Skip to main content
Log in

A mathematical analysis of the motion coherence theory

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In motion perception, there are a number of important phenomena involving coherence. Examples include motion capture and motion cooperativity. We propose a theoretical model, called the motion coherence theory, that gives a possible explanation for these effects [1,2]. In this framework, the aperture problem can also be thought of as a problem of coherence and given a similar explanation. We propose the concept of a velocity field defined everywhere in the image, even where there is no explicit motion information available. Theough a cost function, the model imposes smoothness on the velocity field in a more general way than in previous theories. In this paper, we provide a detailed theoretical analysis of the motion coherence theory. We discuss its relations with previous theories and show that some of them are approximations to it. A second paper [3] provides extensions for temporal coherence and comparisons to psychophysical phenomena. The theory applies to both short-range and long-range motion. It places them in the same computational framework and provides a way to define interactions between the two processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Yuille and N.M. Grzywacz, “A computational theory for the perception of coherent visual motion,” Nature 333: 71–74, 1988.

    Google Scholar 

  2. A.L. Yuille and N.M. Grzywacz, “The motion coherence theory,” Proc. 2nd Intern. Conf. Computer Vision, Tampa, FL, pp. 344–353, 1988.

  3. N.M. Grzywacz, J.A. Smith, and A.L. Yuille, Proc. IEEE' Workshop on Visual Motion., Irvine, CA, pp. 148–155, 1989.

  4. K. Koffka, Principles of Gestalt Psychology Harcourt, Brace and Wood: New York, 1935.

    Google Scholar 

  5. V.S. Ramachandran and S.M. Anstis, “Displacement thresholds for coherent apparent motion random dotpatterns,” Vision Research 24:1719–1724, 1983.

    Google Scholar 

  6. D.W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Research 24:55–62, 1984.

    Google Scholar 

  7. D.W. Williams, G. Philips, and R. Sekuler, “Hysteresis in the perception of motion direction: evidence for neural cooperativity, Nature 324:253–255, 1986.

    Google Scholar 

  8. A.L. Yuille and S. Ullman, “Rigidity and smoothness”, A.I. Memo 989, MIT Artif. Intell. Lab., Cambridge, MA, 1987.

    Google Scholar 

  9. E.H. Adelson and J. Bergen, “Spatiotemporal energy models for the perception of motion”, J. Opt. Soc. Am. A. 2:284–299, 1985.

    Google Scholar 

  10. B.K.P. Horn and B.G. Schunek, “Determining optical flow”, Artificial Intelligence 17:185–203, 1981.

    Google Scholar 

  11. E. Hildreth, The Measurement of Visual Motion, MIT Press: Cambridge, MA, 1984.

    Google Scholar 

  12. S. Ulman, The Interpretation of Visual Motion. MIT Press, Cambridge, MA, 1979.

    Google Scholar 

  13. D. Marr and S. Ullman, “Directional selectivity and its use in early visual processing”, Proc. Roy. Soc. London B 211:151–180, 1981.

    Google Scholar 

  14. E.H. Adelson and J.A. Movshon, “Phenomenal coherence of moving visual patterns”, Nature 300:523–525, 1982.

    Google Scholar 

  15. K. Nakayama and G.H. Silverman, “The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines”, Vision Research 28:739–746, 1988.

    Google Scholar 

  16. K. Nakayama and G.H. Silverman. “The aperture problem—II. Spatial integration of velocity information along contours”, Vision Research 28: 747–753, 1988.

    Google Scholar 

  17. M. Biederman-Thorson, J. Thorson, and G.D. Lange. “Apparent movement due to closely spaced sequentially flashed dots in the human peripheral field of vision”, Vision Research 11:889–903, 1971.

    Google Scholar 

  18. O.J. Braddick, “A short range process in apparent motion”, Vision Research 14:519–527, 1974.

    Google Scholar 

  19. O.J. Braddick, “Low-level process in apparent motion”, Phil. Trans. Roy. Soc. London B. 290:137–151, 1980.

    Google Scholar 

  20. C.L. Baker and O.J. Braddick. “Does segregation of differently moving areas depend on relative or absolute displacement?” Vision Research 22:851–856, 1982.

    Google Scholar 

  21. J.J. Chang and B. Julesz, “Displacement limits for spatial frequency filtered random-dot cinematograms in apparent motion”, Vision Research 23:1379–1385, 1983.

    Google Scholar 

  22. J.T. Petersik, R. Pufahl, and E. Krasnoff, “Failure to find an absolute retinal limit of a putative short-range process in apparent motion”. Vision Research 23:1663–1670, 1983.

    Google Scholar 

  23. K. Nakayama and G.H. Silverman. “Temporal and spatial characteristics of the upper displacement limit for motion in random dots”, Vision Research 24:293–299, 1984.

    Google Scholar 

  24. N.M. Grzywacz, “Interactions between minimal mapping and inertia in long-range apparent motion”, Invest. Ophthalmol. Vision 28:300, 1987.

    Google Scholar 

  25. N.M. Grzywacz, “The effects of past motion information on long-range apparent motion”. In preparation.

  26. B. Hassenstein and W.E. Reichardt, “Systemtheoretische analyse de zeit, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des russelkafers chlorophanus”, Z. Natureforsch. 11b:513–524, 1956.

    Google Scholar 

  27. J.P.H. van Santen and G. Sperling. “A temporal covariance model of motion perception”, J. Opt. Soc. Am. A 1:451–473, 1985.

    Google Scholar 

  28. A.B. Watson and A.J. Ahumada, “Model of human visualmotion sensing”, J. Opt. Soc. Am. A 2: 322–341, 1985.

    Google Scholar 

  29. D. Heeger, “A model for the extraction of image flow”, J. Opt. Soc. Am. A. 4:1455–1471, 1987.

    Google Scholar 

  30. H. Bulthoff, J. Little, and T. Poggio, “A parallel algorithm for real-time computation of optical flow, Nature 337: 549–553, 1989.

    Google Scholar 

  31. K. Wohn and A. Waxman, ⊙Contour evolution, neighborhood deformation and local image flow: Curved surfaces in motion”, Tech. Rept. 134, University of Maryland's Center for Automation Research. College Park, MD, 1985.

    Google Scholar 

  32. A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems. Winston; Washington, DC, 1977.

    Google Scholar 

  33. M. Bertero, T. Poggio, and V. Torre “Regularization of illposed problems”, A.I. Memo. 924, MIT Artif. Intell. Lab., Cambridge, MA, 1987.

    Google Scholar 

  34. D. Shulman and J. Aloimonos “Boundary preserving regularization: theory part I”, Tech. Rept. 356, University of Maryland's Center for Automation Research. College Park, MD, 1988.

    Google Scholar 

  35. J. Duchon, Lecture Notes in Mathematics, vol. 571. W. Schempp, and K. Zeller (eds.), Springer-Verlag: Berlin, West Germany, 1979.

    Google Scholar 

  36. D. Marr and E.C. Hildreth, “Theory of edge detection”, Proc. Roy. Soc. London B 207:187–217, 1980.

    Google Scholar 

  37. A.L. Yuille and T. Poggio, “Scaling theorems for zerocrossings”, A.I. Memo. 722, MIT Artif. Intell. Lab., Cambridge, MA, 1983.

    Google Scholar 

  38. A. Witkin. “Scale-space filtering”, Proc. 8th Intern. Joint Conf. Artif. Intell., Karlsruhe, West Germany, pp. 1019–1021, 1983.

  39. T. Poggio, H. Vorhees, and A.L. Yuille, “A regularized approach to edge detection”. A.I. Memo, 833, MIT Artif. Intell. Lab., Cambridge, MA, 1985.

    Google Scholar 

  40. N.M. Grzywacz and A.L. Yuille, “Massively parallel implementations of theories for apparent motion”, Spatial Vision, 3:15–44, 1988.

    Google Scholar 

  41. P.A. Kolers, Aspects of Motion Perception. Pergamon Press; Oxford, England, 1972.

    Google Scholar 

  42. J.A. Whecler and R.P. Feynman, Rev. Mod. Phys. 17:159 1945.

    Google Scholar 

  43. J.A. Wheeler and R.P. Feynman, Rev. Mod. Phys. 21:425, 1949.

    Google Scholar 

  44. M. Green, “Inhibition and facilitation of apparent motion by real motion,” Vision Research 23: 861–865, 1983.

    Google Scholar 

  45. A.L. Yuille, “The smoothest velocity field and token matching schemes”, A.I. Memo, 724, MIT Artif. Intell. Lab., Cambridge, MA, 1984.

    Google Scholar 

  46. A.L. Yuille, “Energy functions and analog networks”, A.I. Memo, 987. MIT Artif. Intell, Lab., Cambridge, MA, 1987.

    Google Scholar 

  47. E. Gamble and T. Poggio. “Visual integration and detection of discontinuities: The key role of intensity edges”. A.I. Memo. 970, MIT Artif. Intell. Lab., Cambridge, MA, 1987.

    Google Scholar 

  48. J. Hutchinson et al., “Computing motion using analog and binary resistive networks”, Computer 21:52–63, 1988.

    Google Scholar 

  49. V.S. Ramachandran and S.M. Anstis, “Extrapolation of motion path in human visual perception” Vision Research 23:83–85, 1983.

    Google Scholar 

  50. S.M. Anstis and V.S. Ramachandran, “Visual intertia in apparent motion”, Vision Research 27: 755–764, 1987.

    Google Scholar 

  51. N.M. Grzywacz”, “Properties of generalized minimal mapping theories for apparent motion”. J. Opt. Soc. Am. A 3:72, 1986.

    Google Scholar 

  52. R.M. Siegel and R.A. Andersen, “Perception of three-dimensional structure from motion in monkey and man”, Nature 331:259–261, 1988.

    Google Scholar 

  53. M. Fahle and T. Poggio, “Visual hyperacuity: Spatiotemporal interpolation in human vision”, Proc. Roy. Soc. London B. 213:451–477, 1981.

    Google Scholar 

  54. W. Reichardt, R.W. Schlogi, and M. Egelhaaf, Die Naturwissenschaften. In press.

  55. D. Marr, Vission, Freeman: San Francisco, CA, 1982.

    Google Scholar 

  56. A.L. Yuille and N.M. Grzywacz, “A model for the estimate of local image velocity by cells in the visual cortex”. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuille, A.L., Grzywacz, N.M. A mathematical analysis of the motion coherence theory. Int J Comput Vision 3, 155–175 (1989). https://doi.org/10.1007/BF00126430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126430

Keywords

Navigation