Skip to main content
Log in

Characterization of low-energy conformational domains for Met-enkephalin

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

An extensive exploration of the conformational hypersurface of Met-enkephalin has been carried out, in order to characterize different low-energy conformational domains accessible to this pentapeptide. The search strategy used consisted of two steps. First, systematic nested rotations were performed using the ECEPP potential. Ninety-two low-energy structures were found and minimized using the CHARMm potential. High and low-temperature molecular dynamics trajectories were then computed for the lowest energy structures in an iterative fashion until no lower energy conformers could be found. The same search strategy was used in these studies simulating three different environments, a distance-dependent dielectric ɛ=r, and two constant dielectrics ɛ=10 and ɛ=80. The lowest energy structure found in a distance-dependent dielectric is a Gly-Gly β-II′-type turn. All other structures found for ɛ=r within 10 kcal/mol of this lowest energy structure are also bends. In the more polar environments, the density of conformational states is significantly larger compared to the apolar media. Moreover, fewer hydrogen bonds are formed in the more polar environments, which increases the flexibility of the peptide and results in less structured conformers. Comparisons are made with previous calculations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Isogai, Y., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 74 (1977) 414.

    Google Scholar 

  2. Momary, F.A., Mc Guire, R.F., Burguess, A.W. and Scheraga, H.A., J. Phys. Chem., 79 (1975) 2361.

    Google Scholar 

  3. de, Coen, J.L., Humblet, C. and Koch, M.H.J., FEBS Lett., 73 (1977) 38.

    Google Scholar 

  4. Balodis, Y.Y., Nikiforovich, G.V., Grinsteine, I.V., Vegner, R.E. and Chipens, G.I., FEBS Lett., 86 (1978) 239.

    Google Scholar 

  5. Pincus, M.R., Carty, R.P., Chen, J., Lubowsky, J., Avitable, M., Shah, D., Scheraga, H.A. and Murphy, R.B., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 4821.

    Google Scholar 

  6. Li, Z. and Scheraga, H.A., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 6611.

    Google Scholar 

  7. Purisima, O. and Scheraga, H.A., J. Mol. Biol., 196 (1987) 697.

    Google Scholar 

  8. Ripoll, D.R. and Scheraga, H.A., J. Prot. Chem., 8 (1989) 263.

    Google Scholar 

  9. Moskowitz, J.W., Schmidt, K.E., Wilson, S.R. and Cui, W., Int. J. Quantum Chem. Quantum Chem. Symp., 22 (1988) 611.

    Google Scholar 

  10. Morales, L.B., Garduno-Juarez, R. and Romero, D., J. Biomol. Struct. Dyn., 8 (1991) 721.

    Google Scholar 

  11. Kawai, H., Kikuchi, T. and Okamoto, Y., Prot. Eng., 3 (1991) 85.

    Google Scholar 

  12. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comp. Chem., 7 (1986) 230.

    Google Scholar 

  13. Schaumann, T., Braun, W. and Wüthrich, K., Biopolymers, 29 (1990) 679.

    Google Scholar 

  14. Garbay-Jaureguiberry, C., Roques, B.P., Oberlin, R., Anteunis, M. and Lala, A.K., Biochem. Biophys. Res. Commun., 71 (1976) 558.

    Google Scholar 

  15. Jones, C.R., Gibbons, W.A. and Garsky, V., Nature, 262 (1976) 779.

    Google Scholar 

  16. Roques, B.P., Garbay-Jaureguiberry, C., Oberlin, R., Anteunis, M. and Lala, A.K., Nature, 262 (1976) 778.

    Google Scholar 

  17. Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and Urry, D.W., Biochem. Biophys. Res. Commun., 76 (1977) 224.

    Google Scholar 

  18. Zetta, L., de, Marco, A. and Zannoni, G., Biopolymers, 25 (1986) 2315.

    Google Scholar 

  19. Motta, A., Tancredi, T. and Temussi, P.A., FEBS Lett., 215 (1987) 215.

    Google Scholar 

  20. Griffin, J.F., Langs, D.A., Smith, G.D., Blundell, T.L., Tickle, I.J. and Bedarkar, S., Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 3272.

    Google Scholar 

  21. Mastropaolo, D., Camerman, A. and Camerman, N., Biochem. Biophys. Res. Commun., 134 (1987) 698.

    Google Scholar 

  22. Doi, M., Tanaka, M., Ishida, T., Inoue, M., Fujiwara, T., Tomita, K., Kimura, T., Sakakibara, S. and Sheldrick, G.M., J. Biochem., 101 (1987) 485.

    Google Scholar 

  23. Bradbury, A.F., Smyth, D.G. and Snell, C.R., Nature, 260 (1976) 165.

    Google Scholar 

  24. Momany, F.A., Biochem. Biophys. Res. Commun., 75, (1977) 1098.

    Google Scholar 

  25. Loew, G.H. and Burt, S.K., Proc. Natl. Acad. Sci. USA, 75 (1978) 7.

    Google Scholar 

  26. Loew, G., Hashimoto, G., Williamson, L., Burt, S. and Anderson, W., Mol. Pharmacol., 22 (1982) 2667.

    Google Scholar 

  27. Ishida, T., Yoneda, S., Doi, M., Inoue, M. and Kitamura, K., Biochem. J., 255 (1988) 621.

    Google Scholar 

  28. Bohm, H.J., Klebe, G., Lorenz, T., Meitzner, T. and Siggel, L., J. Comput. Chem., 11 (1990) 1021.

    Google Scholar 

  29. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comp. Chem., 4 (1983) 187.

    Google Scholar 

  30. Wilson, S.R., Cui, W., Moskowitz, J.W. and Schmidt, K.E., Tetrahedron Lett., 29 (1988) 4373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, J.J., Villar, H.O. & Loew, G.H. Characterization of low-energy conformational domains for Met-enkephalin. J Computer-Aided Mol Des 6, 175–190 (1992). https://doi.org/10.1007/BF00129427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129427

Key words

Navigation