Skip to main content
Log in

SCF-MO study of the polyglycine II structure

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In order to get insight into the conditions that make polyglycine (PG)II a stable structure, the conformational features of three model molecules closely related to the PGII conformation were investigated. The model molecules selected were glycine dipeptide (AGN), glycine tripeptide (AGGN), and glycine tetrapeptide (AGGGN). Environmental effects were mimicked by means of formaldehyde molecules. The calculations were carried out at the SCF semiempirical level, using the AM1 method. The calculations show that of the three systems considered, only the AGGGN molecule presents a minimum energy conformation which corresponds to a PGII structure. The environmental conditions in which this conformation is found were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, J., In Domenicano, A. and Hargittai, I. (Eds.) Accurate Molecular Structures, Oxford University Press, Oxford, 1992.

    Google Scholar 

  2. Fernandez, Y., Ricart, J.M. and Perez, J.J., Int. J. Biol. Macromol., 14 (1992) 154.

    Google Scholar 

  3. Perez, J.J., Villar, H.O. and Loew, G.H., J. Comput.-Aided Mol. Design, 6 (1992) 175.

    Google Scholar 

  4. Alemán, C., Subirana, J.A. and Perez, J.J., Biopolymers, 32 (1992) 631.

    Google Scholar 

  5. Ooi, T., Oobatake, M., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.

    Google Scholar 

  6. Crick, F.H.C. and Rich, A., Nature, 176 (1955) 780.

    Google Scholar 

  7. Ramachandran, G.N. and Sasisekharan, V., Adv. Protein Chem., 23 (1968) 283.

    Google Scholar 

  8. Maigret, B., Pullman, B. and Perahia, D., J. Theor. Biol., 31 (1971) 269.

    Google Scholar 

  9. Vishreshwara, S. and Pople, J.A., J. Am. Chem. Soc., 99 (1977) 2422.

    Google Scholar 

  10. Peters, D. and Peters, J., J. Mol. Struct., 53 (1979) 103.

    Google Scholar 

  11. Palla, P., Petrongolo, C. and Tomasi, J., J. Phys. Chem., 84 (1980) 435.

    Google Scholar 

  12. Schäfer, L., Van Alsenoy, C. and Scarsdale, J.N., J. Chem. Phys., 76 (1982) 1439.

    Google Scholar 

  13. Luke, B.T., Gupta, A.G., Loew, G.H., Lawless, J.G. and White, D.H., Int. J. Quantum Chem., Quantum Biol. Symp., 11 (1984) 117.

    Google Scholar 

  14. Klimkowski, V.J., Schäfer, L., Momany, F.A. and Van Alsenoy, C., J. Mol. Struct. (Theochem), 124 (1985) 143.

    Google Scholar 

  15. Head-Gordon, T., Head-Gordon, M., Frisch, M.J., Brooks III, C.L. and Pople, J.A., J. Am. Chem. Soc., 113 (1991) 5989.

    Google Scholar 

  16. Jensen, J.H. and Gordon, M.S., J. Am. Chem. Soc., 113 (1991) 7917.

    Google Scholar 

  17. Lau, W.F. and Pettit, B.M., Biopolymers, 26 (1987) 1817.

    Google Scholar 

  18. Kleier, D.A. and Lipscomb, W.N., Int. J. Quantum Chem., 4 (1977) 73.

    Google Scholar 

  19. Scheiner, S. and Kern, C.W., J. Am. Chem. Soc., 100 (1978) 7539.

    Google Scholar 

  20. Scheiner, S. and Kern, C.W., Proc. Natl. Acad. Sci. USA, 75 (1978) 75.

    Google Scholar 

  21. Momany, F.A., McGuire, R.F., Burgess, A.W. and Scheraga, H.A., J. Phys. Chem., 79 (1975) 2361.

    Google Scholar 

  22. Hopfinger, A.J., Biopolymers, 10 (1971) 1299.

    Google Scholar 

  23. Balaji, V.N., Int. J. Quantum Chem., 20(1981) 347.

    Google Scholar 

  24. Nakamura, H. and Go, N., Int. J. Pept. Protein Res., 25 (1985) 232.

    Google Scholar 

  25. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1986) 3902.

    Google Scholar 

  26. Topiol, S., J. Comput. Chem., 8 (1987) 142.

    Google Scholar 

  27. Bofill, J.M., Castells, J., Olivella, S. and Solé, A., J. Org. Chem., 53 (1988) 5148.

    Google Scholar 

  28. Masamura, M., J. Mol. Struct. (Theochem), 164 (1988) 299.

    Google Scholar 

  29. Dannenberg, J.J. and Vinson, L.K., J. Phys. Chem., 92 (1988) 5635.

    Google Scholar 

  30. Dannenberg, J.J., J. Phys. Chem., 92 (1988) 6869.

    Google Scholar 

  31. Galera, S., Lluch, J.M., Oliva, A. and Bertran, J., J. Mol. Struct. (Theochem), 40 (1988) 101.

    Google Scholar 

  32. Vinson, L.K. and Dannenberg, J.J., J. Am. Chem. Soc., 111 (1989) 2777.

    Google Scholar 

  33. Novoa, J.J. and Whangbo, M., J. Am. Chem. Soc., 113 (1991) 9017.

    Google Scholar 

  34. Palmer, D.E., Pattaromi, C., Nunami, K., Chadha, R.K. and Goodman, M.J., J. Am. Chem. Soc., 114 (1992) 5634.

    Google Scholar 

  35. Alemán, C. and Perez, J.J., J. Mol. Struct., submitted.

  36. Olivella, S., QCPE Bull., 4 (1984) 10.

    Google Scholar 

  37. Stewart, J.J.P. QCPE Bull., 3 (1983) 431.

    Google Scholar 

  38. Fasman, G.D., Poly(α-amino acids): Protein Models for Conformational Studies (Biological Macromolecules Series), Marcel Dekker, New York, NY, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alemán, C., Perez, J.J. SCF-MO study of the polyglycine II structure. J Computer-Aided Mol Des 7, 241–250 (1993). https://doi.org/10.1007/BF00126447

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126447

Key words

Navigation