log PL - PR log PR (3.3) 

So at the best vertex IPL - .51 is minimized. 
With the gini measure, the best vertex minimizes 

PL Z P j , L ( 1  -- Pj,L) + PR Z Pj,R(1 - Pj,R) : 

PL ~ (pj/p~)(1 - pj/P~) + p ,  ~ (pj/P,)O - (pJ/P,)- 
jCC1 jECo 

Equivalently, choose that vertex which maximizes 

PJ+  p;. (3.~t) 

PROPOSITION Let pi = max j (p j ) .  Then the best gini vertex sends all o f  class i to tc  and 

the remainder to tn. 

The proof of this proposition involves some algebraic manipulation and is deferred to the 
appendix. Finally, note that on any vertex, the twoing measure (2) equals PLPR/4 .  Thus, 
the best vertex minimizes IPL -- .5 I. 

4. Discussion and Conclusions 

The above shows the difference between the best splits selected using the gini criterion 
versus the entropy and twoing criteria. The gini prefers splits that put the largest class into 
one pure node, and all others into the other. Entropy and twoing put their emphasis on 
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balancing the sizes at the two children nodes. These theoretical conclusions get support in 
the simulations in Breiman et. al (1984) (see pp. 111). 

In problems with a small number of classes, all criteria should produce similar results. 
The differences appear in data where J is larger. Here, high up in the tree, gini may produce 
splits that are too unbalanced. On the other hand, the above results show a disturbing facet 
of the entropy and twoing criterion, i.e. a lack of uniqueness. If  J is moderate to large, there 
are usually many vertices such that PL ~-- .5. For instance, in a little simulation, we took 
J = 10 and selected the {pj } to be uniform random numbers, suitably normalized. On the 
average, for each set of {pj } about 40 vertices gave PL values between .49 and .51 with 4 
vertices such that .499 _< PL <_ .501. These vertices often differed in the distribution of 
both the larger and smaller pj values. 

Since many vertices have similar goodness-of-split values, selecting the best split is a bit 
arbitrary. Which split is best depends on the future evolution of the tree. This suggests that 
use of the entropy or twoing criteria be combined with a limited two step look-ahead. For 
instance, one could set an integer N, and for each of the N best splits of a node t compute 
the total decrease in impurity following the splits of tL into tLL, tLR and tR into tRL, tRR. 
Then use the best of the N. One must take care to ensure that if some of the N splits are 
on the same variable, they are sufficiently different. 

Appendix 

Derivation of (2.1) 

Let xj = ajpj/PL. Then for any 9(x) 

O9(x) Og _ o~epgpj + cSgj 
-- ~ P~ Oo~j e 

Using the notation ¢i = O¢/Oxi, ¢ i j= 02¢/OxiOxj and applying (A. 1) gives 

0 
(PLe(*)) = p j [¢+  cj - ¢exe]. 

Take H(x) to be the term in brackets in the above equation and note that 

Using (A. 1) again 

0 
Oc~i (pjH) 

aH( ) 

g 

b - 7 -  xh 
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PL 
£ h g.,h 

PL  l,h 

Proof of the proposition: For any set of indices C C { 1 , . . . ,  J} ,  let Q(C) = ~ j ~ c  P~, 
P(C) = ~ j e c  PJ, and A(C) = Q(C)/P(C).  We want to maximize G(C) -= A(C) + A(Cc). 
If C maximizes G, so does C c. Take as C whichever one satisfies A(C) >_ A(CC). Let 
Pi = max(pj ,  j ¢ C), and take Cl = C - {i}. We will show that 

G({i}) _> G(C) (A.2) 

so that a maximizer of G sends all cases in one class to one child node, and all other classes 
to the other child. • 

The inequality A.2 follows from the identity 

G({i}) - G(C) - P (Cl )  [(i - pi))t(C) - pi/~(C c) :.-. (1 - 2pi)/~(C1)] (A.3) 
pi(1 - pi) 

This identity can be derived from the simpler identity 

G({/})  = [A(C)p(C) - Q(C1)] + 1-~ i [~(Cc)P(CC)  + Q(C1)] (A.4) 

Subtracting G(C) from A.4 and simplifying gives A.3. Suppose first that Pi _> 1/2. Then 
to prove A.2 its sufficient to show that 

(1 - p~)A(C) > p~.k(Cc). (A.5) 

For any subset 7:) of indices 

Q(Z~) < (P(Z))) 2 

~(Z)) < P(Z)).  

Now 
(1 pi)A(C) (1 - ' Q ( C )  (1 - p i ) p  2 

- = >- P ( C )  

and A(C c) _< P(C ~) = 1 - P(C). Hence A.5 will follow from 

(1 - Pi)Pi >_ P(C)(1 - P(C)) (A.6) 

The expression x(1 - x) is decreasing for x > 1/2. Since P(C) > p~, A.6 is true. 
Now assume pi <_ 1/2. Then A.2 again follows from showing that the term in brackets 

in A.3 is non-negative. Rewrite this term as 

(1 - 2pi)A(C) +pi(3,(C) -/~(Cc)) - (1 - 2pi)/k(C1). 
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By assumption, this is greater  than or  equal  to 

(1 - 2 p d ( ~ ( C  ) - X(Cl)) .  

Since 
( p i P ( c )  - O ( C ) )  

) , (6 )  - ; , ( c l )  = p i  P ( c ) ( P ( c )  - pd 

and Q(C) <_ piP(G),  the p roof  of  A.2  is complete ,  and G ( { i } )  is a max imize r  of  G(C). 
N o w  we show that ifp~ _< p j ,  then G ( { i } )  <_ G ( { j } ) .  This fo l lows f rom the identity 

a ( { j } )  - G ( { i } )  = (pj - pi)[(1 - pi - pj)2 + Z P2] / (1  - p i ) (1  - pj)  
h#i,j 

result ing f rom straightforward algebra. 
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