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Abstract
Several approaches to finding the connected components of a graph on a hypercube

multicomputer are proposed and analyzed. The results of experiments conducted on an

NCUBE hypercube are also presented. The experimental results support the analysis.
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1. INTRODUCTION

The problem of finding the connected components of an undirected graph arises in

several applications. One of these is net extraction from circuit masks. A circuit mask may be

modeled by an undirected graph in which the vertices represent mask polygons and edges join

pairs of polygons that overlap. The connected components of the resulting graph represent

the nets of the circuit realized by the mask. Once these nets have been extracted, they may be

compared with a known correct set of nets to verify the correctness of the mask. The number

of polygons in large masks is of the order of one million. Consequently net extraction takes a

lot of time on conventional computers. In case an error is found in the mask, the mask is

corrected and net extraction done again. This further increases the overall time spent verify-

ing circuit masks. Because of this, the connected components problem is a good candidate for

solution on a multicomputer.

In this paper we explore several ways to compute the connected components of a graph

starting from its adjacency matrix representation. The objective is to develop an efficient algo-

rithm for a hypercube multicomputer with a fixed number of processors. The algorithms we

propose are first analyzed using conventional measures such as asymptotic complexity,

speedup, and efficiency and also using a recently proposed measure isoefficiency [Kumar et al.

1988]. The proposed algorithms are then evaluated experimentally on an MIMD hypercube

multicomputer. A block diagram of such a computer is given in Figure 1.1. The multicom-

puter has a host processor with local memory. The hypercube is attached to this host much

like a peripheral device. Each hypercube processor (called node) has its own local memory.

The hypercube is MIMD and all interprocessor communication and synchronization is done

by explicit message passing. A program typically consists of a subprogram that runs on the

host together with subprograms for each of the hypercube nodes. Often, the same subprogram

is run on each node.

Our analysis of various parallel connected component algorithms shows that good per-

formance cannot be expected by adapting the asymptotically efficient algorithms of [Dekel et

al. 1981, Hirschberg et al. 1979, and Shiloach and Vishkin 1982]. Rather to obtain good per-

formance we need to use a parallel algorithm that does a total amount of work comparable to

that done by the fastest uniprocessor algorithm.

Programming a multicomputer requires one to consider several factors that do not arise

when one is programming a conventional uniprocessor computer. When programming a typi-

cal conventional computer, the initial algorithmic abstraction one begins with is, perhaps, the

only significant consideration. For a multicomputer, however, many other factors can have

considerable impact on the efficiency of the final program. Some of these are ([Geist and

Heath 1986 and Ranka et al. 1988]):

1. Algorithm Selection

2. Partitioning and Mapping

3. Overlapping Computation and Communication

4. Load Balancing
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5. Using the Host

Our development of hypercube algorithms for the connected components problem is

organized around these factors. Before proceeding to the development of the connected com-

ponent algorithms, we describe, in section 2, the various measures used to evaluate multicom-

puter programs and algorithms.

____________________________________________________________________________
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2. PERFORMANCE MEASURES

The performance of uniprocessor algorithms and programs is typically measured by

their time and space requirements. For multicomputers, these measures are also used. We

shall use tp and sp to, respectively, denote the time and space required on a p node
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multicomputer. While sp will normally be the total amount of memory required by a p node

multicomputer, for distributed memory multicomputers (as is our hypercube of Figure 1.1) it

is often more meaningful to measure the maximum local memory requirement of any node.

This is so as, typically, such multicomputers have equal size local memory on each processor.

To determine the effectiveness with which the multicomputer nodes are being used, one

also measures the quantities speedup and efficiency. Let t 0 be the time required to solve the

given problem on a single node using the conventional uniprocessor algorithm. Then, the

speedup, Sp, using p processors is:

Sp = 
tp

t 0___

Note that t 1 may be different from t 0 as in arriving at our parallel algorithm, we may not start

with the conventional uniprocessor algorithm.

The efficiency, Ep, with which the processors are utilized is:

Ep = 
p

Sp___

Barring any anomalous behavior as reported in [Kumar et al. 1988, Lai and Sahni 1984,

Li and Wah 1986, and Quin and Deo 1986], the speedup will be between 0 and p and the

efficiency between 0 and 1. To understand the source of anomalous behavior that results in

Sp> p and Ep> 1, consider the search tree of Figure 2.1. The problem is to search for a node

with the characteristics of C. The best uniprocessor algorithm (i.e., the one that works best on

most instances) might explore subtree B before examining C. A two processor parallelization

might explore subtrees B and C in parallel. In this case, t 2 = 2 (examine A and C) while t 0 =

k where k −1 is the number of nodes in subtree B. So, S 2= k/2 and E2= k/4.

One may argue that in this case t 0 is really not the smallest uniprocessor time. We can

do better by a breadth first search of the tree. In this case, t 0 = 3, t 2 = 2, S 2 = 1.5, and E2 =

0.75. Unfortunately, given a search tree there is no known method to predict the optimal

uniprocessor search strategy. Thus in the example of Figure 2.1, we could instead be looking

for a node D that is at the bottom of the leftmost path from the root A. So, it is customary to

use for t 0 the run time of the algorithm one would normally use to solve that problem on a

uniprocessor.

While measured speedup and efficiency are useful quantities, neither give us any infor-

mation on the scalability of our parallel algorithm to the case when the number of

processors/nodes is increased from that currently available. It is clear that, for any fixed prob-

lem size, efficiency will decline as the number of nodes increases beyond a certain threshold.

This is due to the unavailability of enough work, i.e., processor starvation. In order to use

increasing numbers of processors efficiently, it is necessary for the work load (i.e, t 0) and

hence problem size to increase also [Gustafson 1988]. An interesting property of a parallel
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algorithm is the amount by which the work load or problem size must increase as the number

of processors increases in order to maintain a certain efficiency or speedup. [Kumar et al.

1988] have introduced the concept of isoefficiency to measure this property. The

isoefficiency, ie(p), of a parallel algorithm/program is the amount by which the work load

must increase to maintain a certain efficiency.

We illustrate these terms using matrix multiplication as an example. Suppose that two

n×n matrices are to be multiplied. The problem size is n. Assume that the conventional way

to perform this product is by using the classical matrix multiplication algorithm of complexity

O(n 3). Then, t 0 = cn 3 and the work load is cn 3. Assume further that p divides n. Since the

work load is easily evenly distributed over the p processors when p ≤ n 2,

tp = 
p

t 0___ + tcom

where tcom represents the time spent in interprocessor communication.

So, Sp = t 0/tp = pt 0/(t 0+ptcom) and Ep = Sp/p = t 0/(t 0+ptcom) = 1/(1+ptcom/t 0). In order for

Ep to be a constant, ptcom/t 0 must be equal to some constant 1/α. So, t 0 = work load

 = cn 3 = αptcom . In other words, the work load must increase at least at the rate αptcom to

prevent a decline in efficiency. If tcom is ap (a is a constant), then the work load must increase

at a quadratic rate. To get a quadratic increase in the work load, the problem size n needs
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increase only at the rate p 2/3 (or more accurately, (aα/c)1/3p 2/3).

Barring any anomalous behavior, the work load t 0 for an arbitrary problem must

increase at least linearly in p as otherwise processor starvation will occur for large p and

efficiency will decline. Hence, in the absence of anomalous behavior, ie(p) is Ω(p). Parallel

algorithms with smaller ie(p) are more scalable than those with larger ie(p).

The concept of isoefficiency is useful because it allows one to test parallel programs

using a small number of processors and then predict the performance for a larger number of

processors. Thus it is possible to develop parallel programs on small hypercubes and also do a

performance evaluation using smaller problem instances than the production instances to be

solved when the program is released for commercial use. From this performance analysis and

the isoefficiency analysis one can obtain a reasonably good estimate of the program’s perfor-

mance in the target commercial environment where the multicomputer may have many more

processors and the problem instances may be much larger. So with this technique we can

eliminate (or at least predict) the often reported observation that while a particular parallel

program performed well on a small multicomputer it was found to perform poorly when

ported to a large multicomputer.

3. ALGORITHM SELECTION
As mentioned in [Ranka et al. 1988] the algorithmic abstraction that we begin with has a

significant impact on the resulting hypercube program. The starting point of the program

development process could be an existing parallel algorithm developed under the assumption

that an unlimited number of processors are available, a parallel algorithm developed for a

fixed number of processors, or some uniprocessor algorithm that has yet to be parallelized. In

the best of situations, the development of a hypercube program would begin with a parallel

hypercube algorithm developed for a fixed number of processors. We know of no such algo-

rithm for the connected components problem.

Many researchers have developed parallel connected component algorithms under the

assumption that an unlimited number of processors are available. [Carlson 1987, Gopalakrish-

nan et al. 1985, Hirschberg et al. 1979, Huang 1985, Nassimi and Sahni 1980, and Shiloach

and Vishkin 1982] are some examples of such research. None of these algorithms provides a

suitable starting point for our work. For example, consider the algorithm of [Shiloach and

Vishkin 1982]. Their algorithm finds the connected components of an undirected graph with

n vertices and e edges in time O(logn) using a CRCW shared memory computer with O(n+2e)

processors. This may be run on an O(n+2e) processor hypercube by using the O(log2n) ran-

dom access read and write algorithms of [Nassimi and Sahni 1981]. The complexity of the

resulting hypercube algorithm is O(log3n). On a uniprocessor, the connected components can

be found in O(n+e) time, using either depth or breadth first search. For dense graphs, e =

O(n 2) and the speedup, Sp =n 2  = O(n 2/log3n) (In all our speedup computations we shall use

t 0 = n 2. This is justified as we assume an adjacency matrix representation. Even if an edge
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representation is used we can justify this by restricting ourselves to dense graphs). The

efficiency Ep=n 2 is O(1/log3n). Hence, efficiency declines to zero as p (and hence n) increase.

The processor-time product is a measure of the total work (useful and nonuseful) done

by a parallel algorithm. The processor-time product of the O(n +2e) processor hypercube

simulation of the algorithm of [Shiloach and Vishkin 1982] is O((n +2e)log3n). For a dense

graph, this is O(n 2log3n). The uniprocessor algorithm does only O(n 2) work. If we assume

the constants of proportionality are the same in both cases, then the parallel algorithm is doing

log3n times more work. Hence, if n = 1024, then it would take log3n = 1000 processors just to

break even with the uniprocessor algorithm running on a single processor. In practice, many

more processors would be needed to break even as the constant of proportionality is much

larger for the Shiloach-Vishkin hypercube adaptation (this comes from the increased constant

factor for their algorithm; the constant factor associated with random access reads and writes;

and the need for interprocessor communication which is typically far more expensive per unit

than a basic arithmetic).

Dekel, Nassimi, and Sahni [Dekel et al. 1981] have developed an O(log2n) hypercube

algorithm to find a spanning forest of an n vertex graph. This uses n 3/logn processors. This

algorithm may be adapted to find connected components in O(log2n) time. The processor-

time product of this adaptation is O(n 3logn). For n = 1024, approximately nlogn = 10240 pro-

cessors are needed to break even with the uniprocessor algorithm running on a single proces-

sor computer.

The starting point for our hypercube program is the relatively simple low overhead algo-

rithm given in Figure 3.1. This assumes a dense graph and an adjacency matrix representa-

tion. Each hypercube processor begins with a partition of the adjacency matrix. It computes

a spanning forest under the assumption the graph has only those edges that are in its partition.

The first step of this algorithm is the same as the data reduction step in the connected com-

ponent algorithm proposed by Huang [Huang 1985] for the mesh-of-trees multicomputer. The

details of the algorithm for step 1 are provided in Figure 3.2 (procedure Spanning Forest).

The input to this procedure consists of the vertices Vr represented by the rows of the adja-

cency matrix partition in the hypercube node and the vertices Vc represented by the columns

of this partition. The procedure uses a breadth first traversal [Horowitz and Sahni 1986]. A

depth first traversal could also have been used.

The spanning forests define a relationship, R, between pairs of vertices. iRj iff i and j

are in the same tree in at least one forest. The transitive closure of this relation may be com-

puted using the union-find scheme discussed in [Horowitz and Sahni 1986]. This partitions

the vertices into equivalence classes. Each such class defines a connected component. We

shall refer to the process that results in the transitive closure of R as spanning structure merg-

ing. Define a spanning structure to be a collection of trees with the property that every graph

vertex is in exactly one tree and if two vertices are in the same tree then they are in the same

connected component of the graph. Note that the edges in a spanning structure are not

required to be graph edges. Each of the p spanning forests computed in step 1 of Figure 3.1 is
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Step 1: Each hypercube processor computes a spanning forest based on the information

in its adjacency matrix partition. This is done using breadth first or depth first

search.

Step 2: The hypercube processors merge their spanning forests to obtain the connected

components.

Figure 3.1: The connected components algorithm
____________________________________________________________________________

a spanning structure. In step 2 we begin with these p spanning structures and combine them

pairwise (say) until just one spanning structure remains. This final spanning structure has the

property that two vertices are in the same tree iff they are in the same connected component.

An example illustrating the two steps in our algorithm is given in Figure 3.3. For this example

the final spanning structure will consist of two trees; one with vertices 1, 2, 3, and 4 and the

other with vertices 5 and 6. Figure 3.3(e) shows just one of the possible spanning structures

with this property. The correctness of the algorithm of Figure 3.1 follows from the observa-

tion that in step 1 only edges that are on cycles are eliminated. This does not affect the con-

nected components.

Step 1 requires a total O(n 2) work. Since a spanning structure is a collection of trees, it

can have at most n −1 edges. Combining two such structures takes slightly more than linear

time if the union-find scheme of [Horowitz and Sahni 1986] is used. It takes linear time if the

equivalence class algorithm of [Horowitz and Sahni 1986] is used. However, the latter

scheme requires more memory. This becomes a problem in our case when testing with large

graphs. So we do not use it. Since p −1 pairwise merges of spanning structures are performed

in step 2 the total work done in this step is O(npα(n)) where α(n) accounts for the fact that

union-find takes slightly more than linear time (α is a functional inverse of the Ackermann’s

function). Since p is assumed fixed (or alternatively if we assume pα(n) ≤ n), the total work-

load of Figure 3.1 is O(n 2). So this has a better potential of exhibiting good speedup for

"small" p than the algorithms of [Shiloach and Vishkin 1982] and [Dekel et al. 1981].
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Procedure Spanning Forest (Vr,Vc) ;

{Find spanning forest edges for the partition with row vertices Vr and column vertices Vc}

initialize queue empty;

initialize all n vertices to be unmarked;

for each vertex l in Vr do

if vertex l is unmarked then {find a tree for l}

begin
add l to queue and mark it;

while queue not empty do
begin

delete first vertex (say j) from queue;

if j∈Vr

then scan row for vertex j

else if j∈Vc then scan column for vertex j;

all unmarked vertices k encountered during this scan are marked,

edge (j,k) is output as part of the spanning forest, vertex k is added to

the queue.

end; {of while}

end; {of then and for}

end; {Spanning Forest}

Figure 3.2: Finding the spanning forest for an adjacency matrix partition
____________________________________________________________________________

4. PARTITIONING AND MAPPING
In this section, we shall consider two refinements of the algorithm of Figure 3.1. In

both, steps 1 and 2 are done in sequence (i.e., step 2 commences after step 1 has completed).

In a later section, we consider another refinement in which steps 1 and 2 are done in parallel.

The two partitioning schemes of this section were used in [Jenq and Sahni 1987] for the all

pairs shortest paths problem. Since in our hypercube model the memory is distributed across

the nodes of the hypercube and it takes less time for a node to access its local memory than

that of another node, it is necessary to distribute the adjacency matrix across the processor

memories. The distribution schemes studied here, in effect, partition the matrix. However, a

partitioning isn’t always as effective as a data distribution scheme that allows some data repli-

cation [Ranka et al. 1988]. Along with a data partitioning, one needs to provide a mapping of
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the data partitions to the processor memories.

4.1 Partitioning By Stripes

In this case, an n×n adjacency matrix is partitioned into p stripes with each stripe

comprised of n/p contiguous rows. Figure 4.1 shows the partitioning and processor mapping

for the case n = 32 and p = 8. In this figure, Pi denotes processor i of the hypercube.

____________________________________________________________________________

P0

P1

P2

P3

P4

P5

P6

P7

32
4

Figure 4.1: Partitioning into stripes and processor mapping
____________________________________________________________________________

To compute the connected components, each processor first computes a spanning forest

of the given n vertex graph. This spanning forest is computed using procedure Spanning

Forest (Figure 3.2) with Vr = {(i −1)n /p,   . . .  ,in /p −1} for processor Pi and

Vc = {0,1,  . . .  ,n −1} for all processors. The merging of the spanning structures is done pair-

wise as indicated in Figure 4.2 for the case p = 8. Figure 4.3 shows the hypercube communi-

cation paths. Processor P0 is involved in three stages of merging. First, it merges its step 1

structure with that of P1. For this, P1 must transmit its spanning structure information to P 0.

Next, it merges this spanning structure with the merge of the step 1 spanning structures of P2

and P3. For this, P2 communicates appropriate information to P0. Finally, P 0 merges the

merged step 1 spanning structure of P0 through P3 with that of P4 through P 7. The overall

spanning structure resides in P0. At this point, each vertex determines the root of the span-

ning structure tree it is contained in. This is its connected component identifier. Notice that
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the number of active processors reduces by half following each merge step.

When merging two spanning structures A and B we take the at most n −1 edges in one

(say A) and merge with those of the other (say B). For each of the edges in A two finds are

performed to see if the two vertices that are the end points of this edge are already in the same

tree of B. If they are not then the two trees of B that contain these vertices are unioned. If the

two vertices are in the same tree of B no union is performed. Hence a pairwise merge requires

at most 2(n −1) finds and n −1 unions.

____________________________________________________________________________

P0 P1 P2 P3 P4 P5 P6 P7

P0 P2 P4 P6

P0 P4

P0

host

communication
identical processor

Figure 4.2: Communication path
____________________________________________________________________________

Since a processor’s adjacency matrix partition has n/p rows of n bits each, step 1 takes

O(n 2/p). More accurately, in the worst case the n/p rows of the partition will be scanned in

the then clause of Figure 3.2 and the n− n/pcolumns that correspond to the n− n/p vertices in

Vc−Vr scanned in the else clause. So, a total of n 2/p+(n− n/p)n/p = 2n 2/p− n 2/p 2 accesses

to the processor’s adjacency matrix partition are made. Hence, step 1 takes n 2/p(2− 1/p)ts

time (ts is a constant). There are logp merge stages with each taking at most (n −1)tm time (for

simplicity, we assume that 2(n −1) finds and n −1 unions can be done in O(n) time; the union-

find algorithms described in [Horowitz and Sahni 1986] take slightly more time; linear time

can be achieved using the equivalence class algorithm of [Horowitz and Sahni 1986]; tm is a
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Figure 4.3: Communication path on hypercube
____________________________________________________________________________

constant). Note that a spanning structure of an n vertex graph/subgraph can contain at most

n −1 edges. Each communication of a spanning structure takes at most α + (n −1)tc worst case

time where α is the communication startup time and tc is a constant. The overall worst case

time (excluding the final component identification time) is :

tstripes  = n 2/p(2−1/p)ts + (n −1)tmlogp + (n −1)tclogp + αlogp

Since t 0 is n 2ts, the speedup Sp
stripes is

Sp
stripes  = 

tstripes

n 2ts______

= 
n 2/p(2−1/p)ts+(n −1)tmlogp+(n −1)tclogp+αlogp

n 2ts_________________________________________

and the efficiency Ep
stripes is

Ep
stripes  = 

2−
p
1__ + 

n 2ts

p____
��
(n −1)(tm+tc)+α

��
logp

1_______________________________
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For constant efficiency, we require

n 2ts

p____ �� (n −1)(tm+tc)+α �� logp − 
p
1__

to be constant. For this, the problem size, n, must grow at rate Ω(plogp). The work load, n 2,

must therefore grow at the rate Ω(p 2log2p). Hence, the isoefficiency is Ω(p 2log2p). >From

the equation for Sp
stripes , we get

Sp
stripes  < 

p
n 2___(2− 1/p)ts

n 2ts____________ = 
2p−1

p 2_____

Hence, Ep
stripes  < 

2p−1
p_____, for graphs which require the examination of all n/p rows of Vr and

n− n/p columns of Vc − Vr in step 1. These graphs have the property that in at least one stripe

each vertex in Vc − Vr is adjacent to at least one vertex in Vr. Note that as the edge density

increases, the probability of this happening also increases. Further if this property is satisfied,

the graph is connected. However, a connected graph need not satisfy this property. For

graphs with this property, Ep
stripes  < 2/3 for p = 2, 4/7 for p = 4, 8/15 for p = 8, etc. Note that

on graphs that do not satisfy the stated property the efficiency can be higher. For sufficiently

dense graphs these bounds can be expected to apply as such graphs satisfy the above property.

4.2 Partitioning By Rectangles

Partitioning by rectangles is an alternate to partitioning by stripes. The adjacency matrix

is partitioned into p rectangles of size
2 � d /2�n______×

2 � d /2�n______ where p = 2d. Figure 4.4 shows the

partitioning and processor mapping for the case n = 32 and p = 8. The mapping is designed to

optimize the spanning structure mergings of step 2. While this partitioning is the same as that

used in [Jenq and Sahni 1987] for the all pairs shortest paths problem, the mapping to proces-

sors is different. The spanning structure merge order is shown in Figure 4.5. This merge order

minimizes the spanning structure size following each merge.

The worst case step 1 time for this scheme is 2n 2/p ts as in the worst case�
Vc − Vr

�
 = 

�
Vc

�
 = 

2 � d /2�n______ and all
2 � d /2�n______ rows are scanned in the then clause and all

2 � d /2�n______

columns in the else clause. The communication and merge time is a function of the number of

stages and the number of edges being merged or communicated. For simplicity, we assume

that the number of edges in the spanning structure corresponding to an i×j partition is at most

2i  (i≥j) even though i +j −1 is a better bound. When d is even, at most x= 2∗
2d/2

n____ edges are

transmitted by each of the processors that transmit edges; at most 2x edges are transmitted in

each of the next two stages; at most 4x in the next two stages; ...; and at most 2d/2x in the last

stage. So, when d is even, at most
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P0 P1

P4 P5

P2 P3

P6 P7

32

8

16

Figure 4.4: Partitioning into rectangles and processor mapping
____________________________________________________________________________

x (1+2+2+4+4+ . . . +2d/2) = 2
2d/2

n____(1+4+8+ . . . +2d/2)

 = 
2d/2

2n____(1+2+4+8+ . . . +2d/2−2)

 < 6n

edges are transmitted. Note that 2d/2x = 2n > n −1. However a spanning structure can have

at most n−1 edges. So, the above bound is quite loose.

A similar analysis shows that 6n bounds the total data transmission when d is odd. Also,

since at most n −1 edges may be in a spanning structure, we get min{6n, (n −1)logp} as a

bound on the total number of edges transmitted by any one node. Hence the worst case time

complexity is:

trectangles  = 
p

2n 2____ ts + min{6n, (n −1)logp}tm + min{6n, (n −1)logp}tc + αlogp

Comparing with tstripes , we see that the worst case step 1 time for the stripes method is

less than that for the rectangles method by n 2/p 2. The step 2 time for the stripes method is
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Figure 4.5: Merging sequence of rectangles
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never less than that of the rectangles method. In fact, when 6n < (n −1)logp (or approxi-

mately when p > 64), the step 2 time for the rectangles method is less than that for the stripes

method. As noted earlier, our 6n bound is quite loose and we expect the step 2 time for the

rectangles method to be less than that for the stripes method even when p is less than 64.

The speedup and efficiency for the rectangles method are:

Sp
rectangles  = 

trectangles

n 2ts________

Ep
rectangles  = 

p

Sp
rectangles

_________

 = 
2+

n 2ts

p____ �� min{6n, (n −1)logp}(tm+tc)+αlogp
��1______________________________________

For constant efficiency,

n 2ts

p____ �� min{6n, (n −1)logp}(tm+tc)+αlogp
��



-- --

17

must be constant. When min{6n, (n −1)logp} = (n −1)logp, the isoefficiency is the same,

Ω(p 2log2p), as that of the stripes method. When min{6n, (n −1)logp} = 6n,

n 2ts

p____ �� 6n(tm+tc)+αlogp ��
must be constant. For n>> logp, this requires that n grows as Ω(p). Hence the work load, n 2,

must grow as Ω(p 2). Hence the isoefficiency of the rectangles method is between Ω(p 2) and

Ω(p 2log2p).

>From the equation for Ep
rectangles we see that for worst case data, Ep

rectangles  < 1/2. We

expect this bound to apply for sufficiently dense graphs.

4.3 Experimental Results
FORTRAN programs to find connected components using the stripes and rectangles par-

titioning schemes were run on an NCUBE hypercube multicomputer. For each n, 30 random

graphs with edge density ranging from 70% to 90% were generated. The average efficiency is

given in the tables of Figures 4.6 (stripes partitioning) and 4.7 (rectangle partitioning). As

predicted by our isoefficiency analysis, the problem size n needs to more than double each

time the number of processors doubles in order for the efficiency to not deteriorate. For exam-

ple, the stripes method has an efficiency 0.2 when n = 64 and p = 8. To get this same efficiency

when p = 16, we need n to be greater than 128. The problem size increase required by the rec-

tangles method is not as great as required by the stripes method (though still n must more than

double each time p doubles).

Our analysis indicated that the efficiency would be less than 2/3 for the stripes method

when the test graphs required the examination of all rows of Vr and all columns of Vc−Vr.

The table of Figure 4.6 has a few entries with efficiency greater than this. This indicates that

our average test graph did not require all these rows and columns to be examined. While not

shown in the table, we observed that the efficiency became closer to that predicted by our

analysis as the edge density was increased. As p increases, the efficiency declines because of

an increase in the inter processor communication overhead. For the rectangles method, again,

some efficiences exceed the 0.5 bound expected for worst case data. This reflects the fact that

our test graphs were not worst case graphs.

Also, our analysis indicated that the step 1 time for the stripes method is less than that

for the rectangles method. However, the step 2 time for the rectangles method is generally

less. This differential in step 2 time increases with p. Hence, we expect the stripes method to

outperform the rectangles method for large n and small p. This expectation is reflected in the

data of Figures 4.6 and 4.7. The speedup obtained by the two methods for n = 256, 512, and

1024 are plotted in Figures 4.8 through 4.10.
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number of processors(p)

size(n) 2 4 8 16 32 64

16 0.45 0.21

32 0.53 0.28 0.13

64 0.61 0.36 0.20 0.10

128 0.67 0.46 0.29 0.15 0.08

256 0.71 0.54 0.38 0.24 0.13 0.06

512 0.73 0.59 0.47 0.34 0.21 0.11

1024 0.62 0.53 0.43 0.30 0.18

2048 0.49 0.39 0.27

4096 0.35

Figure 4.6: Efficiency of stripes partitioning
____________________________________________________________________________

5. OVERLAPPING COMPUTATION AND COMMUNICATION

The refinements of the preceding section make no attempt to overlap the time spent

computing with that spent transmitting data. Figure 5.1 shows the activities of processor p 0 of

Figure 4.2. We can attempt to reduce the overall time by overlapping data transmission and

computation. For this, the odd numbered leaf processors of Figure 4.2 must transmit their

spanning structure edges in packets concurrent with the computation of the spanning struc-

ture. If we are sending packets of size s edges, s< n, then as soon as s structure edges are

selected, a transmit is initiated. This requires a slight modification in the merging process so

that it commences as soon as the first packet is received. Similarly, during each merging step,

the merged structure is transmitted as a series of packets.

If n −1 edges are to be transmitted in packets of size s, then the total transmission time

becomes (n −1)(α+stc)/s. While this is larger than the α+(n −1)tc time needed to send the

(n −1) edges as one packet, we can accomplish a reduction in the overall run time as the

transmission may be substantially overlapped with the step 1 time and the merge times. A

reduction will be seen only if the total wait time decreases.

For the connected components problem, the total wait time is O(nlogp) while the com-

putation time is O(n 2/p). So, even if the wait time was reduced to zero, there would not be

much difference in the overall time. Figure 5.2 shows the % change in run times of the two
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number of processors(p)

size(n) 2 4 8 16 32 64

16 0.45 0.25

32 0.50 0.30 0.14

64 0.57 0.36 0.20 0.13

128 0.62 0.43 0.29 0.19 0.11

256 0.65 0.48 0.37 0.27 0.17 0.10

512 0.67 0.51 0.44 0.36 0.25 0.17

1024 0.53 0.48 0.43 0.33 0.24

2048 0.47 0.40 0.33

4096 0.40

Figure 4.7: Efficiency of rectangles partitioning
____________________________________________________________________________

schemes of Section 4 when the computation/communication strategy is implemented. The

packet size used was 500 edges. As is evident, the overlapping strategy does not have much

impact on the total run time. In fact a reduction is seen only for large n. For the stripes

method we were unable to make n sufficiently large to observe a run time reduction except for

the case p = 2. When n is large, the step 1 time is large and transmitting by packets

effectively overlaps the computation of the spanning structure. When n is small, the step 1

time is small and hence not enough to reduce the wait time. It should be emphasised that in

problems where the communication and computation times are comparable, successful over-

lapping of these can significantly reduce the overall run time. In fact, Won and Sahni [Won

and Sahni 1987] report a 23% reduction in the case of the maze routing problem.

6. LOAD BALANCING

The strategy to overlap computation and communication may be taken one step further

to perform steps 1 and 2 of Figure 3.1 in parallel. For this, some of the processors are

assigned the task of finding spanning structures and the others the task of merging spanning

structures. Since the strategy of Section 5 transmits spanning structures in packets as these
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Figure 4.8: n = 256
____________________________________________________________________________

are generated, it is possible for the merge processors to begin their work before the step 1

computation of a spanning structure has been completed.

Let us take a closer look at how this may be done for the stripes partition. One possibil-

ity is to partition the adjacency matrix into
p
n__×

p
n__ squares as in Figure 6.1. Since the adja-

cency matrix of an undirected graph is symmetric, only those squares on or above the main

diagonal are needed. The processors are grouped into pairs and each processor is assigned a

row of squares as in Figure 6.1. The processors begin by computing a spanning structure for

their diagonal square. Then the even processors transmit their structures to the odd processor

in their respective pairs. The odd processors merge spanning structures while the even ones

continue to process their squares (only diagonal squares and those to their right are processed)

and transmit the resulting spanning structure edges to their odd partners.
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Figure 4.9: n = 512
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This processing of squares consists of the two steps:

a) perform a breadth first traversal of the square retaining edges that form a spanning

structure for the square

b) process these spanning structure edges using the union-find algorithm of [Horowitz

and Sahni 1986] to eliminate edges that form a cycle when considered in conjunc-

tion with those edges already transmitted to the odd partners.

Only edges that survive step b) above are actually transmitted to the odd partners. The

even processors do not transmit the spanning structures of their last q squares to their odd

partners (the optimal value of q is to be determined experimentally). On completing all

merges, the odd processors begin to process their squares and transmit spanning structures to

their even partners. The even processors begin to merge after completing the processing of
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Figure 4.10: n = 1024
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their remaining squares. Once an even processor has finished all its work, the resultant span-

ning structure is transmitted to the even processor in the upper adjacent pair (i.e., processor

P2i transmits to processor P2(i −1)) for merging. Figure 6.2 illustrates the data transmission

sequence for the case p = 8. Notice that since P6 will finish first, some or all of its transmis-

sion to P4 will be overlapped with work still being done by P4. This overlapping could also

take place between P2 and P4 and P0 and P 2.

The time, tsquares , required by this strategy is given by

tsquares  = T0 + Twait  + Tmerge

where T0 is the time taken by P0 to finish its work for the pair (P 0 , P1); Twait is the time P0

has to wait following T0 for the merged data to arrive from P2; and Tmerge is the time to
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Figure 5.1: Activity status of P0
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merge this data.

The success of this strategy depends considerably on the matching of interprocessor

communication times with intra processor computation times. Unfortunately, for large n, the

time needed to compute the spanning structure of a square is much greater than the time

needed to transmit and merge the structure. Hence the merging processors are often idle. To

remedy this load imbalance, the group size may be increased to k, k> 2, processors. In each

group of k processors, one processor merges while the remaining k −1 compute spanning

structures. This also reduces the rightmost path length of Figure 6.2. Notice that this length is

p/k. When k> 2, the merge processor of a group only merges structures and the adjacency

matrix data for the group is distributed evenly over the remaining k −1 processors in the group

(again, only data in the upper triangle is needed). Figure 6.3 gives the ratio tsquares /tstripes for

the graphs used in the experiment of section 4.3. The number in parenthesis is the optimal

value of k. Note that when k= 2, the pairing strategy described in the beginning of this section

is used. It was experimentally determined that the best value of q is p, the number of hyper-

cube processors. In this case the even processor in each pair obtains a spanning forest for all

its squares together. The fact that q = p gave the best performance may be attributed to the

relative high cost of interprocessor communication. The odd processors work one square at a

time and transmit edges to their even partners.

For any fixed hypercube size the optimal k increases as n increases. This is because the

time needed to compute the initial spanning structures increases quadratically in n while the

merge time increases linearly in n. So a merge processor can handle more merge load in the

time required by the spanning structure processors to compute these structures. Because of the

unpredictable nature of the computation/communication overlap in this scheme, the scheme is

hard to analyze with a view to predicting the optimal k. The efficiency table is given in Figure

6.4. Since the spanning structure time increases asymptotically faster than the merge time, for
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number of processors(p)

size(n) 2 4 8 16 32 64

16 1.49 1.32

32 1.15 1.18 1.09

64 0.76 0.92 0.98 1.18

128 0.46 0.62 0.78 0.84 0.82

256 0.25 0.38 0.51 0.68 0.73 0.81

512 -0.17 0.21 0.35 0.46 0.60 0.72

1024 0.07 0.16 0.32 0.43 0.61

2048 0.19 0.30 0.38

4096 0.30

(a) stripes partitioning

number of processors(p)

size(n) 2 4 8 16 32 64

16 1.45 1.64

32 0.55 0.64 0.61

64 -0.18 0.23 0.26 0.31

128 -0.63 -0.37 0.10 0.13 0.15

256 -1.12 -1.15 -0.53 0.00 0.12 0.15

512 -1.37 -1.43 -1.59 -0.44 -1.49 0.15

1024 -1.42 -1.40 -0.67 -0.42 -0.14

2048 -0.95 -0.68 -0.46

4096 -0.71

(b) rectangles partitioning
positive number means increase in run time.

negative number means decrease in run time.

Figure 5.2 % change in run time using packets
____________________________________________________________________________

any fixed number p of processors the ratio tsquares /tstripes first decreases as n increases and then

increases as n increases. When the ratio is decreasing the overlapping of computation and

communication is the dominating factor. However, eventually the increased computation

load of the squares method dominates and the ratio begins to increase.
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Figure 6.1: Partitioning into squares and processor mapping
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The squares scheme just described uses only the upper triangles of the adjacency matrix.

One may consider developing a program that does this without performing steps 1 and 2 of

Figure 3.1 in parallel. In some sense, this represents the case k= 1 with the final merging stage

replaced by a binary tree merge as in Figure 4.2. Since the number of bits in the upper trian-

gle is
i =1
Σ

n −1
i  = n (n −1)/2 (note that all diagonal bits are 0 and need not be considered), for good

load balancing n (n −1)/2p bits are resident with each processor initially. This also equalizes

the processor memory requirements.

The worst case merging and communication time requirements of this balanced triangle

scheme are the same as those of the stripes method. The worst case step 1 (cf. Figure 3.1)

time is n (n −1)/p as each bit in a node’s partition may be examined twice. This results from a

need to implement Figure 3.2 so that when a partition row is scanned, the row segment that is

to the left of the diagonal is obtained by scanning the corresponding column segment above

the diagonal. So, we obtain

tbalanced  = n (n −1)/p ts + (n −1)tmlogp + (n −1)tclogp + αlogp

>From this, the following speedup and efficiency are obtained:
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P0 P1 P2 P3 P4 P5 P6 P7

P6

P4

P 2

P 0

host

pair 0 pair 1 pair 2 pair 3

communication
identical processor

Figure 6.2: Communication path
____________________________________________________________________________

Sp
balanced  = 

tbalanced

n 2ts_______

Ep
balanced  = 

n
n −1____ + 

n 2ts

p____ �� (n −1)(tm+tc)+α
��

logp

1_______________________________

For constant efficiency,

n 2ts

p____ �� (n −1)(tm+tc)+α
��

logp

is required to be constant (assuming
n

n −1____∼∼ 1). Hence the isoefficiency is Ω(p 2log2p). This is

the same as that for the stripes method.

Using the same test set as before, we obtain the efficiencies given in Figure 6.5. The
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number of processors(p)

size(n) 2 4 8 16 32 64

16 0.91(2) 0.83(2)

32 0.90(2) 0.82(2) 0.81(2)

64 0.94(2) 0.84(2) 0.81(2) 0.90(2)

128 0.96(2) 0.88(2) 0.82(2) 0.87(2) 1.05(4)

256 0.97(2) 0.91(2) 0.84(2) 0.83(2) 0.98(4) 1.42(4)

512 0.97(2) 0.94(2) 0.85(8) 0.80(2) 0.91(8) 1.32(4)

1024 0.95(2) 0.88(8) 0.77(16) 0.82(8) 0.96(8)

2048 0.76(16) 0.79(16) 0.90(8)

4096 0.90(16)

Figure 6.3 tsquares /tstripes

____________________________________________________________________________

plots of Figures 4.8 - 4.10 are extended in Figures 6.6 - 6.8 to include the speedups for the

squares and balanced triangle schemes. For large n, the balanced triangle method is the fastest

for small p (p ≤ 16) and the rectangles method is fastest for large p (p > 16).

7. USING THE HOST

One may consider utilizing the processing capabilities of the host to assist in the compu-

tation of the connected components. One possibility is to let the host perform the merging

step (step 2) of Figure 3.1. The hypercube processors perform step 1 and transmit the span-

ning structures to the host in packets. A packet is transmitted as soon as it is created. As a

result, the host begins merging sooner than step 2 can commence when the stripes or rectan-

gles method is used as in Section 4. Further, the transmission of the spanning structures is

overlapped with their computation and merging. For small n and p, we do not expect this util-

ization of the host to perform better than the raw schemes of Section 4 because of the over-

head of communicating with the host and the lack of sufficient merging work. For large n, the

merging load is too large for the single host processor to outperform merging by p processors.

However, there may be an intermediate range where using the host results in improved perfor-

mance.
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number of processors(p)

size(n) 2 4 8 16 32 64

16 0.50(2) 0.25(2)

32 0.60(2) 0.34(2) 0.16(2)

64 0.65(2) 0.44(2) 0.24(2) 0.11(2)

128 0.70(2) 0.52(2) 0.35(2) 0.18(2) 0.07(4)

256 0.73(2) 0.59(2) 0.46(2) 0.29(2) 0.13(4) 0.04(4)

512 0.75(2) 0.63(2) 0.55(8) 0.42(2) 0.23(8) 0.08(4)

1024 0.65(2) 0.61(8) 0.56(16) 0.36(8) 0.19(8)

2048 0.65(16) 0.49(16) 0.30(8)

4096 0.39(16)

Figure 6.4 Efficiency of squares method
____________________________________________________________________________

We experimented with the above scheme using both the stripes and rectangles schemes

of Section 4. The results of our experiments are given in Figure 7.1. As is evident, utilizing

the host improves performance for n in a suitable range. This range itself changes with p. For

larger p (≥ 32 for stripes and ≥ 64 for rectangles) we found no n for which the host could be

used in the above manner to improve performance. The optimal packet size to use was found

experimentally. This size increases with p.

8. CONCLUSIONS

We have studied several ways to compute the connected components of an undirected

graph on a hypercube multicomputer. Starting from the same algorithmic abstraction, one can

arrive at programs with different performance depending on the manner in which one parti-

tions and maps the problem, whether or not one attempts to overlap computation and com-

munication, and the attention one pays to load balancing. Of the various methods studied, the

balanced triangle scheme of section 6 performed best. Since our programs have good

isoefficiency, we expect them to perform well also on hypercubes of much larger size than

tested here provided problems of a sufficiently larger size are solved. The required larger size

may be predicted using the isoefficiency of the algorithm.
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number of processors(p)

size(n) 2 4 8 16 32 64

16 0.50 0.23

32 0.60 0.30 0.15

64 0.70 0.42 0.22 0.11

128 0.80 0.56 0.33 0.17 0.09

256 0.87 0.70 0.48 0.28 0.14 0.07

512 0.94 0.80 0.63 0.42 0.24 0.12

1024 0.88 0.76 0.57 0.37 0.21

2048 0.71 0.52 0.33

4096 0.47

Figure 6.5 Efficiency of balanced triangle method
____________________________________________________________________________
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(a) tstripes using host / tstripes
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(b) trectangles using host / trectangles
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