Skip to main content
Log in

Molecular level model for the agonist/antagonist selectivity of the 1,4-dihydropyridine calcium channel receptor

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Crystal structures of the 1,4-dihydropyridine (1,4-DHP) calcium channel activators Bay K 8643 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(3-nitrophenyl)-pyridine-5-carboxylate], Bay O 8495 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(3-trifluoromethylphenyl)-pyridine-5-carboxylate], and Bay O 9507 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(4-nitrophenyl)-pyridine-5-carboxylate] were determined. The conformations of the 1,4-DHP rings of these activator analogues of Bay K 8644 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5- carboxylate] do not suggest that their activator properties are as strongly correlated with the degree of 1,4-DHP ring flattening as was indicated for members of the corresponding antagonist series. The solid state hydrogen bonding of the N(1)-H groups of the activators is not, unlike that of their antagonist counterparts, to acceptors that are directly in line with the donor. Rather, acceptor groups are positioned within ± 60 degrees of the N(1)-H bond in the vertical plane of the 1,4-DHP ring. Previously determined structure-activity relationships have indicated the importance of this N(1)-H group to the activity of the 1,4-DHP antagonists. Based on these observations, a model is advanced to describe the 1,4-DHP binding site of the voltage-gated Ca2+ channel and its ability to accommodate both antagonist and activator ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schram, M., Thomas, G., Towart, R. and Franckowiak, G., Nature (Lond.), 303 (1983) 535.

    Google Scholar 

  2. Janis, R.A., Rampe, D., Sarmiento, J.G. and Triggle, D.J., Biochem. Biophys. Res. Commun. 121 (1984) 317.

    Google Scholar 

  3. Janis, R.A., Silver, P. and Triggle, D.J., Adv. Drug Res., 16 (1987) 309.

    Google Scholar 

  4. Triggle, D.J., Langs, D.A. and Janis, R.A., Med. Res. Rev. 9 (1989) 123.

    Google Scholar 

  5. Loev, B., Goodman, M.M., Snader, K.M., Tedeschi, R. and Macko, E., J. Med. Chem. 17 (1974) 956.

    Google Scholar 

  6. Rodenkirchen, R., Bayer, R., Steiner, R., Bossert, E., Meyer, H. and Möller, E., Naunyn-Schmied. Arch. Pharmacol., 310 (1979) 69.

    Google Scholar 

  7. Rodenkirchen, R., Bayer, R. and Mannhold, R., Prog. Pharmacol., 5 (1982) 9.

    Google Scholar 

  8. Triggle, A.M., Shefter, E. and Triggle, D.J., J. Med. Chem., 23 (1980) 1442.

    Google Scholar 

  9. Fossheim, R., Svarteng, K., Mostad, A., Rømming, C., Shefter, E. and Triggle, D.J., J. Med. Chem., 25 (1982) 126.

    Google Scholar 

  10. Coburn, R.A., Wierzba, M., Suto, M.J., Solo, A.J., Triggle, A.M. and Triggle, D.J., J. Med. Chem. 31 (1988) 2103.

    Google Scholar 

  11. Rampe, D. and Triggle, D.J., Trends Pharmacol. Sci., 7 (1987) 461.

    Google Scholar 

  12. Franckowiak, G., Bechem, M., Schram, M. and Thomas, G., Eur. J. Pharmacol., 114 (1985) 223.

    Google Scholar 

  13. Wei, X.Y., Luchowski, E.M., Rutledge, A., Su, C.M. and Triggle, D.J., J. Pharmacol. Exp. Therap., 239 (1986) 144.

    Google Scholar 

  14. Hof, P.R., Rüegg, U.T., Hof, A. and Vogel, A., J. Cardiovasc. Pharmacol. 7 (1985) 689

    Google Scholar 

  15. Gjörstrup, P., Hårding, H., Isaksson, R. and Westerlund, C., Eur. J. Pharmacol., 122 (1986) 357.

    Google Scholar 

  16. Fossheim, R., Joslyn, A., Solo, A.J., Luchowski, E., Rutledge, A. and Triggle, D.J., J. Med. Chem., 31 (1988) 300.

    Google Scholar 

  17. Langs, D.A. and Triggle, D.J., Mol. Pharmacol., 27 (1985) 544.

    Google Scholar 

  18. Fossheim, R., Acta Chem. Scand., B41 (1987) 581.

    Google Scholar 

  19. Kwon, Y.W., Franckowiak, G., Langs, D.A., Hawthorn, M., Joslyn, A. and Triggle, D.J., Naunyn-Schmied. Arch. Pharmacol., 339 (1989) 19.

    Google Scholar 

  20. Enraf-Nonius, Structure Determination Package, Enraf-Nonius, Delft, 1979.

    Google Scholar 

  21. Stout, G.H. and Jensen, L.H., X-ray Structure Determination, Macmillan, New York, 1968, p. 457.

    Google Scholar 

  22. Langs, D.A., Strong, P.D. and Triggle, D.J., J. Comput.-Aided Mol. Design, 4 (1990) 215.

    Google Scholar 

  23. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. and Numa, S., Nature (Lond.), 328 (1987) 313.

    Google Scholar 

  24. Mahmoudian, M. and Richards, W.G., J. Chem. Soc. Commun., (1986) 739.

  25. Rovnyak, G., Andersen, N., Gougoutas, J., Hedberg, A., Kimball, S.D., Malley, M., Moreland, S., Porubcan, M. and Pubzianowski, A., J. Med. Chem., 31 (1988) 936.

    Google Scholar 

  26. Catterall, W.A., Science, 242 (1988) 50.

    Google Scholar 

  27. Guy, H.R. and Seetharamulu, P., Proc. Natl. Acad. Sci. USA, 83 (1986) 508.

    Google Scholar 

  28. Greenblatt, R.E., Blatt, Y. and Montal, M., FEBS Lett., 193 (1985) 125.

    Google Scholar 

  29. Höltje, H.-D. and Marrer, S., J. Comput.-Aided Mol. Design, 1 (1987) 23.

    Google Scholar 

  30. Höltje, H.-D. and Marrer, S., Quant. Struct.-Act. Relat., 7 (1988) 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langs, D.A., Kwon, Y.W., Strong, P.D. et al. Molecular level model for the agonist/antagonist selectivity of the 1,4-dihydropyridine calcium channel receptor. J Computer-Aided Mol Des 5, 95–106 (1991). https://doi.org/10.1007/BF00129749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129749

Key words

Navigation