Skip to main content
Log in

Peptide mimetics as enzyme inhibitors: Use of free energy perturbation calculations to evaluate isosteric replacement for amide bonds in a potent HIV protease inhibitor

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We present the application of free energy perturbation theory/molecular dynamics to predict the consequence of replacing each of the seven peptide bonds in the potent HIV protease inhibitor JG365: ACE (acetyl)-Ser-Leu-Asn-HEA (hydroxyethylamine analog of Phe-Pro)-Ile-Val-NME (N-methyl) by ethylene or fluoroethylene isosteres. Replacing two of these bonds may well lead to significantly tighter binding; replacing two others is predicted to significantly diminish the binding affinity. Also, for three of the peptide bonds fluoroethylene replacements could lead to increased binding of free energies of the inhibitors. Our results should be considered as predictive since there are, as yet, no experimental results on such peptide replacements as enzyme inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan, I.B., Galpin, S.A., Handa, B.K., Kay, J., Krohn, A., Lambert, R.W., Merrett, J.H., Mills, J.S., Parkes, K.E.B., Redshaw, S., Ritchie, A.J., Taylor, D.L., Thomas, G.J. and Machin, P.J., Science, 248 (1990) 358.

    Google Scholar 

  2. Rich, D.H., Green, J., Toth, M.V., Marshall, G. and Kent, S.B.H., J. Med. Chem., 33 (1990) 1285.

    Google Scholar 

  3. James, M.N.G. and Sielecki, A.R., In Jurnak, F.A. and McPherson, A. (Eds.) Biological Macromolecules and Assemblies, Vol. 3, Wiley, New York, 1987, p. 414.

    Google Scholar 

  4. Miller, M., Swein, A.L., Jaskolski, M., Sathyanarayana, B.K., Marshall, G.R., Rich, D.H., Kent, S.B.H. and Wlodawer, A., In Pearl, L. (Ed.) Retroviral Proteases: Control of Maturation and Morphogenesis, MacMillan Press, New York, 1992, in press.

    Google Scholar 

  5. Swein, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S. and Wlodawer, A., Proc. Natl. Acad. Sci. U.S.A., 87 (1990) 8805.

    Google Scholar 

  6. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H. and Wlodawer, A., Science, 246 (1989) 1149.

    Google Scholar 

  7. Ferguson, D.M., Radmer, R.J. and Kollman, P.A., J. Med. Chem., 34 (1991) 2654.

    Google Scholar 

  8. Tropsha, A. and Hermans, J., Prot. Eng., 5 (1992) 29.

    Google Scholar 

  9. Rich, D.H., Sun, C.Q., Vara Prasad, J.V.N., Pathiasseril, A., Toth, M.V., Marshall, G.R., Clare, M., Mueller, R.A. and Houseman, K., J. Med. Chem., 34 (1991) 1222.

    Google Scholar 

  10. Aubry, A. and Marraud, M., Biopolymers, 28 (1989) 109.

    Google Scholar 

  11. Baginski, M., Piela, L. and Skolnick, J., J. Comput. Chem., 14 (1993) 296 and 314.

    Google Scholar 

  12. Roberts, D.C. and Velaccio, F., The Peptides, Vol. 5, Academic Press, New York, 1983 pp. 341–449.

    Google Scholar 

  13. Schnolzer, M. and Kent, S.B.H., Science, 256 (1992) 221.

    Google Scholar 

  14. Hann, M.M. and Sammes, P.G., J. Chem. Soc. Chem. Commun., (1980) 234.

  15. Cox, M.T., Heaton, D.W. and Horbury, J., J. Chem. Soc. Chem. Commun., (1980) 799.

  16. Cox, M.T., Gormley, J.J., Hayward, C.F. and Petter, N.N., J. Chem. Soc. Chem. Commun., (1980) 800.

  17. Hann, M.M., Sammes, P.G., Kennewell, P.D. and Taylor, J.B., J. Chem. Soc. Perkin I (1982) 307.

    Google Scholar 

  18. Bash, P.A., Singh, U.C., Langridge, R. and Kollman, P.A., Science, 236 (1987) 564.

    Google Scholar 

  19. AMBER version 4.0 (1991), Pearlman, D.A., Case, D.A., Caldwell, J., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A., Department of Pharmaceutical Chemistry, University of California, San Francisco., modified to allow variable cutoff for particular residues.

  20. Weiner, S.J., Kollman, P.A., Nguyen, D.T and Case, D., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  21. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H., Science, 245 (1989) 616.

    Google Scholar 

  22. Bash, P., Ph.D. thesis, University of California San Francisco, 1986.

  23. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  24. Jorgensen, W., Chandresekhar, J., Madura, J., Impey, R. and Klein, M. J. Chem. Phys., 79 (1983) 926.

    Google Scholar 

  25. Singh, U.C. and Kollman, P., J. Comput. Chem., 7 (1986) 718.

    Google Scholar 

  26. Hehre, W., Stewart, R.F. and Pople, J.A., J. Chem. Phys., 51 (1969) 2657.

    Google Scholar 

  27. Singh, U.C. and Kollman, P.A., J. Comput. Chem., 5 (1984) 129.

    Google Scholar 

  28. Wolfenden, R., Science, 222 (1983) 1087.

    Google Scholar 

  29. Straatsma, T.P. and McCammon, J.A., J. Chem. Phys., 91 (1989) 3631.

    Google Scholar 

  30. Hermans, J., Anderson, A.G. and Yun, R.H., Biochemistry, 31 (1992) 5646.

    Google Scholar 

  31. Roques, B.P., Biopolymers, 32 (1992) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieplak, P., Kollman, P.A. Peptide mimetics as enzyme inhibitors: Use of free energy perturbation calculations to evaluate isosteric replacement for amide bonds in a potent HIV protease inhibitor. J Computer-Aided Mol Des 7, 291–304 (1993). https://doi.org/10.1007/BF00125504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125504

Key words

Navigation