Skip to main content
Log in

Computational combinatorial ligand design: Application to human α-thrombin

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new method is presented for computer-aided ligand design by combinatorial selection of fragments that bind favorably to a macromolecular target of known three-dimensional structure. Firstly, the multiple-copy simultaneous-search procedure (MCSS) is used to exhaustively search for optimal positions and orientations of functional groups on the surface of the macromolecule (enzyme or receptor fragment). The MCSS minima are then sorted according to an approximated binding free energy, whose solvation component is expressed as a sum of separate electrostatic and nonpolar contributions. The electrostatic solvation energy is calculated by the numerical solution of the linearized Poisson-Boltzmann equation, while the nonpolar contribution to the binding free energy is assumed to be proportional to the loss in solvent-accessible surface area. The program developed for computational combinatorial ligand design (CCLD) allows the fast and automatic generation of a multitude of highly diverse compounds, by connecting in a combinatorial fashion the functional groups in their minimized positions. The fragments are linked as two atoms may be either fused, or connected by a covalent bond or a small linker unit. To avoid the combinatorial explosion problem, pruning of the growing ligand is performed according to the average value of the approximated binding free energy of its fragments. The method is illustrated here by constructing candidate ligands for the active site of human α-thrombin. The MCSS minima with favorable binding free energy reproduce the interaction patterns of known inhibitors. Starting from these fragments, CCLD generates a set of compounds that are closely related to high-affinity thrombin inhibitors. In addition, putative ligands with novel binding motifs are suggested. Probable implications of the MCSS-CCLD approach for the evolving scenario of drug discovery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greer J., Erickson J.W., Baldwin J.J. and Varney M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  2. Lam P.Y.S., Jadhav P.K., Eyermann C.J., Hodge C.N., Ru Y., Bacheler L.T., Meek J.L., Otto M.J., Rayner M.M., Wong Y.N., Chang C.H., Weber P.C., Jackson D.A., Sharpe T.R. and Erickson-Viitanen S.K., Science, 264 (1994) 380.

    Google Scholar 

  3. Hilpert K., Ackermann J., Banner D.W., Gast A., Gubernator K., Hadvary P., Labler L., Müller K., Schmid G., Tschopp T. and Van de Waterbeemd H., J. Med. Chem., 37 (1994) 3889.

    Google Scholar 

  4. Karplus M. and Petsko G.A., Nature, 347 (1990) 631.

    Google Scholar 

  5. Van Gunsteren W.F. and Berendsen H.J.C., Angew. Chem. Int. Ed. Engl., 29 (1990) 992.

    Google Scholar 

  6. Honig B. and Nicholls A., Science, 268 (1995) 1144.

    Google Scholar 

  7. Appelt K., Perspect. Drug Discov. Design, 1 (1993) 23.

    Google Scholar 

  8. Clore G.M. and Gronenborn A.M., Science, 252 (1991) 1390.

    Google Scholar 

  9. Fesik S.W., J. Med. Chem., 34 (1991) 2937.

    Google Scholar 

  10. Greer J., Proteins Struct. Funct. Genet., 7 (1990) 317.

    Google Scholar 

  11. Havel T.F., J. Mol. Simul., 10 (1993) 175.

    Google Scholar 

  12. Šali A. and Blundell T.L., J. Mol. Biol., 234 (1993) 779.

    Google Scholar 

  13. Caflisch A. and Karplus M., Perspect. Drug Discov. Design, 3 (1995) 51.

    Google Scholar 

  14. Miranker A. and Karplus M., Proteins Struct. Funct. Genet., 11 (1991) 29.

    Google Scholar 

  15. Stubbs M.T. and Bode W., Perspect. Drug Discov. Design, 1 (1993) 431.

    Google Scholar 

  16. Noble M.E.M., Verlinde C.L.M.J., Groendijk H., Kalk K.H., Wierenga R.K. and Hol W.G.J., J. Med. Chem., 34 (1991) 2709.

    Google Scholar 

  17. Caflisch A., Miranker A. and Karplus M., J. Med. Chem., 36 (1993) 2142.

    Google Scholar 

  18. Eisen M.B., Wiley D.C., Karplus M. and Hubbard R.E., Proteins Struct. Funct. Genet., 19 (1994) 199.

    Google Scholar 

  19. Sitkoff D., Sharp K.A. and Honig B., J. Phys. Chem., 98 (1994) 1978.

    Google Scholar 

  20. Warwicker J. and Watson H.C., J. Mol. Biol., 157 (1982) 671.

    Google Scholar 

  21. Gilson M.K. and Honig B.H., Proteins Struct. Funct. Genet., 4 (1988) 7.

    Google Scholar 

  22. Hermann R.B., J. Phys. Chem., 76 (1972) 2754.

    Google Scholar 

  23. Lee B. and Richards F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  24. Tapparelli C., Metternich R., Ehrhardt C. and Cook N.S., Trends Pharmacol. Sci., 14 (1993) 366.

    Google Scholar 

  25. Bode W., Mayr I., Baumann U., Huber R., Stone S.R. and Hofsteenge J., EMBO J., 8 (1989) 3467.

    Google Scholar 

  26. Banner D.W. and Hadvary P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  27. Lyle T.A., Perspect. Drug Discov. Design, 1 (1993) 453.

    Google Scholar 

  28. Grootenhuis P.D.J. and Karplus M., J. Comput.-Aided Mol. Design, 10 (1996) 1.

    Google Scholar 

  29. Rotstein S.H. and Murcko M.A., J. Med. Chem., 36 (1993) 1700.

    Google Scholar 

  30. Bohacek R.S. and McMartin C., J. Am. Chem. Soc., 116 (1994) 5560.

    Google Scholar 

  31. Kuntz I.D., Science, 257 (1992) 1078.

    Google Scholar 

  32. Kettner C. and Shaw E., Thromb. Res., 14 (1979) 969.

    Google Scholar 

  33. Brünger A. and Karplus M., Proteins Struct. Funct. Genet., 4 (1988) 148.

    Google Scholar 

  34. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S. and Karplus M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  35. Elber R. and Karplus M., J. Am. Chem. Soc., 112 (1990) 9161.

    Google Scholar 

  36. Dirac P.A.M., Proc. Cambridge Phil. Soc., 26 (1930) 376.

    Google Scholar 

  37. Hestenes M.R. and Stiefel E., J. Res. N.B.S., 49 (1952) 409.

    Google Scholar 

  38. Bashford D. and Karplus M., Biochemistry, 29 (1990) 10219.

    Google Scholar 

  39. Davis M.E., Madura J.D., Luty B.A. and McCammon J.A., Comput. Phys. Commun., 62 (1991) 187.

    Google Scholar 

  40. Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P., Numerical Recipes in Fortran, Cambridge University Press, Cambridge, U.K., 1992.

    Google Scholar 

  41. Davis M.E. and McCammon J.A., J. Comput. Chem., 10 (1989) 386.

    Google Scholar 

  42. Davis M.E. and McCammon J.A., J. Comput. Chem., 11 (1990) 401.

    Google Scholar 

  43. Davis M.E. and McCammon J.A., J. Comput. Chem., 12 (1991) 909.

    Google Scholar 

  44. Lim C., Bashford D. and Karplus M., J. Phys. Chem., 95 (1991) 5610.

    Google Scholar 

  45. Edmonds D.T., Rogers N.K. and Sternberg M.J.E., Mol. Phys., 52 (1984) 1487.

    Google Scholar 

  46. Mohan V., Davis M.E., McCammon J.A. and Pettitt B.M., J. Phys. Chem., 96 (1992) 6428.

    Google Scholar 

  47. Gilson M.K., Sharp K.A. and Honig B.H., J. Comput. Chem., 9 (1988) 327.

    Google Scholar 

  48. Luty B.A., Davis M.E. and McCammon J.A., J. Comput. Chem., 13 (1992) 768.

    Google Scholar 

  49. Still W.C., Tempczyk A., Hawley R.C. and Hendrickson T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  50. Chothia C., Nature, 248 (1974) 338.

    Google Scholar 

  51. Cabani S., Gianni P., Mollica V. and Lepori L., J. Solution Chem., 10 (1981) 563.

    Google Scholar 

  52. Maryanoff B.E., Qiu X., Padmanabhan K.P., Tulinsky A., AlmondJr. H.R., Andrade-Gordon P., Greco M.N., Kauffman J.A., Nicolaou K.C., Liu A., Brungs P. and Fusetani N., Proc. Natl. Acad. Sci. USA, 90 (1993) 8048.

    Google Scholar 

  53. Weber P.C., Lee S.L., Lewandowski F.A., Schadt M.C., Chang C.H. and Kettner C.A., Biochemistry, 34 (1995) 3750.

    Google Scholar 

  54. Tabernero L., Chang C.Y., Ohringer S., Lau W.F., Iwanowicz E.J., Han W.C., Wang T.C., Seiler S.M., Roberts D.G.M. and Sack J.S., J. Mol. Biol., 246 (1995) 14.

    Google Scholar 

  55. Gubernator K., Broger C., Bur D., Doran D.M., Gerber P.R., Müller K. and Schaumann T.M., In Hermann E.C. and Franke R. (Eds.) Computer-Aided Drug Design in Industrial Research, Springer, Berlin, Germany, 1995, pp. 61–77.

    Google Scholar 

  56. Gerber P.R. and Müller K., J. Comput.-Aided Mol. Design, 9 (1995) 251.

    Google Scholar 

  57. Obst U., Gramlich V., Diederich F., Weber L. and Banner D.W., Angew. Chem., 107 (1995) 1874.

    Google Scholar 

  58. Rydel T.J., Tulinsky A., Bode W. and Huber R., J. Mol. Biol., 221 (1991) 583.

    Google Scholar 

  59. Müller K., In Schwartz T.W., Hjorth S.A. and Sandholm Kastrup J., (Eds.) Structure and Function of 7TM Receptors, Munksgaard, Copenhagen, Denmark, 1996, pp. 414–421.

    Google Scholar 

  60. Gallop M.A., Barrett R.W., Dower W.J., Fodor S.P.A. and Gordon E.M., J. Med. Chem., 37 (1994) 1233.

    Google Scholar 

  61. Gordon E.M., Barrett R.W., Dower W.J., Fodor S.P.A. and Gallop M.A., J. Med. Chem., 37 (1994) 1385.

    Google Scholar 

  62. Weber L., Wallbaum S., Broger C. and Gubernator K., Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caflisch, A. Computational combinatorial ligand design: Application to human α-thrombin. J Computer-Aided Mol Des 10, 372–396 (1996). https://doi.org/10.1007/BF00124471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124471

Keywords

Navigation