Skip to main content
Log in

An exploration of a novel strategy for superposing several flexible molecules

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

This paper describes a computational strategy for the superposition of a set of flexible molecules. The combinatorial problems of searching conformational space and molecular matching are reduced drastically by the combined use of simulated annealing methods and cluster analysis. For each molecule, the global minimum of the conformational energy is determined by annealing and the search trajectory is retained in a history file. All the significantly different low-energy conformations are extracted by cluster analysis of data in the history file. Each pair of molecules, in each of their significantly different conformations, is then matched by simulated annealing, using the difference-distance matrix as the objective function. A set of match statistics is then obtained, from which the best match taken from all different conformations can be found. The molecules are then superposed either by reference to a base molecule or by a consensus method. This strategy ensures that as wide a range of conformations as possible is considered, but at the same time that the smallest number of significantly different conformations is used. The method has been tested on a set of six angiotensin II antagonists with between 7–11 rotatable bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tripos Associates Inc, St Louis, MO, USA.

  2. Harpalani, A.D., Egorin, M.J. and Callery, P.S., Abstr. Am. Chem. Soc., 204 (1992) 124.

    Google Scholar 

  3. Kim, K.H., Quant. Struct.-Act. Relat., 11 (1992) 127.

    Google Scholar 

  4. Kellogg, G.E., Semus, S.F. and Abraham, D.J., J. Comput.-Aided Mol. Design., 5 (1992) 545.

    Google Scholar 

  5. Diana, G.D., Kowalczyk, P., Treasurywala, A.M., Oglesby, R.C., Pevear, D.C. and Dutko, F.J., J. Med. Chem., 35 (1992) 1002.

    Google Scholar 

  6. Vaz, R.J., Hecht, P. and Kong, S.B., Abstr. Am. Chem. Soc., 203 (1992) 32.

    Google Scholar 

  7. Greco, G., Novellino, E., Silipo, C. and Vittoria, A., Quant. Struct. Act. Rel., 10 (1991) 289.

    Google Scholar 

  8. Johnson, M.A. and Maggiora, G., Concepts and Applications of Molecular Similarity, Wiley, New York, 1990.

    Google Scholar 

  9. Bowen-Jenkins, P.E., Cooper, D.L. and Richards, W.G., J. Phys. Chem., 89 (1985) 2195.

    Google Scholar 

  10. Richards, W.G. and Hodgkin, E.E., Chem. Britain, 24 (1986) 1141.

    Google Scholar 

  11. Meyer, A.Y. and Richards, W.G., J. Comput.-Aided Mol. Design, 5 (1991) 427.

    Google Scholar 

  12. Namasivayam, S. and Dean, P.M., J. Mol. Graph., 4 (1986) 46.

    Google Scholar 

  13. Chau, P.-J. and Dean, P.M., J. Mol. Graph., 5 (1987) 97.

    Google Scholar 

  14. Dean, P.M. and Chau, P.-L., J. Mol. Graph., 5 (1987) 152.

    Google Scholar 

  15. Good, A.C., J. Mol. Graph., 10 (1992) 144.

    Google Scholar 

  16. Borea, P.A., Dean, P.M., Martin, I.L. and Perkins, T.D.J., Mol. Neuropharmacol., 2 (1992) 261.

    Google Scholar 

  17. Dean, P.M. and Perkins, T.D.J., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, in press.

    Google Scholar 

  18. Hopfinger, A.J. and Burke, B.J., In Johnson, M.A. and Maggiora, G.M. (Eds.) Concepts and Applications of Molecular Similarity, Wiley, New York, 1990, p. 173.

    Google Scholar 

  19. Burt, C. and Richards, W.G., J. Comput.-Aided Mol. Design, 4 (1990) 213.

    Google Scholar 

  20. Kolossvary, I. and Guida, W.C., J. Chem. Inf. Comput. Sci., 32 (1992) 191.

    Google Scholar 

  21. Wilson, S.R., Cui, W., Moskowitz, J.W. and Schmidt, K.E., Tetrahedron Lett., 29 (1988) 4373.

    Google Scholar 

  22. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 4 (1990) 295.

    Google Scholar 

  23. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 4 (1990) 317.

    Google Scholar 

  24. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 5 (1991) 107.

    Google Scholar 

  25. Papadopoulos, M.C. and Dean, P.M., J. Comput.-Aided Mol. Design, 5 (1991) 119.

    Google Scholar 

  26. Rusinko, A., Skell, J.M., Balducci, R. and Pearlman, R.S., Abstr. Am. Chem. Soc., 192.

  27. Pople, J.A. and Beveridge, D.L., Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.

    Google Scholar 

  28. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  29. Vinter, J.G., Davis, A. and Saunders, M.R., J. Comput.-Aided Mol. Design, 1 (1987) 31.

    Google Scholar 

  30. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E., J. Chem. Physics, 21 (1953) 1087.

    Google Scholar 

  31. Ward, J.H., J. Am. Stat. Assoc., 58 (1963) 236.

    Google Scholar 

  32. Mojena, R., Comp. J., 20 (1977) 359.

    Google Scholar 

  33. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes: The Art of Scientific Programming, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  34. McLachlan, A.D., Acta Crystallogr. A, 38 (1982) 871.

    Google Scholar 

  35. Streich, W.J., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, in press.

    Google Scholar 

  36. Leach, A.R. and Smellie, A.S., J. Chem. Inf. Comput., Sci., 32 (1992) 379.

    Google Scholar 

  37. Leach, A.R. and Smellie, A.S., Abstr. Am. Chem. Soc., 202 (1991) 35.

    Google Scholar 

  38. Leach, A.R., Pesticide Sci., 33 (1991) 87.

    Google Scholar 

  39. Goodman, J.M. and Still, W.C., J. Comp. Chem., 12 (1991) 1110.

    Google Scholar 

  40. Mason, J., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, in press.

    Google Scholar 

  41. Murtagh, F. and Hecht, A., Multivariate Data Analysis, Reidel, Dordrecht, 1987.

    Google Scholar 

  42. Gerber, P. and Müller, K., Acta Crystallogr. A, 43 (1987) 426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, T.D.J., Dean, P.M. An exploration of a novel strategy for superposing several flexible molecules. J Computer-Aided Mol Des 7, 155–172 (1993). https://doi.org/10.1007/BF00126442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126442

Key words

Navigation