Skip to main content
Log in

Molecular dynamics simulations of oligonucleotides in solution: Visualisation of intrinsic curvature

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We have undertaken molecular dynamics simulations on the d(CGCAAAAAAGCG)•d(CGCTTTTTTGCG) dodecamer in solution. In this study, we focus on aspects of conformation and dynamics, including the possibility of cross-strand hydrogen bonds. We compare our results with those from crystallography as well as infrared, Raman and NMR spectroscopy and cyclization kinetics. Our method of analysis allows us to visualise the curvature of the helix as a function of time during the simulation. We find that the major distortions of the helix axis path occur at the junctions between the (essentially straight) A-tract and the CG-and GC-tracts, although at one junction this is due to hyperflexibility (i.e., regions of high flexibility with no preferred direction of curvature), while at the other junction a static curvature is found (i.e., a preferred, sustained direction of curvature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travers, A., Annu. Rev. Biochem., 58 (1989) 427.

    Google Scholar 

  2. Hagerman, P.J., Annu. Rev. Biochem., 59 (1990) 755.

    Google Scholar 

  3. Bolshoy, A., McNamara, P., Harrington, R.E. and Trifonov, E.N., Proc. Natl. Acad. Sci. USA, 88 (1991) 2312.

    Google Scholar 

  4. Ulanovsky, L., Bodner, M., Trifonov, E.N. and Choder, M., Proc. Natl. Acad. Sci. USA, 83 (1986) 862.

    Google Scholar 

  5. Trifonov, E.N. and Sussman, J.L., Proc. Natl. Acad. Sci. USA, 77 (1980) 3816.

    Google Scholar 

  6. Levene, S.D. and Crothers, D.M., J. Biomol. Struct. Dyn., 1 (1983) 429.

    Google Scholar 

  7. Wu, H.-M. and Crothers, D.M., Nature, 308 (1984) 509.

    Google Scholar 

  8. Coll, M., Frederick, C.A., Wang, A.H.-J. and Rich, A., Proc. Natl. Acad. Sci. USA, 84 (1987) 8385.

    Google Scholar 

  9. Nelson, H.C.M., Finch, J.T., Bonaventura, F.L. and Klug, A., Nature, 330 (1987) 221.

    Google Scholar 

  10. DiGabriele, A.D., Sanderson, M.R. and Steitz, T.A., Proc. Natl. Acad. Sci. USA, 86 (1989) 1816.

    Google Scholar 

  11. Fritsch, V. and Westhof, E., J. Am. Chem. Soc., 113 (1991) 8271.

    Google Scholar 

  12. Diekmann, S., Mazzarelli, J.M., McLaughlin, L.W., Von, Kitzing, E. and Travers, A.A., J. Mol. Biol., 225 (1992) 729.

    Google Scholar 

  13. Edwards, K.J., Brown, D.G., Spink, N., Skelly, J.V. and Neidle, S., J. Mol. Biol., 226 (1992) 1161.

    Google Scholar 

  14. Goodfellow, J.M. and Williams, M.A., Curr. Opin. Struct. Biol., 2 (1992) 211.

    Google Scholar 

  15. Van, Gunsteren, W.F. and Berendsen, H.J.C., Angew. Chem., Int. Ed. Engl., 29 (1990) 992.

    Google Scholar 

  16. MacCammon, J.A. and Harvey, S.C., Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  17. Feuerstein, B.G., Pattabiraman, N. and Marton, L.J., Nucleic Acids Res., 17 (1989) 6883.

    Google Scholar 

  18. Herzyk, P., Neidle, S. and Goodfellow, J.M., J. Biomol. Struct. Dyn., 10 (1992) 97.

    Google Scholar 

  19. Boehncke, K., Nonella, M., Schulten, K. and Wang, A.H.-J., Biochemistry, 30 (1991) 5465.

    Google Scholar 

  20. Van, Gunsteren, W.F., Berendsen, H.J.C., Geurtsen, R.G. and Zwinderman, H.R.J., Ann. New York Acad. Sci., 482 (1986) 287.

    Google Scholar 

  21. Zielinski, T.J. and Shibata, M., Biopolymers, 29 (1990) 1027.

    Google Scholar 

  22. Seibel, G., Singh, U.C. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 82 (1985) 6537.

    Google Scholar 

  23. Singh, U.C., Weiner, S.J. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 82 (1985) 755.

    Google Scholar 

  24. Cruzeiro-Hansson, L., Swan, P.F., Pearl, L. and Goodfellow., J.M., Carcinogenesis, 13 (1992) 2067.

    Google Scholar 

  25. Parker, K., Cruzeiro-Hansson, L. and Goodfellow, J.M., J. Chem. Soc. Faraday Trans., 89 (1993) 2637.

    Google Scholar 

  26. Arnott, S., Chandrasekaran, R., Hall, I.H. and Puigjaner, L.C., Nucleic Acids Res., 2 (1983) 1493.

    Google Scholar 

  27. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., ProfetaJr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  28. Singh, U.C., Weiner, P.K., Caldwell, J. and Kollman, P.A., AMBER 3.0, University of California at San Francisco, San Francisco, CA, 1986.

    Google Scholar 

  29. Seibel, G.L., AMBER 3.0, Rev. A, University of California at San Francisco, San Francisco, CA, 1989.

    Google Scholar 

  30. Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn., 6 (1988) 63.

    Google Scholar 

  31. Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn., 6 (1989) 655.

    Google Scholar 

  32. Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. and Sklenar, H., J. Biomol. Struct. Dyn., 6 (1989) 669.

    Google Scholar 

  33. Saenger, W., Principles of Nucleic Acid Structure, Adenine Press, New York, NY, 1988.

    Google Scholar 

  34. Mohan, S. and Yathindra, M., J. Biomol. Struct. Dyn., 9 (1991) 113.

    Google Scholar 

  35. Elias, H.-G., Macromolecules, Vol. 1. Plenum Press, New York, NY, 1984, pp. 89–150.

    Google Scholar 

  36. Tanford, C., Physical Chemistry of Macromolecules, Wiley, New York, NY, 1961.

    Google Scholar 

  37. Bansal, M. and Bhattacharayya, D., In Sarma, R.H. and Sarma, M.H. (Eds.) Structure & Methods, Vol. 3, Adenine Press, New York, NY, 1990, pp. 139–153.

    Google Scholar 

  38. Gordon, A.L., Booth, E.D., Hunter, W.N. and Brown, T., Nucleic Acids Res., 20 (1992) 4753.

    Google Scholar 

  39. Taillandier, E., Ridoux, J.-P., Liquier, J., Leupin, W., Denny, W.A., Wang, Y., Thomas, G.A. and Peticolas, W.L., Biochemistry, 26 (1987) 3361.

    Google Scholar 

  40. Rao, S. and Kollman, P.A., J. Am. Chem. Soc., 107 (1985) 1611.

    Google Scholar 

  41. Brahms, S., Fritsch, V., Brahms, J.G. and Westhof, E., J. Mol. Biol., 223 (1992) 455.

    Google Scholar 

  42. Roy, S., Borah, B., Zon, G. and Cohen, J.S., Biopolymers, 26 (1987) 525.

    Google Scholar 

  43. Behling, R. and Kearns, D.R., Biochemistry, 25 (1986) 3335.

    Google Scholar 

  44. Tullius, T.D. and Dombroski, B.A., Science, 230 (1985) 679.

    Google Scholar 

  45. Burkhoff, A.M. and Tullius, T.D., Cell, 48 (1987) 935.

    Google Scholar 

  46. Price, M.A. and Tullius, T.D., Biochemistry, 32 (1993) 127.

    Google Scholar 

  47. Zhurkin, V.B., Gorin, A.A., Charakhchyan, A.A. and Ulyanov, N.B., In Beveridge, D. and Lavery, R. (Eds.) Theoretical Biochemistry and Molecular Biophysics, Vol. 1, Adenine Press, New York, NY, 1990, pp. 411–431.

    Google Scholar 

  48. Crothers, D.M., Drak, J., Kahn, J.D. and Levene, S.D., Methods Enzymol., 212 (1992) 3.

    Google Scholar 

  49. DiGabriele, A.D. and Steiz, T.A., J. Mol. Biol., 231 (1993) 1024.

    Google Scholar 

  50. Crothers, D.M., Haran, T.E. and Nadeau, J.G., J. Biol. Chem., 265 (1990) 7093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, O.N., Goodfellow, J.M. Molecular dynamics simulations of oligonucleotides in solution: Visualisation of intrinsic curvature. J Computer-Aided Mol Des 8, 307–322 (1994). https://doi.org/10.1007/BF00126748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126748

Key words

Navigation