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Abstract

Evolutionary computation techniques, which are based on a powerful principle
of evolution: survival of the �ttest, constitute an interesting category of heuristic
search. In other words, evolutionary techniques are stochastic algorithms whose
search methods model some natural phenomena: genetic inheritance and Darwinian
strife for survival.

Any evolutionary algorithm applied to a particular problem must address the
issue of genetic representation of solutions to the problem and genetic operators that
would alter the genetic composition of o�spring during the reproduction process.
However, additional heuristics should be incorporated in the algorithm as well; some
of these heuristic rules provide guidelines for evaluating (feasible and infeasible)
individuals in the population. This paper surveys such heuristics and discusses
their merits and drawbacks.

Key words: Constrained optimization, evolutionary computation, genetic algorithms,
infeasible individuals.
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1 Introduction

During the last two decades there has been a growing interest in algorithms which are
based on the principle of evolution (survival of the �ttest). A common term, accepted
recently, refers to such techniques as evolutionary computation (EC) methods. The best
known algorithms in this class include genetic algorithms, evolutionary programming,
evolution strategies, and genetic programming. There are also many hybrid systems
which incorporate various features of the above paradigms, and consequently are hard to
classify; anyway, we refer to them just as EC methods.

It is generally accepted that any evolutionary algorithm to solve a problem must have
�ve basic components:

� a genetic representation of solutions to the problem,

� a way to create an initial population of solutions,

� an evaluation function (i.e., the environment), rating solutions in terms of their
`�tness',

� `genetic' operators that alter the genetic composition of children during reproduc-
tion, and

� values for the parameters (population size, probabilities of applying genetic opera-
tors, etc.).

It is interesting to note that for a successful implementation of an evolutionary tech-
nique for a particular real-world problem, the basic components listed above require some
additional heuristics. These heuristic rules apply to genetic representation of solutions,
to `genetic' operators that alter their composition, to values of various parameters, to
methods for creating an initial population. It seems that one item only from the above
list of �ve basic components of the evolutionary algorithm|the evaluation function|
usually is taken \for granted" and does not require any heuristic modi�cations. Indeed,
in many cases the process of selection of an evaluation function is straightforward (e.g.,
classical numerical and combinatorial optimization problems). Consequently, during the
last two decades, many di�cult functions have been examined; often they served as test-
beds for di�erent selection methods, various operators, di�erent representations, and so
forth. However, the process of selection of an evaluation function might be quite complex
by itself, especially, when we deal with feasible and infeasible solutions to the problem;
several heuristics usually are incorporated in this process. In this paper we examine some
of these heuristics and discuss their merits and drawbacks.

The paper is organized as follows. The next section provides a short introductory
description of evolutionary algorithms. Section 3 discusses some heuristics incorporated
in evolutionary algorithms except those which are used in their \evaluation of population"
parts. Section 4 states the problem by de�ning feasible and infeasible individuals and
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Section 5 provides a detailed discussion on evaluation methods for evolutionary techniques.
Section 6 concludes the paper.

2 Evolutionary computation

In general, any abstract task to be accomplished can be thought of as solving a problem,
which, in turn, can be perceived as a search through a space of potential solutions. Since
usually we are after \the best" solution, we can view this task as an optimization process.
For small spaces, classical exhaustive methods usually su�ce; for larger spaces special
arti�cial intelligence techniques must be employed. The methods of evolutionary compu-
tation are among such techniques; they are stochastic algorithms whose search methods
model some natural phenomena: genetic inheritance and Darwinian strife for survival. As
stated in Davis (1987):

\... the metaphor underlying genetic algorithms1 is that of natural evolution.
In evolution, the problem each species faces is one of searching for bene�cial
adaptations to a complicated and changing environment. The `knowledge'
that each species has gained is embodied in the makeup of the chromosomes
of its members."

The idea behind evolutionary algorithms is to do what nature does. Let us take rabbits
as an example:2 at any given time there is a population of rabbits. Some of them are
faster and smarter than other rabbits. These faster, smarter rabbits are less likely to be
eaten by foxes, and therefore more of them survive to do what rabbits do best: make
more rabbits. Of course, some of the slower, dumber rabbits will survive just because
they are lucky. This surviving population of rabbits starts breeding. The breeding results
in a good mixture of rabbit genetic material: some slow rabbits breed with fast rabbits,
some fast with fast, some smart rabbits with dumb rabbits, and so on. And on the top of
that, nature throws in a `wild hare' every once in a while by mutating some of the rabbit
genetic material. The resulting baby rabbits will (on average) be faster and smarter than
these in the original population because more faster, smarter parents survived the foxes.
(It is a good thing that the foxes are undergoing similar process|otherwise the rabbits
might become too fast and smart for the foxes to catch any of them).

Evolutionary computation methods follow a step-by-step procedure that closely match-
es the story of the rabbits; they mimic the process of natural evolution, following the
principles of natural selection and \survival of the �ttest". In these algorithms a popu-
lation of individuals (potential solutions) undergoes a sequence of unary (mutation type)
and higher order (crossover type) transformations. These individuals strive for survival:
a selection scheme, biased towards �tter individuals, selects the next generation. This

1The best known evolutionary computation techniques are genetic algorithms; very often the terms
evolutionary computation methods and GA-based methods are used interchangeably.

2We `borrowed' this example from Michalewicz 1994.
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new generation contains a higher proportion of the characteristics possessed by the `good'
members of the previous generation; in this way good characteristics (e.g., being fast) are
spread over the population (e.g., of rabbits) and mixed with other good characteristics
(e.g., being smart). After some number of generations, the program converges and the
best individual represents a near-optimum solution.

Another analogy was presented recently on the Internet (comp.ai.neural-nets, Sarle,
1993): it provides also a nice comparison between hill-climbing, simulated annealing, and
genetic algorithm techniques:

\Notice that in all [hill-climbing] methods discussed so far, the kangaroo can
hope at best to �nd the top of a mountain close to where he starts. There's no
guarantee that this mountain will be Everest, or even a very high mountain.
Various methods are used to try to �nd the actual global optimum.

In simulated annealing, the kangaroo is drunk and hops around randomly for
a long time. However, he gradually sobers up and tends to hop up hill.

In genetic algorithms, there are lots of kangaroos that are parachuted into the
Himalayas (if the pilot didn't get lost) at random places. These kangaroos do
not know that they are supposed to be looking for the top of Mt. Everest.
However, every few years, you shoot the kangaroos at low altitudes and hope
the ones that are left will be fruitful and multiply".

As already mentioned earlier in the paper, the best known techniques in the class
of evolutionary computation methods are genetic algorithms, evolution strategies, evo-
lutionary programming, and genetic programming. There are also many hybrid systems
which incorporate various features of the above paradigms; however, the structure of any
evolutionary computation algorithm is very much the same; a sample structure is shown
in Figure 1.

procedure evolutionary algorithm

begin

t 0
initialize P (t)
evaluate P (t)
while (not termination-condition) do
begin

t t+ 1
select P (t) from P (t� 1)
alter P (t)
evaluate P (t)

end

end

Figure 1: The structure of an evolutionary algorithm
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The evolutionary algorithmmaintains a population of individuals, P (t) = fxt1; : : : ; x
t
ng

for iteration t. Each individual represents a potential solution to the problem at hand,
and is implemented as some data structure S. Each solution xti is evaluated to give
some measure of its \�tness". Then, a new population (iteration t + 1) is formed by
selecting the more �t individuals (select step). Some members of the new population un-
dergo transformations (alter step) by means of \genetic" operators to form new solutions.
There are unary transformations mi (mutation type), which create new individuals by a
small change in a single individual (mi : S ! S), and higher order transformations cj
(crossover type), which create new individuals by combining parts from several (two or
more) individuals (cj : S�: : :�S ! S). After some number of generations the algorithm
converges|it is hoped that the best individual represents a near-optimum (reasonable)
solution.

Despite powerful similarities between various evolutionary computation techniques
there are also many di�erences between them (often hidden on a lower level of abstraction).
They use di�erent data structures S for their chromosomal representations, consequently,
the `genetic' operators are di�erent as well. They may or may not incorporate some other
information (to control the search process) in their genes. There are also other di�erences;
for example, the two lines of the Figure 1:

select P (t) from P (t� 1)
alter P (t)

can appear in the reverse order: in evolution strategies �rst the population is altered
and later a new population is formed by a selection process. Moreover, even within a
particular technique, say, within genetic algorithms, there are many 
avors and twists. For
example, there are many methods for selecting individuals for survival and reproduction.
These methods include (1) proportional selection, where the probability of selection is
proportional to the individual's �tness, (2) ranking methods, where all individuals in
a population are sorted from the best to the worst and probabilities of their selection
are �xed for the whole evolution process,3 and (3) tournament selection, where some
number of individuals (usually two) compete for selection to the next generation: this
competition (tournament) step is repeated population-size number of times. Within each
of these categories there are further important details. Proportional selection may require
the use of scaling windows or truncation methods, there are di�erent ways for allocating
probabilities in ranking methods (linear, nonlinear distributions), the size of a tournament
plays a signi�cant role in tournament selection methods. It is also important to decide
on a generational policy. For example, it is possible to replace the whole population
by a population of o�spring, or it is possible to select the best individuals from two
populations (population of parents and population of o�spring)|this selection can be

3For example, the probability of selection of the best individual is always 0.15 regardless its precise
evaluation; the probability of selection of the second best individual is always 0.14, etc. The only
requirements are that better individuals have larger probabilities and the total of these probabilities
equals to one.
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done in a deterministic or nondeterministic way. It is also possible to produce few (in
particular, a single) o�spring, which replace some (the worst?) individuals (systems based
on such generational policy are called `steady state'). Also, one can use an `elitist' model
which keeps the best individual from one generation to the next4; such model is very
helpful for solving many kinds of optimization problems.

For a particular chromosomal representation there is a variety of di�erent genetic
operators. We can consider various types of mutation, where probability of mutation
depends on generation number and/or location of a bit. Also, apart from 1-point crossover,
we may experiment with 2-point, 3-point, etc. crossovers, which exchange appropriate
number of segments between parent chromosomes, as well as `uniform crossover', which
exchanges single genes from both parents. When a chromosome is a permutation of integer
numbers 1; : : : ; n, there are also many ways to mutate such chromosome and crossover
two chromosomes (e.g., PMX, OX, CX, ER, EER crossovers).5

The variety of structures, operators, selection methods, etc. indicate clearly that
some versions of evolutionary algorithms perform better than other versions on particular
problems; many comparisons of di�erent sort have been reported in literature (e.g., evo-
lutionary strategies versus genetic algorithms, 1-point crossover versus 2-point crossover
versus uniform crossover, etc.) As a result, in building a successful evolutionary algorithm
for a particular problem (or class of problems) the user uses a `common knowledge': a set
of heuristic rules which emerged during the last two decades as a summary of countless ex-
periments with various systems and various problems. The next section describes brie
y
some heuristics for selecting appropriate components of evolutionary algorithm, whereas
Section 5 provides a detailed discussion on heuristics used for evaluating an individual in
a population.

3 EC techniques and heuristics

The data structure used for a particular problem and a set of `genetic' operators con-
stitute the most essential components of any evolutionary algorithm. For example, the
original genetic algorithms (GAs), devised to model adaptation processes, mainly oper-
ated on binary strings and used a recombination operator with mutation as a background
operator (Holland 1975). Mutation 
ips a bit in a chromosome and crossover exchanges
genetic material between two parents: if the parents are represented by �ve-bits strings,
say (0; 0; 0; 0; 0) and (1; 1; 1; 1; 1), crossing the vectors after the second component would
produce the o�spring (0; 0; 1; 1; 1) and (1; 1; 0; 0; 0).6

4It means, that if the best individual from a current generation is lost due to selection or genetic
operators, the system force it into next generation anyway.

5In most cases, crossover involves just two parents, however, it need not be the case. In a recent
study (Eiben et al. 1994) the authors investigate the merits of `orgies', where more than two parents are
involved in the reproduction process. Also, scatter search techniques (Glover 1977) propose the use of
multiple parents.

6This is an example of so-called 1-point crossover.
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Evolution strategies (ESs) were developed as a method to solve parameter optimiza-
tion problems (Back 1991, Schwefel 1981); consequently, a chromosome represents an
individual as a pair of 
oat-valued vectors,7 i.e., ~v = (~x; ~�). Here, the �rst vector ~x repre-
sents a point in the search space; the second vector ~� is a vector of standard deviations:
mutations are realized by replacing ~v by (~x0; ~�0), where

~�0 = ~� � eN(0;�~�) and
~x0 = ~x+N(0; ~�0),

where N(0; ~�) is a vector of independent random Gaussian numbers with a mean of zero
and standard deviations ~� and �~� is a parameter of the method.

The original evolutionary programming (EP) techniques (Fogel et al. 1966) aimed
at evolution of arti�cial intelligence and �nite state machines (FSM) were selected as a
chromosomal representation of individuals. O�spring (new FSMs) are created by random
mutations of parent population (see Figure 2). There are �ve possible mutation operators:
change of an output symbol, change of a state transition, addition of a state, deletion of
a state, and change of the initial state (there are some additional constraints on the
minimum and maximum number of states).

1

2

3

0/a

1/b

0/c

1/d

0/b

1/c

1

2

3

1/b

0/c

1/d

0/b

1/c

0/c

FSM parent FSM offspring

Figure 2: A FSM and its o�spring. Machines start in state 1

Genetic programming (GP) techniques (Koza 1992) provide a way to run a search of
the space of possible computer programs8 for the best one (the most �t). For example,
two structures e1 and e2 (Figure 3) represent expressions 2x + 2:11 and x � sin(3:28),
respectively. A possible o�spring e3 (after crossover of e1 and e2) represents x � sin(2x).

Many researchers modi�ed further evolutionary algorithms by `adding' the problem
speci�c knowledge to the algorithm. Several papers (Antonisse and Keller 1987, Forrest
1985, Fox and McMahon 1990, Grefenstette 1987, Starkweather et al. 1991) have dis-
cussed initialization techniques, di�erent representations, decoding techniques (mapping

7However, they started with integer variables as an experimental optimum-seeking method.
8Actually, Koza has chosen LISP's S-expressions for all his experiments.
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Figure 3: Expression e3: an o�spring of e1 and e2. Broken line includes areas being
exchanged during the crossover operation

from genetic representations to `phenotypic' representations), and the use of heuristics for
genetic operators. Davis (1989) wrote (in the context of classical, binary GAs):

\It has seemed true to me for some time that we cannot handle most real-
world problems with binary representations and an operator set consisting
only of binary crossover and binary mutation. One reason for this is that
nearly every real-world domain has associated domain knowledge that is of
use when one is considering a transformation of a solution in the domain [...]
I believe that genetic algorithms are the appropriate algorithms to use in a
great many real-world applications. I also believe that one should incorporate
real-world knowledge in one's algorithm by adding it to one's decoder or by
expanding one's operator set."

Such hybrid/nonstandard systems enjoy a signi�cant popularity in evolutionary computa-
tion community. Very often these systems, extended by the problem-speci�c knowledge,
outperform other classical evolutionary methods as well as other standard techniques
(Michalewicz 1993, Michalewicz 1994).

There are few heuristics to guide a user in selection of appropriate data structures and
operators for a particular problem. It is a common knowledge that for numerical optimiza-
tion problem one should use an evolutionary strategy9 or genetic algorithm with 
oating
point representation, whereas some versions of genetic algorithm would be the best to
handle combinatorial optimization problems. Genetic programs are great in discovery
of rules given as a computer program, and evolutionary programming techniques can be
used successfully to model a behavior of the system (e.g., prisoner dilemma problem,
see Fogel 1993). An additional popular heuristic in applying evolutionary algorithms to
real-world problems is based on modifying the algorithm by the problem-speci�c knowl-
edge; this problem-speci�c knowledge is incorporated in chromosomal data structures

9Evolutionary programming techniques were generalized also to handle numerical optimization prob-
lems, see, e.g., Fogel 1992.
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and specialized genetic operators (Michalewicz 1994). For example, a system Genetic-2N
(Michalewicz et al. 1991) constructed for the nonlinear transportation problem used a
matrix representation for its chromosomes, a problem-speci�c mutation (main operator,
used with probability 0.4) and arithmetical crossover (background operator, used with
probability 0.05). It is hard to classify this system: it is not really a genetic algorithm,
since it can run with mutation operator only without any signi�cant decrease of quality
of results. Moreover, all matrix entries are 
oating point numbers. It is not an evolution
strategy, since it did not encode any control parameters in its chromosomal structures.
Clearly, it has nothing to do with genetic programming or evolutionary programming
approaches. It is just an evolutionary technique aimed at particular problem.

Another possibility is based on hybridization; in (Davis 1991) the author wrote:

\When I talk to the user, I explain that my plan is to hybridize the genetic
algorithm technique and the current algorithm by employing the following
three principles:

� Use the Current Encoding. Use the current algorithm's encoding tech-
nique in the hybrid algorithm;

� Hybridize Where Possible. Incorporate the positive features of the current
algorithm in the hybrid algorithm;

� Adapt the Genetic Operators. Create crossover and mutation operators
for the new type of encoding by analogy with bit string crossover and
mutation operators. Incorporate domain-based heuristics as operators as
well."

Some of these ideas were embodied earlier in the evolutionary procedure called scat-
ter search (Glover 1977). The process generates initial populations by screening good
solutions produced by heuristics. The points used as parents are then joined by linear
combinations with context-dependent weights, where such combinations may apply to
multiple parents simultaneously. The linear combination operators are further modi�ed
by adaptive rounding processes to handle components required to take discrete values.
(The vectors operated on may contain both real and integer components, as opposed to
strictly binary components.) Finally, preferred outcomes are selected and again subjected
to heuristics, whereupon the process repeats. The approach has been found useful for
mixed integer and combinatorial optimization. (For background and recent developments
see, e.g., Glover 1994.)

There are a few heuristics available for creating an initial population: one can start
from a randomly created population, or use an output from some deterministic algorithm
to initialize it (with many other possibilities in between these extremes). There are also
some general heuristic rules for determining values for the various parameters; for many
genetic algorithms applications, population size stays between 50 and 100, probability of
crossover|between 0.65 and 1.00, and probability of mutation|between 0.001 and 0.01.
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Additional heuristic rules are often used to vary the population size or probabilities of
operators during the evolution process.

It seems that neither of the evolutionary techniques is perfect (or even robust) across
the problem spectrum; only the whole family of algorithms based on evolutionary compu-
tation concepts (i.e., evolutionary algorithms) have this property of robustness. But the
main key to successful applications is in heuristics methods, which are mixed skillfully
with evolutionary techniques (e.g., recent work on search strategies for constrained design
spaces by Bilchev and Parmee 1995; Parmee, Johnson and Burt 1994).

4 Feasible and infeasible solutions

In evolutionary computation methods the evaluation function serves as the only link
between the problem and the algorithm. The evaluation function rates individuals in
the population: better individuals have better chances for survival and reproduction.
Hence it is essential to de�ne an evaluation function which characterize the problem in a
`perfect way'. In particular, the issue of handling feasible and infeasible individuals should
be addressed very carefully: very often a population contains infeasible individuals but
we search for a feasible optimal. Finding a proper evaluation measures for feasible and
infeasible individuals is of great importance; it directly in
uences the outcome (success
or failure) of the algorithm.

The issue of processing infeasible individuals is very important for solving constrained
optimization problems using evolutionary techniques. For example, in continuous do-
mains, the general nonlinear programming problem10 is to �nd X so as to

optimize f(X), X = (x1; : : : ; xn) 2 Rn,

where X 2 F � S. The set S � Rn de�nes the search space and the set F � S de�nes a
feasible search space. Usually, the search space S is de�ned as a n-dimensional rectangle
in Rn (domains of variables de�ned by their lower and upper bounds):

l(i) � xi � u(i); 1 � i � n,

whereas the feasible set F is de�ned by an intersection of S and a set of additional m � 0
constraints:

gj(X) � 0, for j = 1; : : : ; q, and hj(X) = 0, for j = q + 1; : : : ;m.

Most research on applications of evolutionary computation techniques to nonlinear
programming problems was concerned with complex objective functions with F = S.
Several test functions used by various researchers during the last 20 years consider only

10We consider here only continuous variables.
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domains of n variables; this was the case with �ve test functions F1{F5 proposed by De
Jong (1975), as well as with many other test cases proposed since then.

In discrete domains the problem of constraints was acknowledged much earlier. Knap-
sack problem, set covering problem, all types of scheduling and timetabling problems are
constrained. Several heuristic methods emerged to handle constraints; however, these
methods have not been studied in a systematic way.

search
space

feasible
search
space

S

F

unfeasibe
search
space  U

Figure 4: A search space and its feasible and infeasible parts

In general, a search space S consists of two disjoint subsets of feasible and infeasible
subspaces, F and U , respectively (see Figure 4). We do not make any assumptions about
these subspaces; in particular, they need not be convex and they need not be connected
(e.g., as it is the case in the example in Figure 4 where feasible part F of the search
space consists of four disjoined subsets). In solving optimization problems we search for
a feasible optimum. During the search process we have to deal with various feasible and
infeasible individuals; for example (see Figure 5), at some stage of the evolution process,
a population may contain some feasible (b, c, d, e, i, j, k, p) and infeasible individuals (a,
f, g, h, l, m, n, o), while the (global) optimum solution is marked by `X'.

X

a

b

c

d

e

f

g

h

i

j

k

l

m

n
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p

Figure 5: A population of 16 individuals, a { o
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The presence of feasible and infeasible individuals in the population in
uences other
parts of the evolutionary algorithm; for example, should the elitist selection method con-
sider a possibility of preserving the best feasible individual, or just the best individual
overall? Further, some operators might be applicable to feasible individuals only. How-
ever, the major aspect of such a scenario is the need for evaluation of feasible and infeasible
individuals. The problem of how to evaluate individuals in the population is far from triv-
ial. In general, we have to design two evaluation functions, evalf and evalu, for feasible
and infeasible domains, respectively. There are many important questions to be addressed
(we discuss them in detail in the next section):

A. How should two feasible individuals be compared, e.g., `c' and `j' from Figure 5? In
other words, how should the function evalf be designed?

B. How should two infeasible individuals be compared, e.g., `a' and `n'? In other words,
how should the function evalu be designed?

C. How are the functions evalf and evalu related to each other? Should we assume,
for example, that evalf(s) � evalu(r) for any s 2 F and any r 2 U (the symbol � is
interpreted as `is better than', i.e., `greater than' for maximization and `smaller than' for
minimization problems)?

D. Should we consider infeasible individuals harmful and eliminate them from the popu-
lation?

E. Should we `repair' infeasible solutions by moving them into the closest point of the
feasible space (e.g., the repaired version of `m' might be the optimum `X', Figure 5)?

F. If we repair infeasible individuals, should we replace an infeasible individual by its
repaired version in the population or rather should we use a repair procedure for evaluation
purpose only?

G. Since our aim is to �nd a feasible optimum solution, should we choose to penalize
infeasible individuals?

H. Should we start with initial population of feasible individuals and maintain the feasi-
bility of o�spring by using specialized operators?

I. Should we change the topology of the search space by using decoders?

J. Should we extract a set of constraints which de�ne feasible search space and process
individuals and constraints separately?

K. Should we concentrate on searching a boundary between feasible and infeasible parts
of the search space?

Several trends for handling infeasible solutions have emerged in the area of evolutionary
computation. We discuss them in the following section using examples from discrete and
continuous domains.
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5 Heuristics for evaluating individuals

In this section we discuss several methods for handling feasible and infeasible solutions
in a population; most of these methods emerged quite recently. Only a few years ago
Richardson et al. (1989) claimed: \Attempts to apply GA's with constrained optimiza-
tion problems follow two di�erent paradigms (1) modi�cation of the genetic operators;
and (2) penalizing strings which fail to satisfy all the constraints." This is no longer
the case as a variety of heuristics have been proposed. Even the category of penalty
functions consists of several methods which di�er in many important details on how the
penalty function is designed and applied to infeasible solutions. Other methods maintain
the feasibility of the individuals in the population by means of specialized operators or
decoders, impose a restriction that any feasible solution is `better' than any infeasible
solution, consider constraints one at the time in a particular linear order, repair infeasible
solutions, use multiobjective optimization techniques, are based on cultural algorithms,
or rate solutions using a particular co-evolutionary model. We discuss these techniques
in turn by addressing questions A { K from the previous section.

A. Design of evalf

This is usually the easiest issue: for most optimization problems, the evaluation function f
for feasible solutions is given. This is the case for numerical optimization problems and for
most operation research problems (knapsack problems, traveling salesman problems, set
covering problems, etc.) However, for some problems the selection of evaluation function
might be far from trivial. For example, in building an evolutionary system to control a
mobile robot (Michalewicz and Xiao 1995) there is a need to evaluate a robot's paths. It
is unclear, whether path #1 or path #2 (Figure 6) should have better evaluation (taking
into account their total distance, clearance from obstacles, and smoothness): path #1 is
shorter, but path #2 is smoother. For such problems there is a need for some heuristic
measures to be incorporated into the evaluation function. Note, that even the subtask of
measuring the smoothness or clearance of a path is not simple.

This is also the case in many design problems, where there are no clear formulae for
comparing two feasible designs. Clearly, some problem-dependent heuristics are neces-
sary in such cases, which should provide with a numerical measure evalf(x) of a feasible
individual x.

One of the best examples to illustrate the problem of necessity of evaluating feasible
individuals is the satis�ability (SAT) problem. For a given conjunctive normal form
formula, say

F (x) = (x1 _ x2 _ x3) ^ (x1 _ x3) ^ (x2 _ x3),

it is hard to compare two feasible individuals p = (0; 0; 0) and q = (1; 0; 0) (in both cases
F (p) = F (q) = 0). De Jong and Spears (1989) examined a few possibilities. For example,
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path #1

path #2

Figure 6: Paths in an environment

it is possible to de�ne evalu to be a ratio of the number of conjuncts which evaluate to
true; in that case

evalf(p) = 0:666 and evalf(q) = 0:333.

It is also possible (Pardalos 1994) to change the Boolean variables xi into 
oating point
numbers yi and to assign:

evalf(y) = jy1 � 1jjy2 + 1jjy3 � 1j+ jy1 + 1jjy3 + 1j + jy2 � 1jjy3 � 1j,

or

eval0f(y) = (y1� 1)2(y2+1)2(y3� 1)2 + (y1+1)2(y3+1)2 + (y2� 1)2(y3� 1)2.

In the above cases the solution to the SAT problem corresponds to a set of global minimum
points of the objective function: the true value of F (x) is equivalent to the global minimum
value 0 of evalu(y).

There is also another possibility: in some cases we do not need to de�ne the evaluation
function evalf at all! This function is necessary only if the evolutionary algorithm uses
proportional selection (see Section 2). For other types of selection routines it is possible
to establish only a linear ordering relation on individuals in the population. If a linear
ordering relation � handles decisions of the type \is a feasible individual x better than a
feasible individual y?",11 then such a relation � is su�cient for tournament and ranking
selections methods, which require either a selection of the best individual out of some
number of individuals, or linear ordering of all individuals, respectively.

Of course, it might be necessary to use some heuristics to build such a linear ordering
relation �. For example, for multi-objective optimization problems it is relatively easy to
establish a partial ordering between individual solutions; additional heuristics might be
necessary to order individuals which are not comparable by the partial relation.

11The statement �(x; y) is interpreted as x is better than y, for feasible x and y.
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In summary, it seems that tournament and ranking selections give some additional

exibility to the user: sometimes it is easier to compare two solutions than to provide
their evaluation values as numbers. However, in these methods it is necessary to re-
solve additional problems of comparing two infeasible individuals (see part B) as well as
comparing feasible and infeasible individuals (see part C).

B. Design of evalu

This is a quite hard problem. We can avoid it altogether by rejecting infeasible individuals
(see part D). Sometimes it is possible to extend the domain of function evalf to handle
infeasible individuals, i.e., evalu(x) = evalf(x) � Q(x), where Q(x) represents either a
penalty for infeasible individual x, or a cost for repairing such individual (see part G).
Another option is to design a separate evaluation function evalu, independent of evalf,
however, in a such case we have to establish some relationship between these two functions
(see part C).

It is di�cult to evaluate infeasible individuals. This is the case for knapsack problem,
where the amount of violation of capacity need not be a good measure of the individual's
`�tness' (see part G). This is also the case for many scheduling and timetable problems
as well as the path planning problem: it is unclear whether path #1 or path #2 is better
(Figure 7), since path #2 has more intersection points with obstacles and is longer than
path #1; on the other hand most infeasible paths are \worse" using the above criteria
than the straight line (path #1).

path #1

path #2

Figure 7: Infeasible paths in an environment

As was the case with feasible solutions (part A), it is possible to develop an ordering
relation for infeasible individuals (as opposed the construction of evalu); in both cases
it is necessary to establish a relationship between evaluations of feasible and infeasible
individuals (part C).
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C. Relationship between evalf and evalu

Assume that we process both feasible and infeasible individuals in the population and that
we evaluate them using two evaluation functions, evalf and evalu, respectively. In other
words, evaluations of a feasible individual x and infeasible individual y are evalf(x) and
evalu(y), respectively. Now it is of great importance to establish a relationship between
these two evaluation functions.

One possibility (as mentioned already in part B) is to design evalu by means of evalf,
i.e., evalu(y) = evalf(y) � Q(y), where Q(y) represents either a penalty for infeasible
individual y, or a cost for repairing such an individual (we discuss this option in part G).

Another possibility is as follows. We can construct a global evaluation function eval
as

eval(p) =

(
q1 � evalf(p) if p 2 F
q2 � evalu(p) if p 2 U

In other words, two weights, q1 and q2, are used to scale the relative importance of evalf
and evalu.

Both above methods allow infeasible individuals to be \better" than feasible individ-
uals. In general, it is possible to have a feasible individual x and an infeasible one, y,
such that eval(y) � eval(x).12 This may lead the algorithm to converge to an infeasible
solution; it is why several researchers experimented with dynamic penalties Q (see part
G) which increase pressure on infeasible individuals with respect to the current state of
the search. An additional weakness of these methods lies in their problem dependence;
often the problem of selecting Q(x) (or weights q1 and q2) is almost as di�cult as solving
the original problem.

On the other hand, some researchers (Powell and Skolnick 1993, Michalewicz and
Xiao 1995) reported good results of their evolutionary algorithms, which worked under
the assumption that any feasible individual was better than any infeasible one. Powell
and Skolnick (1993) applied this heuristic rule for the numerical optimization problems:
evaluations of feasible solutions were mapped into the interval (�1; 1) and infeasible
solutions|into the interval (1;1) (for minimization problems). Michalewicz and Xiao
(1995) experimented with the path planning problem and used two separate evaluation
functions for feasible and infeasible individuals. The values of evalu were increased (i.e.,
made less attractive) by adding such a constant, so that the best infeasible individual was
worse that the worst feasible one. However, it is not clear whether this should always be
the case. In particular, it is doubtful whether the feasible individual `b' (Figure 5) should
have higher evaluation than infeasible individual `m', which is \just next" to the optimal
solution. A similar example can be drawn from the path planning problem: it is unclear
whether a feasible path #2 (see Figure 8) deserves better evaluation than infeasible path
#1!

12The symbol � is interpreted as `is better than', i.e., `greater than' for maximization and `smaller
than' for minimization problems.
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path #1

path #2

Figure 8: Infeasible and feasible paths in an environment

The issue of establishing a relationship between evaluation functions for feasible and
infeasible individuals is one of the most challenging problems to resolve while applying
an evolutionary algorithm to a particular problem.

D. Rejection of infeasible individuals

This \death penalty" heuristic is a popular option in many evolutionary techniques (e.g.,
evolution strategies). Note that rejection of infeasible individuals o�ers a few simpli�ca-
tions of the algorithm: for example, there is no need to design evalu and to compare it
with evalf.

The method of eliminating infeasible solutions from a population may work reasonably
well when the feasible search space is convex and it constitutes a reasonable part of the
whole search space (e.g., evolution strategies do not allow equality constraints since with
such constraints the ratio between the sizes of feasible and infeasible search spaces is
zero). Otherwise such an approach has serious limitations. For example, for many search
problems where the initial population consists of infeasible individuals only, it might be
essential to improve them (as opposed to rejecting them). Moreover, quite often the
system can reach the optimum solution easier if it is possible to \cross" an infeasible
region (especially in non-convex feasible search spaces).

E. Repair of infeasible individuals

Repair algorithms enjoy a particular popularity in the evolutionary computation commu-
nity: for many combinatorial optimization problems (e.g., traveling salesman problem,
knapsack problem, set covering problem, etc.) it is relatively easy to `repair' an infeasible
individual. Such a repaired version can be used either for evaluation only, i.e.,

evalu(y) = evalf(x),
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where x is a repaired (i.e., feasible) version of y, or it can also replace (with some prob-
ability) the original individual in the population (see part F). Note, that the repaired
version of solution `m' (Figure 5) might be the optimum `X'.

The process of repairing infeasible individuals is related to a combination of learning
and evolution (so-called Baldwin e�ect, Whitley et al. 1994). Learning (as local search
in general, and local search for the closest feasible solution, in particular) and evolution
interact with each other: the �tness value of the improvement is transferred to the individ-
ual. In that way a local search is analogous to learning that occurs during one generation
of a particular string.

The weakness of these methods is in their problem dependence. For each particular
problem a speci�c repair algorithm should be designed. Moreover, there are no standard
heuristics on design of such algorithms: usually it is possible to use a greedy repair,
random repair, or any other heuristic which would guide the repair process. Also, for
some problems the process of repairing infeasible individuals might be as complex as
solving the original problem. This is the case for the nonlinear transportation problem
(see Michalewicz 1993), most scheduling and timetable problems, and many others.

On the other hand, recently completed Genocop III system (Michalewicz and Nazhiy-
ath 1995) for constrained numerical optimization (nonlinear constraints) is based on repair
algorithms. Genocop III incorporates the original Genocop system (which handles linear
constraints only; see section H), but also extends it by maintaining two separate popula-
tions, where a development in one population in
uences evaluations of individuals in the
other population. The �rst population Ps consists of so-called search points which satisfy
linear constraints of the problem. As in Genocop, the feasibility (in the sense of linear
constraints) of these points is maintained by specialized operators. The second population
Pr consists of so-called reference points from F ; these points are fully feasible, i.e., they
satisfy all constraints. Reference points ~r from Pr, being feasible, are evaluated directly
by the objective function (i.e., evalf(~r) = f(~r)). On the other hand, search points from
Ps are \repaired" for evaluation and the repair process works as follows. Assume, there is
a search point ~s 2 Ps. If ~s 2 F , then evalf(~s) = f(~s), since ~s is fully feasible. Otherwise
(i.e., ~s 62 F), the system selects one of the reference points, say ~r from Pr and creates a
sequence of points ~z from a segment between ~s and ~r: ~z = a~s + (1 � a)~r. This can be
done either (1) in a random way by generating random numbers a from the range h0; 1i,
or (2) in a deterministic way by setting ai = 1=2; 1=4; 1=8; : : : until a feasible point is
found. Once a fully feasible ~z is found, evalu(~s) = evalf(~z) = f(~z). Clearly, in di�erent
generations the same search point S can evaluate to di�erent values due to the random
nature of the repair process.

F. Replacement of individuals by their repaired versions

The question of replacing repaired individuals is related to so-called Lamarckian evolution
(Whitley et al. 1994), which assumes that an individual improves during its lifetime and
that the resulting improvements are coded back into the chromosome. As stated in
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Whitley et al. 1994:

\Our analytical and empirical results indicate that Lamarckian strategies are
often an extremely fast form of search. However, functions exist where both
the simple genetic algorithm without learning and the Lamarckian strategy
used [...] converge to local optima while the simple genetic algorithm exploiting
the Baldwin e�ect converges to a global optimum."

This is why it is necessary to use the replacement strategy very carefully.

Recently (see Orvosh and Davis 1993) a so-called 5%-rule was reported: this heuristic
rule states that in many combinatorial optimization problems, an evolutionary compu-
tation technique with a repair algorithm provides the best results when 5% of repaired
individuals replace their infeasible originals. However, many recent experiments (e.g.,
Michalewicz 1994) indicated that for many combinatorial optimization problems this rule
did not apply. Either a di�erent percentage gives better results, or there is no signi�cant
di�erence in the performance of the algorithm for various probabilities of replacement.

In continuous domains, a new replacement rule is emerging. The Genocop III system
(see section E) for constrained numerical optimization problems with nonlinear constraints
is based on repair approach. The �rst experiments (based on 10 test cases which have
various numbers of variables, constraints, types of constraints, numbers of active con-
straints at the optimum, etc.) indicate that the 15% replacement rule is a clear winner:
the results of the system are much better than with either lower or higher values of the
replacement rate.

At present, it seems that the `optimal' probability of replacement is problem-dependent
and it may change over the evolution process as well. Further research is required for
comparing di�erent heuristics for setting this parameter, which is of great importance for
all repair-based methods.

G. Penalizing infeasible individuals

This is the most common approach in the genetic algorithms community. The domain of
function evalf is extended; the approach assumes that

evalu(p) = evalf(p)�Q(p),

where Q(p) represents either a penalty for infeasible individual p, or a cost for repairing
such an individual. The major question is, how should such a penalty function Q(p) be
designed? The intuition is simple: the penalty should be kept as low as possible, just
above the limit below which infeasible solutions are optimal (so-called minimal penalty
rule, see Le Riche et al. 1995). However, it is di�cult to implement this rule e�ectively.

The relationship between infeasible individual `p' and the feasible part F of the search
space S plays a signi�cant role in penalizing such individuals: an individual might be
penalized just for being infeasible, the `amount' of its infeasibility is measured to determine

20



the penalty value, or the e�ort of `repairing' the individual might be taken into account.
For example, for the knapsack problem with capacity 99 we may have two infeasible
solutions yielding the same pro�t, where the total weight of all items taken is 100 and
105, respectively. However, it is di�cult to argue that the �rst individual with the total
weight 100 is `better' than the other one with the total weight 105, despite the fact that
for this individual the violation of the capacity constraint is much smaller than for the
other one. The reason is that the �rst solution may involve 5 items of the weight 20 each,
and the second solution may contain (among other items) an item of a low pro�t and
weight 6|removal of this item would yield a feasible solution, possibly much better than
any repaired version of the �rst individual. However, in such cases a penalty function
should consider the \easiness of repairing" an individual as well as the quality of its
repaired version; designing such penalty functions is problem-dependent and, in general,
quite hard.

Several researchers studied heuristics on design of penalty functions. Some hypotheses
were formulated (Richardson et al. 1989):

� \penalties which are functions of the distance from feasibility are better performers
than those which are merely functions of the number of violated constraints,

� for a problem having few constraints, and few full solutions, penalties which are
solely functions of the number of violated constraints are not likely to �nd solutions,

� good penalty functions can be constructed from two quantities, the maximum com-
pletion cost and the expected completion cost,

� penalties should be close to the expected completion cost, but should not frequently
fall below it. The more accurate the penalty, the better will be the solutions found.
When penalty often underestimates the completion cost, then the search may not
�nd a solution."

and (Siedlecki and Sklanski 1989):

� \the genetic algorithm with a variable penalty coe�cient outperforms the �xed
penalty factor algorithm,"

where a variability of penalty coe�cient was determined by a heuristic rule.

This last observation was further investigated by Smith and Tate (1993). In their work
they experimented with dynamic penalties, where the penalty measure depends on the
number of violated constraints, the best feasible objective function found, and the best
objective function value found.

For numerical optimization problems penalties usually incorporate degrees of con-
straint violations. Most of these methods use constraint violation measures fj (for the
j-th constraint) for the construction of the evalu; these functions are de�ned as

fj(X) =

(
maxf0; gj(X)g; if 1 � j � q
jhj(X)j; if q + 1 � j � m

21



For example, Homaifar et al. (1994) assume that for every constraint we establish
a family of intervals that determines appropriate penalty values. The method works as
follows:

� for each constraint, create several (`) levels of violation,

� for each level of violation and for each constraint, create a penalty coe�cient Rij

(i = 1; 2; : : : ; `, j = 1; 2; : : : ;m); higher levels of violation require larger values of
this coe�cient.

� start with a random population of individuals (i.e., these individuals are feasible or
infeasible),

� evaluate individuals using the following formula

eval(X) = f(X) +
Pm

j=1Rijf
2
j (X),

whereRij is a penalty coe�cient for the i-th level of violation and the j-th constraint.

Note, that the function eval is de�ned on S, i.e., it serves both feasible and infeasible
solutions.

It is also possible (as suggested in Siedlecki and Sklanski 1989) to adjust penalties
in a dynamic way, taking into account the current state of the search or the generation
number. For example, Joines and Houck (1994) assumed dynamic penalties; individuals
are evaluated (at the iteration t) by the following formula:

eval(X) = f(X) + (C � t)�
Pm

j=1 f
�
j (X),

where C, � and � are constants. As in Homaifar et al. (1994), the function eval evaluates
both feasible and infeasible solutions.

The method is quite similar to Homaifar et al. (1994), but it requires many fewer
parameters (C, � and �), and this is independent of the total number of constraints. Also,
the penalty component is not constant but changes with the generation number. Instead
of de�ning several levels of violation, the pressure on infeasible solutions is increased due
to the (C � t)� component of the penalty term: towards the end of the process (for high
values of t), this component assumes large values.

Michalewicz and Attia (1994) considered the following method:

� divide all constraints into four subsets: linear equations, linear inequalities, nonlin-
ear equations, and nonlinear inequalities,

� select a random single point as a starting point (the initial population consists of
copies of this single individual). This initial point satis�es all linear constraints,

� create a set of active constraints A; include there all nonlinear equations and all
violated nonlinear inequalities.
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� set the initial temperature � = �0,

� evolve the population using the following formula:

eval(X; � ) = f(X) + 1
2�

P
j2A f

2
j (X),

(only active constraints are considered),

� if � < �f , stop, otherwise

{ decrease temperature � ,

{ the best solution serves as a starting point of the next iteration,

{ update the set of active constraints A,

{ repeat the previous step of the main part.

Note that the algorithm maintains the feasibility of all linear constraints using a set
of closed operators (see Michalewicz and Janikow method, part H). At every iteration
the algorithm considers active constraints only, the pressure on infeasible solutions is
increased due to the decreasing values of temperature � . The method requires `starting'
and `freezing' temperatures, �0 and �f , respectively, and the cooling scheme to decrease
temperature � .

A method of adapting penalties was developed by Bean and Hadj-Alouane (1992). As
the previous method, it uses a penalty function, however, one component of the penalty
function takes a feedback from the search process. Each individual is evaluated by the
formula:

eval(X) = f(X) + �(t)
Pm

j=1 f
2
j (X),

where �(t) is updated every generation t in the following way:

�(t+ 1) =

8><
>:

(1=�1) � �(t); if B(i) 2 F for all t� k + 1 � i � t
�2 � �(t); if B(i) 2 S � F for all t� k + 1 � i � t
�(t); otherwise;

where B(i) denotes the best individual, in terms of function eval, in generation i, �1; �2 >
1 and �1 6= �2 (to avoid cycling). In other words, the method (1) decreases the penalty
component �(t+1) for the generation t+1, if all best individuals in the last k generations
were feasible, and (2) increases penalties, if all best individuals in the last k generations
were unfeasible. If there are some feasible and unfeasible individuals as best individuals
in the last k generations, �(t+ 1) remains without change.

Yet another approach was proposed recently by Le Riche et al. 1995. The authors
designed a (segregated) genetic algorithm which uses two values of penalty parameters (for
each constraint) instead of one; these two values aim at achieving a balance between heavy
and moderate penalties by maintaining two subpopulations of individuals. The population
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is split into two cooperating groups, where individuals in each group are evaluated using
either one of the two penalty parameters.

It seems that the appropriate choice of the penalty methodmay depend on (1) the ratio
between sizes of the feasible and the whole search space, (2) the topological properties
of the feasible search space, (3) the type of the objective function, (4) the number of
variables, (5) number of constraints, (6) types of constraints, and (7) number of active
constraints at the optimum. Thus the use of penalty functions is not trivial and only some
partial analysis of their properties is available. Also, a promising direction for applying
penalty functions is the use of adaptive penalties: penalty factors can be incorporated in
the chromosome structures in a similar way as some control parameters are represented
in the structures of evolution strategies and evolutionary programming.

H.Maintaining feasible population by special representations and

genetic operators

As indicated in Section 3, one reasonable heuristic for dealing with the issue of feasibility
is to use specialized representation and operators to maintain the feasibility of individuals
in the population.

We would illustrate this point using an example of the traveling salesman problem.
For this problem it is possible to use various representations and various operators which
would transform a feasible parent individual into a feasible o�spring (see Michalewicz
1994). For example, the so-called ordinal representation represents a tour as a list of n
cities; the i-th element of the list is a number in the range from 1 to n � i + 1. The
idea behind the ordinal representation is as follows. There is some ordered list of cities C,
which serves as a reference point for lists in ordinal representations. Assume, for example,
that such an ordered list (reference point) is simply

C = (1 2 3 4 5 6 7 8 9).

A tour

1 { 2 { 4 { 3 { 8 { 5 { 9 { 6 { 7

is then represented as a list l of references,

l = (1 1 2 1 4 1 3 1 1),

and should be interpreted as follows: the �rst number on the list l is 1, so take the �rst
city from the list C as the �rst city of the tour (city number 1), and remove it from C.
At this stage the partial tour is (1). The next number on the list l is also 1, so take
the �rst city from the current list C as the next city of the tour (city number 2), and
remove it from C. At this stage the partial tour is (1, 2), etc. The main advantage of the
ordinal representation is that the classical crossover works: any two tours in the ordinal
representation, cut after some position and crossed together, would produce two o�spring,
each of them being a legal tour. For example, the two parents
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p1 = (1 1 2 1 j 4 1 3 1 1) and
p2 = (5 1 5 5 j 5 3 3 2 1),

which correspond to the tours

1 { 2 { 4 { 3 { 8 { 5 { 9 { 6 { 7 and
5 { 1 { 7 { 8 { 9 { 4 { 6 { 3 { 2,

with the crossover point marked by `j', would produce the following o�spring:

o1 = (1 1 2 1 5 3 3 2 1) and
o2 = (5 1 5 5 4 1 3 1 1);

these o�spring correspond to

1 { 2 { 4 { 3 { 9 { 7 { 8 { 6 { 5 and
5 { 1 { 7 { 8 { 6 { 2 { 9 { 3 { 4.

On the other hand, one can use the path representation of a tour. In such representa-
tion, a tour

5 { 1 { 7 { 8 { 9 { 4 { 6 { 2 { 3

is represented simply as

(5 1 7 8 9 4 6 2 3).

Several crossovers were de�ned for the path representation: partially -mapped (PMX),
order (OX), cycle (CX), edge recombination (ER), enhanced edge recombination (EER)
crossovers. Each of these operators maintains feasibility of individuals. For example,
PMX|proposed by Goldberg and Lingle (1985)|builds an o�spring by choosing a sub-
sequence of a tour from one parent and preserving the order and position of as many cities
as possible from the other parent. A subsequence of a tour is selected by choosing two
random cut points, which serve as boundaries for swapping operations. For example, the
two parents (with two cut points marked by `j')

p1 = (1 2 3 j 4 5 6 7 j 8 9) and
p2 = (4 5 2 j 1 8 7 6 j 9 3)

would produce o�spring in the following way. First, the segments between cut points are
swapped (the symbol `x' can be interpreted as `at present unknown'):

o1 = (x x x j 1 8 7 6 j x x) and
o2 = (x x x j 4 5 6 7 j x x).
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This swap de�nes also a series of mappings:

1$ 4, 8$ 5, 7$ 6, and 6$ 7.

Then we can �ll further cities (from the original parents), for which there is no con
ict:

o1 = (x 2 3 j 1 8 7 6 j x 9) and
o2 = (x x 2 j 4 5 6 7 j 9 3).

Finally, the �rst x in the o�spring o1 (which should be 1, but there was a con
ict) is
replaced by 4, because of the mapping 1$ 4. Similarly, the second x in the o�spring o1
is replaced by 5, and the x and x in the o�spring o2 are 1 and 8. The o�spring are

o1 = (4 2 3 j 1 8 7 6 j 5 9) and
o2 = (1 8 2 j 4 5 6 7 j 9 3).

During the last decade several specialized systems were developed for particular op-
timization problems; these systems use a unique chromosomal representations and spe-
cialized `genetic' operators which alter their composition. Some of such systems were de-
scribed in Davis (1991); other examples include Genocop (Michalewicz and Janikow 1991)
for optimizing numerical functions with linear constraints and Genetic-2N (Michalewicz
et al. 1991) for nonlinear transportation problem. For example, Genocop assumes linear
constraints only and a feasible starting point (or feasible initial population). A closed
set of operators maintains feasibility of solutions. For example, when a particular com-
ponent xi of a solution vector X is mutated, the system determines its current domain
dom(xi) (which is a function of linear constraints and remaining values of the solution
vector X) and the new value of xi is taken from this domain (either with 
at probabil-
ity distribution for uniform mutation, or other probability distributions for non-uniform
and boundary mutations). In any case the o�spring solution vector is always feasible.
Similarly, arithmetic crossover13

aX + (1� a)Y

of two feasible solution vectorsX and Y yields always a feasible solution (for 0 � a � 1) in
convex search spaces (the system assumes linear constraints only which imply convexity
of the feasible search space F). Consequently, there is no need to de�ne the function
evalu; the function evalf is (as usual) the objective function f .

Such systems are much more reliable than any other evolutionary techniques based on
penalty approach (Michalewicz 1994). This is a quite popular trend. Many practitioners

13The arithmetical crossover operator generate o�spring by linear combinations of the parents. As
noted, such a strategy of generating a set of diverse trial points by linear and convex combinations (and
allowing the o�spring to in
uence the search) was proposed some years ago in the scatter search approach
by Glover (1977).
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use problem-speci�c representations and specialized operators in building very successful
evolutionary algorithms in many areas; these include numerical optimization, machine
learning, optimal control, cognitive modeling, classic operation research problems (trav-
eling salesman problem, knapsack problems, transportation problems, assignment prob-
lems, bin packing, scheduling, partitioning, etc.), engineering design, system integration,
iterated games, robotics, signal processing, and many others.

Also, it is interesting to note, that original evolutionary programming techniques (Fo-
gel et al. 1966) and genetic programming techniques (Koza 1992) fall into this category of
evolutionary algorithms: these techniques maintain feasibility of �nite state machines or
hierarchically structured programs by means of specialized representations and operators.

I. Use of decoders

Decoders o�er an interesting option for all practitioners of evolutionary techniques. In
these techniques a chromosome \gives instructions" on how to build a feasible solution.
For example, a sequence of items for the knapsack problem can be interpreted as: \take
an item if possible"|such interpretation would lead always to feasible solutions. Let us
consider the following scenario: we try to solve the 0{1 knapsack problem with n items;
the pro�t and weight of the i-th item are pi and wi, respectively. We can sort all items in
decreasing order of pi=wi's and interpret the binary string

(1100110001001110101001010111010101:::0010)

in the following way: take the �rst item from the list (i.e., item with the largest ratio
pro�t per weight) if the item �ts in the knapsack. Continue with second, �fth, sixth,
tenth, etc. items from the sorted list, until the knapsack is full or there are no more
items available. Note that the sequence of all 1's corresponds to a greedy solution. Any
sequence of bits would translate into a feasible solution, every feasible solution may have
many possible codes. We can apply classical binary operators (crossover and mutation):
any o�spring is clearly feasible.

However, it is important to point out that several factors should be taken into account
while using decoders. Each decoder imposes a relationship T between a feasible solution
and decoded solution (see Figure 9).

It is important that several conditions are satis�ed: (1) for each solution s 2 F there
is a decoded solution d, (2) each decoded solution d corresponds to a feasible solution
s, and (3) all solutions in F should be represented by the same number of decodings d.
Additionally, it is reasonable to request that (4) the transformation T is computationally
fast and (5) it has locality feature in the sense that small changes in the decoded solution
result in small changes in the solution itself. An interesting study on coding trees in
genetic algorithm was reported by Palmer and Kershenbaum (1994), where the above
conditions were formulated.
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Figure 9: Transformation T between solutions in original (a) and decoder's (b) space

J. Separation of individuals and constraints

This is a general and interesting heuristic. The �rst possibility would include utilization
of multi-objective optimization methods, where the objective function f and constraint
violation measures fj (for m constraints) constitute a (m+ 1)-dimensional vector ~v:

~v = (f; f1; : : : ; fm).

Using some multi-objective optimization method, we can attempt to minimize its com-
ponents: an ideal solution x would have fj(x) = 0 for 1 � i � m and f(x) � f(y) for
all feasible y (minimization problems). A successful implementation of this approach was
presented recently in Surry et al. (1995).

Another approach was recently reported by Paredis (1994). The method (described
in the context of constraint satisfaction problems) is based on a co-evolutionary model,
where a population of potential solutions co-evolves with a population of constraints:
�tter solutions satisfy more constraints, whereas �tter constraints are violated by more
solutions. It means, that individuals from the population of solutions are considered from
the whole search space S, and that there is no distinction between feasible and infeasible
individuals (i.e., there is only one evaluation function eval without any split into evalf or
evalu). The value of eval is determined on the basis of constraint violations measures fj's;
however, better fj 's (e.g., active constraints) would contribute more towards the value of
eval.

Yet another heuristic is based on the idea of handling constraints in a particular order;
Schoenauer and Xanthakis (1993) called this method a \behavioral memory" approach.
The initial steps of the method are devoted to sampling the feasible region; only in the
�nal step is the objective function f optimized.

� start with a random population of individuals (i.e., these individuals are feasible or
infeasible),
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� set j = 1 (j is constraint counter),

� evolve this population to minimize the violation of the j-th constraint, until a given
percentage of the population (so-called 
ip threshold �) is feasible for this constraint.
In this case

eval(X) = g1(X).

� set j = j + 1,

� the current population is the starting point for the next phase of the evolution,
minimizing the violation of the j-th constraint:

eval(X) = gj(X).14

During this phase, points that do not satisfy at least one of the 1st, 2nd, ... ,(j�1)-
th constraints are eliminated from the population. The halting criterion is again
the satisfaction of the j-th constraint by the 
ip threshold percentage � of the
population.

� if j < m, repeat the last two steps, otherwise (j = m) optimize the objective
function f rejecting infeasible individuals.

The method has a few merits. One of them is that in the �nal step of the algorithm the
objective function f is optimized (as opposed to its modi�ed form). But for larger feasible
spaces the method just provides additional computational overhead, and for very small
feasible search spaces it is essential to maintain a diversity in the population.

It is also possible to incorporate the knowledge of the constraints of the problem into
the belief space of cultural algorithms (Reynolds 1994); such algorithms provide a possi-
bility of conducting an e�cient search of the feasible search space (Reynolds et al. 1995).
The research on cultural algorithms (Reynolds 1994) was triggered by observations that
culture might be another kind of inheritance system. But it is not clear what the ap-
propriate structures and units to represent the adaptation and transmission of cultural
information are. Neither is it clear how to describe the interaction between natural evolu-
tion and culture. Reynolds developed a few models to investigate the properties of cultural
algorithms; in these models, the belief space is used to constrain the combination of traits
that individuals can assume. Changes in the belief space represent macro-evolutionary
change and changes in the population of individuals represent micro-evolutionary change.
Both changes are moderated by the communication link.

The general intuition behind belief spaces is to preserve those beliefs associated with
\acceptable" behavior at the trait level (and, consequently, to prune away unacceptable
beliefs). The acceptable beliefs serve as constraints that direct the population of traits. It

14To simplify notation, we do not distinguish between inequality constraints gj and equations hj; all
m constraints are denoted by gj.
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seems that the cultural algorithms may serve as a very interesting tool for numerical opti-
mization problems, where constraints in
uence the search in a direct way (consequently,
the search in constrained spaces may be more e�cient than in unconstrained ones!).

K. Exploring boundaries between feasible and infeasible parts of

the search space

One of the most recently developed approach for constrained optimization is strategic
oscillation. Strategic oscillation was originally proposed in accompaniment with the evo-
lutionary strategy of scatter search, and more recently has been applied to a variety of
problem settings in combinatorial and nonlinear optimization (see, for example, the re-
view of Glover 1995). The approach is based on identifying a critical level, which for our
purposes represents a boundary between feasibility and infeasibility, but which also can
include such elements as a stage of construction or a chosen interval of values for a func-
tional. In the feasibility/infeasibility context, the basic strategy is to approach and cross
the feasibility boundary, by a design that is implemented either by adaptive penalties and
inducements (which are progressively relaxed or tightened according to whether the cur-
rent direction of search is to move deeper into a particular region or to move back toward
the boundary) or by simply employing modi�ed gradients or subgradients to progress in
the desired direction. Within the context of neighborhood search, the rules for selecting
moves are typically amended to take account of the region traversed and the direction
of traversal. During the process of repeatedly approaching and crossing the feasibility
frontier from di�erent directions, the possibility of retracing a prior trajectory is avoided
by mechanisms of memory and probability.

The application of di�erent rules (according to region and direction) is generally ac-
companied by crossing a boundary to di�erent depths on di�erent sides. An option is to
approach and retreat from the boundary while remaining on a single side, without cross-
ing. One-sided oscillations are especially relevant in a variety of scheduling and graph
theory settings, where a useful structure can be maintained up to a certain point and
then is lost (as by running out of jobs to assign or by going beyond the conditions that
de�ne a tree or tour, etc.). In these cases, a constructive process for building to the critical
level is accompanied by a destructive process for dismantling the structure.

It is frequently important in strategic oscillation to spend additional search time in
regions close to the boundary. This may be done by inducing a sequence of tight oscil-
lations about the boundary as a prelude to each larger oscillation to a greater depth. If
greater e�ort is allowed for executing each move, the method may use more elaborate
moves (such as various forms of \exchanges") to stay at the boundary for longer periods.
For example, such moves can be used to proceed to a local optimum each time a critical
proximity to the boundary is reached. A strategy of applying such moves at additional
levels is suggested by a proximate optimality principle, which states roughly that good
constructions at one level are likely to be close to good constructions at another.

One of the useful forms of strategic oscillation operates by increasing and decreasing
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bounds for a function g(x). Such an approach has been e�ective in a number of ap-
plications where g(x) has represented such items as workforce assignments and function
values (as well as feasibility/infeasibility levels), to guide the search to probe at various
depths within the associated regions. In reference to degrees of feasibility and infeasibility,
g(x) may represent a vector-valued function associated with a set of problem constraints
(which may expressed, for example, as g(x) � b). In this instance, controlling the search
by bounding g(x) can be viewed as manipulating a parameterization of the selected con-
straint set. An often-used alternative is to make g(x) a lagrangean or surrogate constraint
penalty function, avoiding vector-valued functions and allowing tradeo�s between degrees
of violation of di�erent component constraints according to their importance. Surrogate
constraint approaches are particularly useful for isolating such tradeo�s, accompanied
by special memory to keep track of behavior that discloses the relative in
uence of con-
straints. Approaches that embody such ideas may be found, for example, in Freville and
Plateau 1986, Gendreau, Hertz and Laporte 1991, Kelly, Golden and Assad 1993, Voss
1993, Xu and Kelly 1995 and Glover and Kochenberger 1995.

6 Conclusions

The paper surveys many heuristics which support the most important step of any evo-
lutionary technique: evaluation of the population. It is clear that further studies in this
area are necessary: di�erent problems require di�erent \treatment". It is also possible to
mix di�erent strategies described in this paper; for example, Paechter et al. 1994 built
a successful evolutionary system for a timetable problem, where \each chromosome in
the population gives instructions on how to build a timetable. These instruction may or
may not result in a feasible timetable", thus allowing other heuristics to be added to the
proposed decoder. The author is not aware of any results which provide heuristics on
relationships between categories of optimization problems and evaluation techniques in
the presence of infeasible individuals; this is an important area of future research.
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