Skip to main content
Log in

Structure of a cyclic peptide with a catalytic triad, determined by computer simulation and NMR spectroscopy

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We report the design of a cyclic, eight-residue peptide that possesses the catalytic triad residues of the serine proteases. A manually built model has been relaxed by 0.3 ns of molecular dynamics simulation at room temperature, during which no major changes occurred in the peptide. The molecule has been synthesised and purified. Two-dimensional NMR spectroscopy provided 35 distance and 7 torsion angle constraints, which were used to determine the three-dimensional structure. The experimental conformation agrees with the predicted one at the β-turn, but deviates in the arrangement of the disulphide bridge that closes the backbone to a ring. A 1.2 ns simulation at 600 K provided extended sampling of conformation space. The disulphide bridge reoriented into the experimental arrangement, producing a minimum backbone rmsd from the experimental conformation of 0.8 Å. At a later stage in the simulation, a transition at Ser3 produced more pronounced high-temperature behaviour. The peptide hydrolyses p-nitrophenyl acetate about nine times faster than free histidine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DeGrado, W.F., Adv. Protein Chem., 39 (1988) 51.

    Google Scholar 

  2. Tuchscherer, G. and Mutter, M., J. Pept. Sci., 1 (1995) 3.

    Google Scholar 

  3. Rost, B. and Sander, C., J. Mol. Biol., 232 (1993) 584.

    Google Scholar 

  4. Wallqvist, A. and Ullner, M., Protein Struct. Funct. Genet., 18 (1994) 267.

    Google Scholar 

  5. Braxenthaler, M., Avbelj, F. and Moult, J., J. Mol. Biol., 250 (1995) 239.

    Google Scholar 

  6. Blow, D.M., Birktoft, J.J. and Hartley, B.B., Nature, 221 (1969) 337.

    Google Scholar 

  7. Blow, D.M. and Steitz, T.A., Annu. Rev. Biochem., 39 (1970) 63.

    Google Scholar 

  8. Birktoft, J.J. and Blow, D.M., J. Mol. Biol., 68 (1972) 187.

    Google Scholar 

  9. Kraut, J., Annu. Rev. Biochem., 46 (1977) 331.

    Google Scholar 

  10. Kraut, J., Science, 242 (1988) 533.

    Google Scholar 

  11. Carter, P. and Wells, J.A., Nature, 332 (1988) 564.

    Google Scholar 

  12. Tsukada, H. and Blow, D.M., J. Mol. Biol., 184 (1985) 703.

    Google Scholar 

  13. Craik, C.S., Roczniak, S., Langman, C. and Rutter, W.J., Science, 237 (1987) 909.

    Google Scholar 

  14. Warshel, A., Naray-Szabo, G. and Hwang, J.-K., Biochemistry, 28 (1989) 3629.

    Google Scholar 

  15. Metha, R.V., Mathur, K.B. and Dahr, M.M., Indian J. Chem., 15B (1977) 458.

    Google Scholar 

  16. Corey, M.J., Hallakova, E., Pugh, K. and Stewart, J.M., Appl. Biosci. Biotechnol., 47 (1994) 199; in this paper previous results were discussed: Hahn, K. W., Klis, W.A. and Stewart, J.M., Science, 248 (1990) 1544.

    Google Scholar 

  17. Bülow, L. and Mosbach, K., FEBS Lett., 210 (1987) 147.

    Google Scholar 

  18. Atassi, M.Z. and Manshouri, T., Proc. Natl. Acad. Sci. USA, 90 (1993) 8282.

    Google Scholar 

  19. Matthews, B.W., Craik, C.S. and Neurath, H., Proc. Natl. Acad. Sci. USA, 91 (1994) 4103.

    Google Scholar 

  20. Corey, D.R. and Phillips, M.A., Proc. Natl. Acad. Sci. USA, 91 (1994) 4106.

    Google Scholar 

  21. Wells, J.A., Fairbrother, W.J., Otlewski, J., Laskowski, M. and Burnier, J., Proc. Natl. Acad. Sci. USA, 91 (1994) 4110.

    Google Scholar 

  22. Matthews, B.W., Siegler, P.B., Henderson, R. and Blow, D.M., Nature, 214 (1967) 652.

    Google Scholar 

  23. Zimmermann, R. and Scheraga, H.A., Biopolymers, 16 (1977) 811.

    Google Scholar 

  24. Ahlström, P., Teleman, O., Jönsson, B. and Forsén, S., J. Am. Chem. Soc., 109 (1987) 1541.

    Google Scholar 

  25. Ahlström, P., Teleman, O., Kördel, C.-J., Forsén, S. and Jönsson, B., Biochemistry, 28 (1989) 3205.

    Google Scholar 

  26. Teleman, O., Jönsson, B. and Svensson, B., Comput. Phys. Commun., 62 (1991) 307.

    Google Scholar 

  27. Hermans, J., Berendsen, H.J.C., Van, Gunsteren, W.F. and Postma, J.P.M., Biopolymers, 23 (1984) 1513.

    Google Scholar 

  28. Van, Gunsteren, W.F. and Karplus, M., Macromolecules, 15 (1982) 1528.

    Google Scholar 

  29. Margenau, M. and Kestner, N.R., Theory of Intermolecular Forces, Pergamon Press, New York, NY, 1969.

    Google Scholar 

  30. Berendsen, H.J.C., Postma, J.P.M., Van, Gunsteren, W.F. and Hermans, J., In Pullman, B. (Ed.) Intermolecular Forces, Reidel, Dordrecht, 1981, pp. 331–342.

    Google Scholar 

  31. Wallqvist, A. and Teleman, O., Mol. Phys., 74 (1991) 515.

    Google Scholar 

  32. Dolphin, D. and Wick, A.E., Tabulation of Infrared Data, Wiley, New York, NY, 1977.

    Google Scholar 

  33. Herzberg, G., Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, van Nostrand, Princeton, NJ, 1945.

    Google Scholar 

  34. Teleman, O. and Jönsson, B., J. Comput. Chem., 7 (1986) 58.

    Google Scholar 

  35. Teleman, O., Ahlström, P. and Jönsson, B., Mol. Simul., 7 (1991) 181.

    Google Scholar 

  36. Aue, W.P., Bartholdi, E. and Ernst, R.R., J. Chem. Phys., 64 (1976) 2229.

    Google Scholar 

  37. Braunschweiler, L. and Ernst, R.R., J. Magn. Reson., 53 (1983) 521.

    Google Scholar 

  38. Bax, A. and Davis, D.G., J. Magn. Reson., 63 (1985) 207.

    Google Scholar 

  39. States, D.J., Haberkorn, R.A. and Ruben, D.J., J. Magn. Reson., 48 (1982) 286.

    Google Scholar 

  40. Bax, A. and Davis, D.G., J. Magn. Reson., 65 (1985) 355.

    Google Scholar 

  41. Neuhaus, D. and Williamson, M., The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, New York, NY, 1989.

    Google Scholar 

  42. Wagner, G., Braun, W., Havel, T.F., Schaumann, T., Gō, N. and Wüthrich, K., J. Mol. Biol., 196 (1987) 611.

    Google Scholar 

  43. Ullner, M., Selander, M., Persson, E., Stenflo, J., Drakenberg, T. and Teleman, O., Biochemistry, 31 (1992) 5974.

    Google Scholar 

  44. Linse, S., Teleman, O. and Drakenberg, T., Biochemistry, 29 (1990) 5925.

    Google Scholar 

  45. Wüthrich, K., NMR of Proteins and Nucleic Acids, 2nd ed., Wiley, New York, NY, 1986.

    Google Scholar 

  46. Fersht, A., Enzyme Structure and Mechanism, 2nd ed., Freeman, New York, NY, 1985.

    Google Scholar 

  47. Laaksonen, L., J. Mol. Graphics, 10 (1992) 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walse, B., Ullner, M., Lindbladh, C. et al. Structure of a cyclic peptide with a catalytic triad, determined by computer simulation and NMR spectroscopy. J Computer-Aided Mol Des 10, 11–22 (1996). https://doi.org/10.1007/BF00124461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124461

Keywords

Navigation