Skip to main content
Log in

Compass: A shape-based machine learning tool for drug design

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Building predictive models for iterative drug design in the absence of a known target protein structure is an important challenge. We present a novel technique, Compass, that removes a major obstacle to accurate prediction by automatically selecting conformations and alignments of molecules without the benefit of a characterized active site. The technique combines explicit representation of molecular shape with neural network learning methods to produce highly predictive models, even across chemically distinct classes of molecules. We apply the method to predicting human perception of musk odor and show how the resulting models can provide graphical guidance for chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AppeltK., BacquetR.J., BartlettC.A. BoothC.L.J., FreerS.T., FuhryM.A.M., GehringM.R., HerrmannS.M., HowlandE.F., JansonC.A., JonesT.A., KanC.-C., KathadekarV., LewisK.K., MarzoniG.P., MatthewsD.A., MohrC., MoomawE.W., MorseC.A., OatleyS.J., OgdenR.C., ReddyM.R., ReichS.H., SchoettlinW.S., SmithW.W., VarneyM.D., VillafrancaJ.E., WardR.W., WebberS., WebberS.E., WelshK.M. and WhiteJ., J. Med. Chem., 34 (1991) 1925.

    Google Scholar 

  2. ShoichetB.K., StroudR.M., SantiD.V., KuntzI.D. and PerryK.M., Science, 259 (1993) 1445.

    Google Scholar 

  3. SheridanR.P., NilakantanR., DixonJ.S. and VenkataraghavanR., J. Med. Chem., 29 (1986) 899.

    Google Scholar 

  4. HopfingerA.J., J. Am. Chem. Soc., 102 (1980) 7196.

    Google Scholar 

  5. NarvaezJ.N., LavineB.K. and JursP.C., Chem. Senses. 11 (1986) 145.

    Google Scholar 

  6. YoshiiF., LiuQ., HironoS. and MoriguchiI., Chem. Senses, 16 (1991) 319.

    Google Scholar 

  7. MarshallG.R., BarryC.D., BosshardH.E., DammkoehlerR.A. and DunnD.A., In OlsenE.C. and ChristoffersenR.C. (Eds.) Computer-assisted Drug Design, American Chemical Society, Washington, DC, 1979, p. 57.

    Google Scholar 

  8. Hypotheses in Catalyst., BioCAD Corporation, Mountain View, CA, 1992.

  9. Conformational Analysis in Catalyst., BioCAD Corporation, Mountain View, CA, 1992.

  10. GhoseA.K. and CrippenG.M., J. Med. Chem., 28 (1985) 333.

    Google Scholar 

  11. CramerIIIR.D., PattersonD.E. and BunceJ.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  12. GoodA.G., SoS. and RichardsW.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  13. BuckL. and AxelR., Cell, 65 (1991) 175.

    Google Scholar 

  14. BersukerI.B., DimogloA.S., GorbachovM.Yu., VladP.F. and PesaroM., New J. Chem., 15 (1991) 307.

    Google Scholar 

  15. BruggerW.E. and JursP.C., J. Agr. Food Chem., 25 (1977) 1158.

    Google Scholar 

  16. HamC.L. and JursP.C., Chem. Senses, 10 (1985) 491.

    Google Scholar 

  17. ChastretteM., ZakaryaD. and ElmouaffekA., Eur. J. Med. Chem., 21 (1986) 505.

    Google Scholar 

  18. ChastretteM. and DeSaint LaumerJ.-Y., Eur. J. Med. Chem., 26 (1991) 829.

    Google Scholar 

  19. FehrC., GalindoJ., HaubrichsR. and PerretR., Helv. Chim. Acta, 72 (1989) 1537.

    Google Scholar 

  20. RumelhartD.E., HintonG.E. and WilliamsR.J., In RumelhartD.E., McClellandJ.L. and The PDP Research Group (Eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, MIT Press/Bradford, Cambridge, MA, 1986, p. 318.

    Google Scholar 

  21. AmooreJ.E., In KugelmassI.N. (Ed.) Molecular Basis of Odor, Ch.C. Thomas, Springfield, IL, 1970, p. 456.

    Google Scholar 

  22. OhloffG., Experientia, 42 (1986) 271.

    Google Scholar 

  23. BeetsM.G.J., Structure-Activity Relationships in Human Chemoreception, Applied Science Publishers, London, 1978.

    Google Scholar 

  24. TheimerE.T. and DaviesJ.T., J. Agr. Food Chem., 15 (1967) 6.

    Google Scholar 

  25. ChastretteM., DeSaint LaumerJ.-Y. and SauvegrainP., Chem. Senses, 16 (1991) 81.

    Google Scholar 

  26. ChangG., GuidaW.C. and StillW.C., J. Am. Chem. Soc., 111 (1989) 4379.

    Google Scholar 

  27. MohamadiF., RichardsN.G.J., GuidaW.C., LiskampR.M.J., LiptonM.A., CaufieldC.E., ChangeG., HendricksonT. and StillW.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  28. WeinerS.J., KollmanP.A., NguyenD. and CaseD.A., J. Comput. Chem., 1 (1986) 230.

    Google Scholar 

  29. ChastretteM., In SchildD. (Ed.) Chemosensory Information Processing, NATO ASI Series, Vol. H39, Springer, Berlin, 1990, p. 97.

    Google Scholar 

  30. Murray-RustP. and GluskerJ.P., J. Am. Chem. Soc., 106 (1984) 1018.

    Google Scholar 

  31. ConnollyM.J., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  32. JainA.N., KoileK. and ChapmanD., J. Med. Chem., 37 (1994) 2315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.N., Dietterich, T.G., Lathrop, R.H. et al. Compass: A shape-based machine learning tool for drug design. J Computer-Aided Mol Des 8, 635–652 (1994). https://doi.org/10.1007/BF00124012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124012

Key words

Navigation