Skip to main content
Log in

Some computational methods for systems of nonlinear equations and systems of polynomial equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper gives a brief survey and assessment of computational methods for finding solutions to systems of nonlinear equations and systems of polynomial equations. Starting from methods which converge locally and which find one solution, we progress to methods which are globally convergent and find an a priori determinable number of solutions. We will concentrate on simplicial algorithms and homotopy methods. Enhancements of published methods are included and further developments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J. C. and J. A.Yorke (1978), The Homotopy Continuation Method: Numerically Implementable Topological Procedures, Transactions of the A.M.S. 242, 271–284.

    Google Scholar 

  2. Allgower, E. L. and C. L.Keller (1971), A Search Routine for a Sperner Simplex, Computing 8, 157–165.

    Google Scholar 

  3. Allgower, E. L. (1977), Application of a Fixed Point Algorithm to Nonlinear Boundary Value Problems Having Several Solutions, pp. 87–111, in Karamardian, S. (ed.), Fixed Points-Algorithms and Applications, Academic Press, New York.

    Google Scholar 

  4. Allgower, E. L. and K.Georg (1980), Simplical and Continuation Methods for Approximating Fixed Points, SIAM Review 22, 28–85.

    Google Scholar 

  5. Allgower, E. L. and K.Georg (1990), Numerical Continuation Methods, Springer, Berlin.

    Google Scholar 

  6. Banach, S. (1922), Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3, 133–181.

    Google Scholar 

  7. Bézout, É. (1779), Théorie générale des équations algébriques, Ph.D. Pierres, Paris.

  8. Brent, R. P. (1971), Algorithms for Finding Zeros and Extrema of Functions without Calculating Derivatives, Report STAN-CS-71-198, Computer Science Department, Stanford University.

  9. Brooks, R. B. S., R. F.Brown, J.Pak, and D. H.Taylor (1975), Nielsen Number of Maps of Tori, Proc. A.M.S. 52, 398–400.

    Google Scholar 

  10. Brouwer, L. E. J. (1912), Über Abbildungen von Mannigfaltigkeiten, Mathematische Annalen 71, 95–115.

    Google Scholar 

  11. Brouwer, L. E. J. (1952), An Intuitionist Correction of the Fixed-Point Theorem on the Sphere, Proc. Roy. Soc. London, Ser. A 213, 1–2.

    Google Scholar 

  12. Brown, R. F. (1971), The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview.

    Google Scholar 

  13. Cauchy, A. L. (1829), Exercises de mathématique, Oeuvres (2) 9, 122.

    Google Scholar 

  14. Charnes, A., C. B.Garcia, and C. E.Lemke (1977), Constructive Proofs of Theorems Relating to: F(x)=y, with Applications, Mathematical Programming 12, 328–343.

    Google Scholar 

  15. Chow, Shui-Nee, J.Mallet-Paret, and J. A.Yorke (1978), Finding Zeroes of Maps: Homotopy Methods that are Constructive with Probability One, Mathematics of Computation 32, 887–899.

    Google Scholar 

  16. Cottle, R. W. (1982), Minimal Triangulation of the 4-Cube, Discrete Mathematics 40, 25–29.

    Google Scholar 

  17. Dang, Ch. (1989), The D1-Triangulation of R n for Simplicial Algorithms for Computing Solutions on Nonlinear Equations, Tilburg University, Center for Economic Research, Discussion paper No. 8928.

  18. Dang, Ch. (1990), The D2-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations, Tilburg University, Center for Economic Research, Discussion paper No. 9024.

  19. Dang, Ch. and D. Talman (1990), The D1-Triangulation in Simplicial Variable Dimension Algorithms for Computing Solutions of Nonlinear Equations, Tilburg University, Center for Economic Research, Discussion paper No. 9027.

  20. Dang, Ch. (1990), The D3-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations, Tilburg University, Center for Economic Research, Discussion paper No. 8949.

  21. Davenport, J. H., Y.Siret et al. (1988), Computer Algebra, Academic Press, London.

    Google Scholar 

  22. Debreu, G. (1959), Theory of Value, Yale University Press, New Haven.

    Google Scholar 

  23. Deschamps, P. J. (1977), Pricing for Congestion in Telephone Networks: A Numerical Example, pp. 473–494, in Karamardian, S. (ed.), Fixed Points-Algorithms and Applications, Academic Press, New York.

    Google Scholar 

  24. Drexler, F. J. (1978), A Homotopy Method for the Calculation of All Zeros of Zero-Dimensional Polynomial Ideals, pp. 69–93, in Wacker, H. (ed.), Continuation Methods, Academic Press, New York.

    Google Scholar 

  25. Dugundji, J. and A.Granas (1982), Fixed Point Theory, Vol. 1, PWN-Polish Scientific Publishers, Warszawa.

    Google Scholar 

  26. Eaves, B. C. (1971), Computing Kakutani Fixed Points, SIAM J. Appl. Math. 21, 236–244.

    Google Scholar 

  27. Eaves, B. C. (1984), A Course in Triangulations for Solving Equations with Deformations, Springer, Berlin.

    Google Scholar 

  28. Eaves, B. C., F. J.Gould, H. O.Peitgen, and M. J.Todd (1983), Homotopy Methods and Global Convergence, Plenum Press, New York.

    Google Scholar 

  29. Fan, Ky (1952), A Generalization of Tucker's Combinatorial Lemma with Topological Applications, Ann. of Math. 56, 431–437.

    Google Scholar 

  30. Fisher, M. L., F. J.Gould, and J. W.Tolle (1976), A Simplicial Approximation Algorithm for Solving Systems of Nonlinear Equations, Istituto Nazionale Di Alta Mathematica, Symposia Mathematica 19, 73–90.

    Google Scholar 

  31. Forster, W. (ed.) (1980), Numerical Solution of Highly Nonlinear Problems, North-Holland, Amsterdam.

    Google Scholar 

  32. Forster, W. (1980), Fifty Years of Further Development of a Combinatorial Lemma, Part C, in Forster, W. (ed.), Numerical Solution of Highly Nonlinear Problems, pp. 215–217, North-Holland, Amsterdam.

    Google Scholar 

  33. Forster, W. (1984), Utilizing the Nielsen Number for Finding Multiple Solutions of Systems of Nonlinear Equations by Simplicial Fixed Point Algorithms, pp. 50–54, in Abstracts of the IIASA Workshop on Nondifferentiable Optimization: Motivations and Applications, International Institute for Applied Systems Analysis, Laxenburg, Austria

    Google Scholar 

  34. Forster, W. (1987), Computing ‘All’ Solutions of Systems of Polynomial Equations by Simplicial Fixed Point Algorithms, pp. 39–57, in Talman, A. J. J. and G.van derLaan (eds.), The Computation and Modelling of Economic Equilibria, North-Holland, Amsterdam.

    Google Scholar 

  35. Forster, W. (1988), Simplicial Fixed Point Algorithms and Systems of Polynomial Equations, p. 167, in Abstracts, The 13th International Symposium on Mathematical Programming, Tokyo.

  36. Freund, R. M. (1986), Combinatorial Theorems on the Simplotope that Generalize Results on the Simplex and Cube, Math. Oper. Res. 11, 169–179.

    Google Scholar 

  37. Garcia, C. B. and W. I.Zangwill (1979), Determining All Solutions to Certain Systems of Nonlinear Equations, Mathematics of Operations Research 4, 1–14.

    Google Scholar 

  38. Garcia, C. B. and W. I.Zangwill (1979), Finding All Solutions to Polynomial Systems and Other Systems of Equations, Mathematical Programming 16, 159–176.

    Google Scholar 

  39. Garcia, C. B. and W. I.Zangwill (1980), Global Continuation Methods for Finding All Solutions to Polynomial Systems of Equations in n Variables, pp. 481–497, in Fiacco, A. V. and K. O.Kortanek (eds.), Extremal Methods in Systems Analysis, Lecture Notes in Economics and Mathematical Systems No 174, Springer, Berlin.

    Google Scholar 

  40. Gould, F. J. (1980), Recent and Past Developments in the Simplicial Approximation Approach to Solving Nonlinear Equations—A Subjective View, pp. 466–480, in Fiacco, A. V. and K. O.Kortanek (eds.), Extremal Methods in Systems Analysis, Lecture Notes in Economics and Mathematical Systems No 174, Springer, Berlin.

    Google Scholar 

  41. Gould, F. J. and J. W.Tolle (1983), Complementary Pivoting on a Pseudomanifold Structure with Applications in the Decision Sciences, Heldermann Verlag, Berlin.

    Google Scholar 

  42. Guillemin, V. and A.Pollack (1974), Differential Topology, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  43. Hartree, D. R. (1958), Numerical Analysis, Clarendon Press, Oxford.

    Google Scholar 

  44. Van der Heiden, L. (1979), Refinement Methods for Computing Fixed Points Using Primitive Sets, Yale University, Ph.D. thesis.

  45. Hopf, H. (1927), Über Mindestzahlen von Fixpunkten, Mathematische Zeitschrift 26, 762–774.

    Google Scholar 

  46. Istratescu, V. I. (1981), Fixed Point Theory, D. Reidel, Dordrecht.

    Google Scholar 

  47. Jiang, Boju (1980), Lectures on Nielsen Fixed Point Theory, American Mathematical Society, Providence.

    Google Scholar 

  48. Kakutani, S. (1941), A Generalization of Brouwer's Fixed Point Theorem, Duke Mathematical Journal 8, 457–459.

    Google Scholar 

  49. Karamardian, S. (1977), Fixed Points—Algorithms and Applications, Academic Press, New York.

    Google Scholar 

  50. Kojima, M. (1978), A Modification of Todd's Triangulation J3, Math. Prog. 15, 223–227.

    Google Scholar 

  51. Kojima, M. and Y.Yamamoto (1982), Variable Dimension Algorithms: Basic Theory, Interpretation, and Extensions of Some Existing Methods, Mathematical Programming 24, 177–215.

    Google Scholar 

  52. Kojima, M. and S.Mizuno (1983), Computation of All Solutions to a System of Polynomial Equations, Mathematical Programming 25, 131–157.

    Google Scholar 

  53. Kojima, M. (1988), Verbal Communication During a Meeting at the Tokyo Institute of Technology.

  54. Krasnosels' Kii, M. A. (1964), Positive Solutions of Operator Equations, P. Noordhoff, Groningen.

    Google Scholar 

  55. Kuhn, H. W. (1974), A New Proof of the Fundamental Theorem of Algebra, Mathematical Programming Study 1, 148–158.

    Google Scholar 

  56. Kuhn, H. W. and J. G.MacKinnon (1975), The Sandwich Method for Finding Fixed Points, J. Optimization Theory and Applications 17, 189–204.

    Google Scholar 

  57. Kuhn, H. W. (1977), Finding Roots of Polynomials by Pivoting, pp. 11–39, in Karamardian, S. (ed.), Fixed Points-Algorithms and Applications, Academic Press, New York.

    Google Scholar 

  58. Kuhn, H. W., Z.Wang, and S.Xu (1984), On the Cost of Computing Roots of Polynomials, Mathematical Programming 28, 156–163.

    Google Scholar 

  59. Kuhn, H. W. (1988), Verbal Communication During a Meeting at Princeton University.

  60. Van derLaan, G. (1980), Simplicial Fixed Point Algorithms, Mathematisch Centrum, Amsterdam.

    Google Scholar 

  61. Van derLaan, G. and A. J. J.Talman (1982), On the Computation of Fixed Points in the Product Space of Unit Simplices and an Application to Noncooperative N-Person Games, Math. Oper. Res. 7, 1–13.

    Google Scholar 

  62. Van derLaan, G., A. J. J.Talman, and L.van derHeyden (1987), Simplicial Variable Dimension Algorithms for Solving the Nonlinear Complementarity Problem on a Product of Unit Simplices Using General Labelling, Math. Oper. Res. 12, 377–397.

    Google Scholar 

  63. Li, T. Y. and N. H. Rhee (1988), Homotopy Algorithm for Symmetric Eigenvalue Problems, preprint.

  64. Mara, P. S. (1976), Triangulations for the Cube, J. of Combinatorial Theory (A) 20, 170–177.

    Google Scholar 

  65. Maunder, C. R. F. (1970), Algebraic Topology, Van Nostrand, New York.

    Google Scholar 

  66. Merrill, O. H. (1972), Applications and Extensions of an Algorithm that Computes Fixed Points of Certain Upper Semi-Continuous Point to Set Mappings, Univ. of Michigan, Ph.D. thesis.

  67. Miller, M. H. and J. E.Spencer (1977), The Static Economic Effects of the U.K. Joining the E.E.C.: A General Equilibrium Approach, The Review of Economic Studies 44, 71–93.

    Google Scholar 

  68. Milnor, J. W. (1965), Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville.

    Google Scholar 

  69. Morgan, A. (1987), Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  70. Nielsen, J. (1921), Über die Minimalzahl der Fixpunkte bei den Abbildungstypen der Ringflächen, Mathematische Annalen 82, 83–93.

    Google Scholar 

  71. Ortega, J. M. and W. C.Rheinboldt (1970), Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.

    Google Scholar 

  72. Peitgen, H. O., D.Saupe et al. (1984), Cayley's Problem and Julia Sets, The Mathematical Intelligencer 6, 11–20.

    Google Scholar 

  73. Poincaré, H. (1884), Sur certaines solutions particulières du problème des trois corps, Bulletin Astronomique 1, 65–74.

    Google Scholar 

  74. Press, W. H., B. P.Flannery et al. (1989), Numerical Recipes in PASCAL, Cambridge University Press, Cambridge.

    Google Scholar 

  75. Renegar, J. (1985), On the Complexity of a Piecewise Linear Algorithm for Approximating Roots of Complex Polynomials, Mathematical Programming 32, 301–318

    Google Scholar 

  76. Renegar, J. (1985), On the Cost of Approximating all Roots of a Complex Polynomial, Mathematical Programming 32, 319–336.

    Google Scholar 

  77. Rheinboldt, W. C. (1986), Numerical Analysis of Parameterized Nonlinear Equations, Wiley-Interscience, New York.

    Google Scholar 

  78. Rice, J. R. (1983), Numerical Methods, Software, and Analysis, IMSL Reference Edition, McGraw-Hill, New York.

    Google Scholar 

  79. Robinson, S. M. (1980), Analysis and Computation of Fixed Points, Academic Press, New York.

    Google Scholar 

  80. Rourke, C. P. and B. J.Sanderson (1972), Introduction to Piecewise Linear Topology, Springer, Berlin.

    Google Scholar 

  81. Saigal, R. (1976), On Paths Generated by Fixed Point Algorithms, Mathematics of Oper. Res. 1, 359–380.

    Google Scholar 

  82. Sallee, J. F. (1982), A Note on Minimal Triangulations of an n-Cube, Discrete Applied Mathematics 4, 211–215.

    Google Scholar 

  83. Scarf, H. (1967), The Approximation of Fixed Points of a Continuous Mapping, SIAM J. Appl. Math. 15, 1328–1343.

    Google Scholar 

  84. Scarf, H. and T.Hansen (1973), The Computation of Economic Equilibria, Yale University Press, New Haven.

    Google Scholar 

  85. Shoven, J. B. (1983), The Application of Fixed Point Methods to Economics, pp. 249–261, in Eaves, B. C. et al. (eds.), Homotopy Methods and Global Convergence, Plenum Press, New York.

    Google Scholar 

  86. Smale, S. (1976), A Convergent Process of Price Adjustment and Global Newton Methods, J. of Mathematical Economics 3, 107–120.

    Google Scholar 

  87. Smale, S. (1981), The Fundamental Theorem of Algebra and Complexity Theory, Bulletin of the A.M.S. 4, 1–36.

    Google Scholar 

  88. Smale, S. (1985), On the Efficiency of Algorithms of Analysis, Bulletin of the A.M.S. 13, 87–121.

    Google Scholar 

  89. Spanier, E. H. (1966), Algebraic Topology, TATA McGraw-Hill, Bombay.

    Google Scholar 

  90. Sperner, E. (1928), Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. math. Sem. Hamburg 6, 265–272.

    Google Scholar 

  91. Sperner, E. (1980), Fifty Years of Further Development of a Combinatorial Lemma, Part B, pp. 199–214, in Forster, W. (ed.), Numerical Solutions of Highly Nonlinear Problems, North-Holland, Amsterdam.

    Google Scholar 

  92. Talman, A. J. J. (1980), Variable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam.

    Google Scholar 

  93. Todd, M. J. (1976), The Computation of Fixed Points and Applications, Springer, Berlin.

    Google Scholar 

  94. Todd, M. J. and L.Tuncel (1990), A New Triangulation for Simplicial Algorithms, Technical Report No. 946, Cornell University, Ithaca, N.Y.

    Google Scholar 

  95. Tucker, A. W. (1945), Some Topological Properties of Disk and Sphere, Proc. First Can. Math. Congress, Montreal, pp. 285–309.

  96. Tuy, H. (1979), Pivotal Methods for Computing Equilibrium Points: Unified Approach and New Restart Algorithm, Mathematical Programming 16, 210–227.

    Google Scholar 

  97. Watson, L. T. (1986), Globally Convergent Homotopy Methods, SIAM Review 28, 529–545.

    Google Scholar 

  98. Wright, A. H. (1981), The Octahedral Algorithm, A New Simplicial Fixed Point Algorithm, Mathematical Programming 21, 47–69.

    Google Scholar 

  99. Yoseloff, M. (1974), Topological Proofs of Some Combinatorial Theorems, J. Comb. Thery (A) 17, 95–111.

    Google Scholar 

  100. Zeeman, E. C. (1963), Seminar on Combinatorial Topology, IHES, Mathematics Institute, University of Warwick, Coventry.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, W. Some computational methods for systems of nonlinear equations and systems of polynomial equations. J Glob Optim 2, 317–356 (1992). https://doi.org/10.1007/BF00122427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122427

Key words

Navigation