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Abstract

This paper presents a method for localization and interpretation of modeled objects
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are fused into the pose estimation during the interpretation process� The constraint
fusion assists in obtaining a precise and stable pose of each of the object�s compo�
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constraint �including inequalities� between any number of di�erent components of the
model� The framework is based on Kalman �ltering�
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� Introduction

Estimating the pose of a �D object from images or other sensed data is a classical problem

in computer vision� Quite often� a model of the object is known and this information is used

to estimate the pose of the object in the world� This problem is known as model	based pose

determination and is used in many applications such as object recognition� object tracking�

robot navigation� motion detection� etc� A complementary problem to the pose determina	

tion problem is the interpretation problem that deals with the correspondence between the

given sensory data and the model features� This correspondence is necessary in localization

procedures that are based on local features of the model� Both� the positioning and the

interpretation problems are well documented in the literature 
for example� ���� �� �� ��
��

however� the majority of the papers deal with �D rigid objects and little attention has been

given to articulated or constrained objects 
e�g� ��� �� ��� ��
��

An articulated object is an object composed of a set of rigid components connected at

joints that allow certain degrees of freedom� These joints can be� for example� prismatic

joints that allow relative translation between components� or revolute joints that allow rela	

tive rotation of the components about a point 
see Figure ��� An example of such an object

is a robot arm made up of several rigid components connected by movable joints� In this

case� each model joint enforces a constraint on the spatial location of the body�s components�

thus� the problem of articulated objects is a special case of the general study of constrained

models� We extend the de�nition of the problem to models that include general constraints

such as co	linearity or co	planarity of the model components� angle relationships� etc� and

also include inequality constraints such as a limited range of distances between points or a

limited range of angles� We call these kind of models constrained models�

Existing methods that deal with constrained objects are restricted to deal with articulated

models 
e�g� ��� �� ��� ��
�� They deal with constraints that are due to prismatic or revolute

joints� In this paper we present a general framework that can deal with all types of spatial

constraints and is not limited to any particular type� The method presented� solves the inter	

pretation and the localization problems simultaneously where constraints and measurements

are considered and fused incrementally� Fusion of constraints into the pose determination

of the components enables the information obtained on the pose of any single component

to be propagated to all other components through the mutual constraints� In this manner�
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prismatic joint

revolute joint

Figure �� An articulated object composed of several rigid components con	
nected by two revolute joints and a single prismatic joint�

the estimated solution takes into account all the existing measurements and all the de�ned

constraints� In addition� this process enables a simple and e�cient interpretation strategy�

The fusion of the constraints and the measurements is performed using the Kalman �lter�

We deal here with models consisting of a set of feature points� such as maximum curva	

ture� segment endpoints or corners� The measurements taken on these points are noisy�

� Formal Description of the Problem

A constrained model M of a �D object consists of a set of rigid components

M � fCigi�����n �

Each component Ci has its own local coordinate system and consists of a set of feature points

whose locations are�

Ci � fui�jgj�����mi
�

ui�j is a � dimensional vector� representing the location of the jth point in the ith component

and is given in the local coordinate system of Ci� A set of points forming a component is rigid

but the collection of components are not rigid� For each component Ci there is an associated

parameter	vector Ti representing the position of Ci relative to the viewer	centered frame of

reference� Hence� Ti is a six dimensional vector describing the location and the orientation

of the local coordinates system of Ci relative to the viewer coordinates system� Since the

components are restricted in their location due to �exible joints� the model includes� in
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addition to the representation of each component� a set of constraints that describe the

mutual relationships between the components� These constraints are of the form�

�k
Tp�Tq� � � �� � � �

Each constraint may involve a single model component� such as a known location or a

known orientation of the component� or several components as in the case of a revolute or

prismatic joint between two components� a known distance between components� etc� Each

constraint is expressed by an appropriate equation� for example� in an articulated constraint

two components� Cp and Cq� are linked at a rotational point whose location is given by up�i

in the local coordinates of Cp� and by uq�j in the local coordinates of Cq� In such a case the

constraint equation will be�

Tp
up�i�� Tq
uq�j� � � �

where Ts is the transformation function de�ned by the parameters in Ts�

As previously mentioned� the model may also consist of inequality constraints of the form

�
Tp�Tq� � � �� � �� Let us assume� for the moment� that the constraints are restricted to

equality constraints� and we will later describe the direct extension of these constraints to

inequality constraints�

A measurement M � of a constrained object is represented by a collection of noise con	

taminated measurements and their uncertainties�

M � � f
�u�

i�j��i�j�gi�����n � j�����mi
�

�u�

i�j 	 is a noise	contaminated measurement of the real location	vector u�

i�j� associated with

the jth measured point of the ith component� Both� �u�

i�j and u
�

i�j are represented in a viewer	

centered frame of reference� It is possible to have more than one measurement for a model

point�

�i�j 	 is the covariance matrix depicting the uncertainty in the sensed vector �u�

i�j� We do

not constrain the dimensionality of the measured data but allow it to be �D 
stereo� range

�nder� etc�� or �D 
orthographic or perspective projection��

A matching 
correspondence� between the modelM and the measurementM � is a collection

of pairs of the form

matching � fui�j� �u
�

i�jg �
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which represents the correspondence between the model points and the measured points� For

simplicity we mark every model point and its matched measurement with the same indices�

The problem �

Given a model M and a measurement M �� for each component Ci� �nd the measured points

that correspond to its feature points and estimate its position Ti� It is important to note

that the solution fTigi�����n must satisfy the model constraints�

f�k
Tp�Tq� � � �� � �g
k�����r �

� Background and Related Works

Extensive studies can be found in the literature dealing with interpretation and pose esti	

mation of rigid objects from measurements� however� little attention has been given to pose

estimation of articulated or constrained objects� Several studies can be found that deal with

special cases of constrained objects� namely� articulated objects having prismatic or revolute

joints� most of them in the context of recognition 
��� �� ��� ��
�� In general� the existing

methods dealing with this problem can be divided into two main paradigms�

�� Divide and conquer methods

The basic and naive method is to decompose the object into its parts and to estimate

the pose of each part separately� Grimson ��� �
 follows this paradigm in order to

identify a family of �D objects that di�er in scale	factor� stretch factor or the angles

between parts� In his approach� the pose that was estimated for a part� is followed

by a veri�cation step that tests whether the part satis�es the de�ned constraints 
up

to a prede�ned threshold�� Grimson uses the pose estimate of a part to constrain

the possible matchings of the neighboring part� however this estimate is not used in

the pose estimation of the neighboring part� Shakunaga ���
 follows a similar method

for estimating the orientation of a �exible body composed of parts joined by revolute

joints�

Although the simplicity of this method is attractive� it is obvious that it is unsatisfying

since it does not exploit the fact that di�erent components do belong to the same object�

Evaluating the pose of each part separately may result in constraints not being satis�ed

between the parts� Furthermore� no mutual information passes between parts and

each object component is located using only its associated measurements� Additional
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information that can be obtained from measurements of neighboring components is

not considered� thus� not all available information is exploited� Consequently� the

interpretation procedure which� in some procedures� is aided by the pose estimation�

is impaired as well�

�� Parametric methods

It is possible to eliminate the need to explicitly handle the constraints by decreasing

the number of parameters that describe the pose of the object 
so that the number

of free parameters equals the degrees of freedom of the object�� The remaining pa	

rameters are estimated during the estimation process� In this way� the constraints are

expressed implicitly by the free parameters� For example� the pose of an articulated

object in �D having two components connected by a revolute joint� can be described

by the translation and the orientation of each component 
� parameters� with an addi	

tional constraint due to the joint between the components 
Figure �a�� Alternatively�

the pose of the object can be described by the translation and orientation of one of

the components and the relative angle between the two components 
� parameters�


Figure �b�� The latter description eliminates the need to consider a constraint in

the estimation process� Note� that the classical approach to pose estimation of a rigid

object consisting of several feature points� falls in this category� The rigidity constraint

between the feature points are expressed implicitly when the pose of the entire object

is described by its six free parameters�

translation
+

orientation

translation
+

orientation
translation

+
orientation

constraint

relative angle

a. b.

Figure �� Two possible parameter sets for de�ning the pose of an articulated
object having a revolute joint�
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Lowe ���� ��
 follows this method and estimates the free parameters of the viewpoint

and of the model using Newton iterations into which additional techniques are incor	

porated in order to ensure convergence� A similar method was used by Brooks ��
 in

the well known system ACRONYM� Mulligan et� al� ���
 use the same approach for

estimating the positions of an excavator�s arm� however� in their work� the �ow of pose

information from one arm to the next is in one direction� thus the pose of the boom

in�uences the pose of the bucket but not vice versa�

The main problem in the method of parameter reduction is the need for de�ning the

dependence of each measurement on all the free parameters during the estimation

process� The de�nition of the dependence is problematic for two reasons�

First� the complexity of this de�nition increases with the number of free parameters

that each point is dependent on� Second� in most cases� as the number of components

of the object is greater� the order of the nonlinearity of the dependence equations is

higher� This results in a more complex and less stable solution especially when using

iterative methods based on linear approximation of the nonlinear equations 
such as in

���
�� An additional drawback of this method is the di�culty in �nding the correct free

parameters� The di�culty of selecting the parameters increases with the number of

constraints and with the number of parts participating in each constraint� Moreover�

when dealing with an interactive system 
such as in ���
� where the constraints are

incorporated dynamicly at run time� it is di�cult to �nd the free parameters� due to

the necessity of applying symbolic mathematical methods during run time�

� Constraint Fusion Method

In the two kind of methods described in the last section there are no explicit consideration

of constraints in the estimation process� Either� the constraints are not considered in the

divide and conquer methods or they are implicitly expressed� by reducing the number of

estimated parameters� in the parametric methods� The constraint fusion method� suggested

in this paper� considers explicitly both� measurements and constraints� in the estimation

process� The pose of the object parts is estimated to conform optimally with the measure	

ments while satisfying the model constraints� The method we suggest is a general scheme

which overcomes the drawbacks of the other methods�

The idea is to treat both measurements and constraints similarly while varying only their
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associated uncertainty� The constraints are considered as perfect �measurements� with zero

uncertainty whereas the measurements themselves 
the actual measurements� have uncer	

tainty greater than zero� In other words the actual measurements are considered soft con	

straints whereas the constraints are considered strong� The fusion of the actual measurements

and the constraints during the pose estimation process is performed using the Kalman �lter

and it is in accord with ��
�

The rest of the paper is organized as follows� We �rst describe the solution for estimat	

ing the pose of one rigid component using the Kalman �lter tool� This solution follows the

method we suggested in ���
� For simplicity of explanation we assume in this part that the

matching is given� Following� we elaborate in detail two methods for estimating the pose of

a constrained object where each component of the object has a single model point� The �rst

solution solves the problem using a batch process and the second solution uses an iterative

process which is preferable when the matching is not given� We then elaborate the interpre	

tation process and explain how it is interlaced with the pose estimation process� Finally� we

expand the paradigm to include multiple	point components� Results on simulated and real

cases follow�

� Pose Estimation of One Rigid Component

In order to facilitate the explanation of our method we �rst brie�y describe the estimation

of the pose of a single rigid component given noisy measurements� The solution follows the

method we suggested in ���
� Since there is only one component in this object we omit in

this section the index denoting the component number� Therefore� the model M is rep	

resented by a set of points� M � fuig� and the measurements of M are represented by

M � � f
�u�

j��j�g� The aim is to estimate a transformation T that optimally maps the model

points onto the corresponding measured points� given the matching between them� T is a

vector representing a rigid �D transformation and describes the position of the measured

object M � in the �D scene�

The method described in ���
 estimates the transformation in two phases�

In the �rst phase� all the measurements are changed to be �D measurements by appropriately

updating the uncertainty matrices associated with the measured points� A �D measurement�

which is a projection 
perspective or orthographic� onto a �D plane� is regarded as a �D
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measurement with in�nite uncertainty in the direction of the projection� Therefore� the di	

mensionality of the measurements is encoded in the covariance matrix where the uncertainty

depends both on the measurement noise and on the type of measurement� Details explaining

the construction of the covariance matrix and the measurement uni�cation are given in ���
�

In the second phase� T is estimated from all the measured points using the Kalman	filter

fuser ���� ��
� The estimation process is composed of an incremental re�nement� for which

at each step k � �� there exists an estimate �Tk�� of the transformation T and a covariance

matrix �k�� which represents the �quality� of the estimate �Tk���

�k�� � Ef
 �Tk�� �T�
 �Tk�� �T�Tg �

Given a new measurement 
�u�

k��k� the current estimate is updated to be �Tk with the as	

sociated uncertainty �k� The accuracy of the estimate increases� as additional matches are

fused� i�e� �k � �k�� 
�k�� � �k is nonnegative de�nite�� The process terminates as

soon as the uncertainty satis�es our criterion for accuracy or no additional matches can be

supplied�

��� The Kalman Filter Fuser for Static Parameter Estimation

The Kalman �lter 
K�F� fuser is a tool for parameter estimation from given measurements� In

our case the parameter vector to be estimated is the transformation vector T that represents

the rigid transformation of the object from its local coordinates to the viewer coordinates

and is composed of two components�

� The translation component� expressed by the vector t�

t � 
tx� ty� tz�
T � 
��

� The rotation component� described by the quaternion �q ���
�

�q � 
q��q� � 
q�� q�i� q�j � q�k� �

Considering these two components� the parameter vector to be estimated during the �ltering

process is a seven dimensional vector�

T �

�
�q
t

�
�
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The Kalman �lter fuser produces an estimate �T of the transformation vector� given the

measurements of the point locations� At each step� the fuser receives three inputs and

supplies a single output� The inputs are�

�� An a priori estimate of the evaluated parameter vector and the uncertainty associated

with it� In our case� in the kth step� the a priori estimation will be the estimate

evaluated at the previous step �Tk�� and its associated covariance �k��� The covariance

matrix �� in the initial step will be set to in�nity since no a priori knowledge about

T is assumed�

�� The current measurement and its uncertainty� in our case 
�u�

k��k� which� following the

�rst phase� can be assumed to be three dimensional�

�� A mathematical relationship between the evaluated parameters and the measurements�

This mathematical relationship should be linear in the evaluated parameters� In our

case the relationship is�

hk
uk�u
�

k�T� � Ruk � t� u�

k � � � 
��

where R is a rotation matrix constructed from the quaternion �q ���
� The equation

hk
uk�u
�

k�T� � � is not linear as required in the K�F�� therefore� we use the extended

Kalman filter 
E�K�F�� ���� ��
 which is a generalization of the Kalman �lter to non	

linear systems where transition from step k � � to step k is performed using a linear

approximation of hk by taking the �rst order Taylor expansion around 
�Tk��� �u�

k��

The output of the K�F fuser is an updated estimation of the evaluated parameters and its

associated uncertainty� in our case �Tk and �k respectively� The K�F� fuser is of the form�

�Tk � f
 �Tk����k���uk� �u
�

k��k� hk� �

Thus� at each stage k� there is no need of retaining any of the previously considered mea	

surements� Only the current estimate �Tk�� and its associated uncertainty �k�� need be

retained� The K�F� equations in our case are given in Appendix A�

The K�F� updating equations yield an unbiased estimate of T which is optimal in the sense of

the linear minimal variance criterion ��
� In the case where the measurement noise is a Gaus	

sian process 
which is a reasonable assumption� considering the numerous sources of noise��
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the K�F� fuser gives an estimate that is also optimal in the sense of the maximum	likelihood

criterion� In this case� the estimate coincides with the conditional expectation�

�Tk � EfTjf�u�

igi�����kg �

Note� that the general K�F� deals with a parameter vector that is changing with time�

whereas in our case the estimated transformation� T� is static and does not change during

the estimation process� Therefore� our case uses a degenerated form of the K�F� and we call

its fusion process a K�F� fuser�

Further details of the rigid object process such as how to solve the correspondence problem

simultaneously with the pose problem and computational aspects such as� time complexity�

stabilization methods� parallelization and convergence can be found in ���
�

� Constrained Objects Having a Single Point Per Com�

ponent

The simplest case of a constrained object is where each of its components consists of a

single model point� In order to simplify the explanation of the pose determination of general

constrained objects� we �rst elaborate the solution in this case� and then expand the solution

to include multiple	point components� When an object consists of single point components�

its model is represented by�

M � fCkgk�����n

where each component Ck has a single model point whose location is uk� Without loss of

generality� we choose this point to be located at the origin of the local coordinates associated

with Ck� i�e� uk � 
�� �� ��T � Measurements of the locations of the model points are obtained�

For simplicity assume n measurements are obtained� f
�u�

i��i�gi�����n� a single measurement

for each model point� represented in the viewer	centered coordinates� Additionally� assume

in this case that the measurements are �D data� The latter assumption is due to the

inability to deduce the �D position of an isolated point from a single �D measurement�

The transformation of the kth component� Tk� is composed only of the translation vector tk

since the rotation part �qk is irrelevant for an isolated point� Therefore� the general position

vector� T� to be estimated in such a case consists of the translation vectors of all the model
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Figure �� An articulated object� The black points represent model features
and the segments represent constraints between adjacent points�

components�

T �

�
BBBB�

t�
t�
���
tn

�
CCCCA �

Since the model points are located at the origin of the local coordinates the translation vector

tk � 
x�

k� y
�

k� z
�

k�
T also describes the position of the kth point in the viewer centered frame of

reference� However� the evaluated estimation must satisfy a set of constraints�

f�j
T� � �gj�����r �

For the speci�c case of an articulated object the constraints are�

�j
tk� tl� � ktl � tkk
� � d��k�l� � �

where d�k�l� represents the constant Euclidean distance between two adjacent points� uk and

ul� in the object 
see Figure ���

��� Solving the System Using A Batch Mode of K�F�

As stated� enforcing the model constraints onto the pose solution is performed by consid	

ering the constraints as additional arti�cial �measurements� having zero uncertainty� The
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zero uncertainty of these �measurements� assures that the constraints are satis�ed in the

�nal solution� The constraint �measurements� are fused as a single measurement which is

composed of all the constraints together 
batch��

Fusion of the constraints is performed� similar to the fusion of actual measurements� us	

ing the E�K�F� tool where the evaluated parameters are denoted by the vector T� The fusion

is performed in one step of the K�F� fuser� followed by several local iterations ���
 in order

to reduce the in�uence of the linearization e�ect on the �nal solution� The inputs supplied

to the K�F� fuser are the following�

� A priori estimate input�

From the actual measurements we construct an a priori estimate of the evaluated

transformation�


 �T����� �

�
�����

�
BBBB�

�u�

�

�u�

�
���
�u�

n

�
CCCCA �

�
BB�

�� �
� � �

� �n

�
CCA
�
				
 � ��u���
 
��

which takes into consideration all the actual measurements�

� Measurement input�

From the constraint equations we construct a set of arti�cial perfect �measurements�

having zero uncertainty �

� Measurement model input�

The mathematical relationship between the measurements and the evaluated vector is

a concatenation of all the linear approximations of the constraint equations�

Formally� assume we are given the constraint �j
T� � �� We regard �T� 
Equation �� as an

initial approximation of T and linearize �j
T� around �T� obtaining�

�j
T� � � � �j
 �T
�� �

��j

�T

T� �T�� �

This equation can be rewritten as a linear equation�

zj � HjT 
��

��



where

zj � ��j
 �T
�� � 


��j

�T
� �T�

and Hj �
��j

�T

The matrix Hj is of dimensions dim
�j� � �n representing the linear relationship between

zj and T� Note that no random noise is added to this equation� thus zj is a perfect �mea	

surement�� The rest of the constraints are similarly linearized and appended to Equation ��

so that a vector equation is obtained�

z � HT 
��

where

z �

�
BBBB�

z�
z�
���
zm

�
CCCCA and H �

�
�����
H�

H�
���

Hm

�
				
 � 
��

z is the �measurement� vector of size d �
P

dim
�j� with an associated uncertainty matrix

of zeroes� H is a d � �n matrix that describes the mathematical relationship between z

and the evaluated vector T� In the case where there is more than a single measurement per

feature point� these measurements and their uncertainties that were not already considered

in the a priori estimation are appended to Equation � as well�

Given the inputs described above� the estimate for T obtained from the K�F� updating

equations is 
Appendix A��

�T � �T� � �HT 
H�HT ���
z�H �T�� � 
��

Multiplying both sides of the equation by H we obtain�

H �T � H �T� � 
H�HT �
H�HT ���
z�H �T�� � z

i�e� the obtained solution indeed satis�es the constraints as de�ned in Equation ��

An example of producing the K�F� input for a simple articulated object similar to that

in Figure � is given in Appendix B� Some examples of this articulated object in di�erent

positions are shown in Figure �� In these examples the measurements are represented by

rectangles having width and length proportional to the s�t�d� of the measurements� The

dotted lines connect each measurement with its associated model point�
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1

2

3

4
5

Figure �� An articulated object composed of �ve single point components and
four articulated constraints�

A

B

C
D

Figure �� Four examples of solutions for the articulated object of Fig� ��
Joints are represented by black circles and measurements are represented by
rectangles� The width and the length of each rectangle is proportional to the
s�t�d� of the measurement� The dotted lines connect every measurement with
its associated model point�

����� Adding An Initial Guess

Using the described inputs� the a priori estimate is based on the actual measurements�

Although these measurements supply a good a priori estimate� in some cases� it seems bene	

�cial to allow the user a possibility of providing an initial guess based on external knowledge�

such as� an �expected� viewpoint and �expected� positional relationships between compo	

nents� This can be helpful in obtaining a better linearization during the �rst stages of the
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process resulting in a more reliable convergence� Adding an initial guess is easily obtained

by slightly varying the input to the K�F� fuser�

� A priori estimate input� is taken as the a priori estimate supplied by the user and is

associated with in�nite uncertainty�


 �T����� �

�
�����

�
BBBB�

�t��
�t��
���
�t�n

�
CCCCA �

�
BB�
� �

� � �

� �

�
CCA
�
				


� Measurement input� is a concatenation of all the actual measurements and all the

constraint �measurements��

��z� covf�zg
 �

��
z

�u�

�
�

�
� �
� �

��

where �u�� � and z are as de�ned in Equations �� � above�

� Measurement model input� is de�ned in the following equation�

�z �

�
H

I

�
T

where H is de�ned in Equation ��

This calculation is general enough to include the case where T� � �u� which is the former

case where the actual measurements are taken as the a priori estimate�

��� Solving the System using an Incremental Process

Using the batch approach for solving systems that include both measurements and con	

straints has the following disadvantage� The method must assume that the matching between

model points and measurements is given in advance� This assumption is not acceptable in

many applications especially in recognition systems� In order to overcome this problem we

use an incremental approach�

In the incremental method� as in the batch method� the state	vector T is a composition

of all the pose parameters of the model points� however in this method the actual measure	

ments and the constraint �measurements� are fused sequentially� At each step k� the current
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estimate 
 �Tk��k� is updated to be 
 �Tk	���k	�� by fusing a single measurement 
�u�

k��k� or

a single constraint 
zk� ��� The fusion is performed using the K�F� in a similar manner as

described above for the batch process� where the a priori estimate input is a user de�ned

initial guess with an associated in�nite uncertainty 
Section �������

If the current measurement is an actual measurement� the measurement input is 
�u�

k��k�

and the mathematical relationship between T and u�

k is simply

u�

k � ��� � � � � �� � � � � �
T

where the � is in the kth position� If we fuse a �perfect� measurement� the measurement

input is zk and the measurement model is zk � HkT as described above in Equation ��

The sequential fusion of the measurements is possible due to the assumption that there

is no correlation between the noise of di�erent measurements 
i�e� � in Eq� � is block diag	

onal�� Although� the batch method has better convergence properties and seems to better

approach the Cramer Rao bound ���
� the advantage of the incremental method is its ability

to easily incorporate a matching 
interpretation� process into the estimation process as will

be described in the following section�

� The Measurement Interpretation using Constraints

Using the incremental approach described above we can incorporate techniques that solve

the interpretation problem using a pruning search in the correspondence space� These tech	

niques regard the correspondence problem as a search problem in a graph� This graph

de�nes a pairing between the model features and the measured features� The basic scheme

behind these methods is to prune parts of the graph which represent impossible pairings�

Faugeras et al� ��� �� �
 and Grimson et al� ���
 follow similar methods for rigid objects�

They represent all possible matches in an interpretation tree 
I�T��� in which every level

corresponds to a model feature� and every node in that level denotes a match between the

model feature and some measured feature� Every path in the I�T�� from root to leaf� de�nes a

full interpretation� i�e� de�nes for each measurement the corresponding model feature� Both�

Grimson and Faugeras search for a consistent path in the I�T�� using depth �rst search�

Grimson restricts the search by de�ning local constraints in the model� such as limiting the

range of distances and angles between model features� Any branch of the I�T� that con	
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tradicts the local constraints is pruned� Grimson extended this method to parameterized

�D objects ��
 which include articulated objects� However this extension su�ers from two

de�ciencies� First� this method is developed to deal with particular types of constraints


articulated constraints� and it is not general enough to automatically handle any type of

constraint� Second� in this method� a model constraint assists only in pruning irrelevant

matches that are directly related to this particular constraint but is not used in pruning fur	

ther matches that are indirectly related to the constraint 
related through other constraints��

Faugeras et al� present a similar method for a rigid object� For every partial path in

the I�T�� they evaluate the 
rigid� transformation of the object that is consistent with the

matches in the path� This transformation is applied to the model features and these are

used to further restrict the remaining matches� In this framework� the pose of the object

is solved simultaneously with the interpretation problem� We extend this technique to deal

with constrained objects in which the model constraints assist in the interpretation process�

Assume we want to match the measurement 
�u�

i��i� with the jth model point� From the

current estimate 
Tcur��cur�� we extract an estimate of the location u�

j � 
�tcurj ��cur
j � and

evaluate the Mahalanobis distance between �tcurj and �u�

i�

� � 
�tcurj � �u�

i�
T 
�cur

j � �i�
��
�tcurj � �u�

i� �

If � is greater than a prede�ned threshold� the match is rejected� The greater the number

of measurements and constraints fused prior to the match� the more precise is the estimate

�tcurj 
and so the uncertainty �cur
j is smaller� and the elimination of irrelevant measurements

is more e�ective� Therefore� there is great importance to the order of the points being fused


matched� since before matching the jth model point� we would like the system to obtain as

much information as possible on the location estimate �tj so that the match veri�cation is

signi�cant� Thus� at each step of the process the next point to be matched should be one

associated with previously matched points through constraints� so that previous information


measurements and constraints� can be exploited� Before trying to match a measurement to

a certain point we fuse as many constraints as possible associated with this point 
and with

previously matched points�� The following algorithm follows this idea�

Denote by �k 
k � � � � �m� the constraints of the model and by point
�k� the set of points on

which �k depends� The order of fusion of the measurements and the constraints is obtained

��



from the following algorithm�

�� FusedPoints � � � FusedConst � �

�� PointList � fu�� � � � �ung � ConstList � f��� � � � � �rg

�� while 
ConstList �� � and PointList �� �� do


a� for each 
�k 	 ConstList s�t� point
�k� 	 point
FusedConst�� do

i� fuse �k

ii� delete �k from ConstList and add it to FusedConst


b� if there exist 
uk 	 PointList s�t� uk 	 point
FusedConst� � do

i� �nd and fuse a matched measurement for uk

ii� delete uk from PointList and add it to FusedPoints


c� else if there exists �k 	 ConstList s�t� 
point
�k� 
 FusedPoints� �� � do

i� fuse �k

ii� delete �k from ConstList and add it to FusedConst


d� else select an arbitrary �k 	 ConstList and do steps i	ii in 
c��

To summarize this algorithm� it chooses the next point or constraint to be fused accord	

ing to a series of decreasing priorities�

�� An unfused constraint whose associated points are all associated with previously fused

constraints�

�� An unfused point associated with already fused constraints�

�� An unfused constraint part of whose associated points have already been matched�

�� An unfused constraint none of whose associated points have been matched�

To illustrate the methodology� assume the hyper	graph depicted in Figure �� Each dashed

closed curve 
edge in the hyper	graph� represents a constraint� The points associated with

the constraint are encompassed by the curve� Assume� in this example� that we start the

process by fusing constraint ��� The order of fusion given by the algorithm will be as follows�

�� � u� � u� � �� � u� � �� � �
 � u
 � u� � �� � u��

In the case where a good match for a model point can not be found due to occlusion or

inability to obtain measurement about its position� we synthesize an arti�cial measurement
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Figure �� A hyper	graph representing model points and their associated con	
straints� A model point is represented by a full dot and a constraint is repre	
sented by a dashed closed curve� surrounding its associated points�

for the model point and associate it with an in�nite uncertainty so that its in�uence on the

rest of the process will be minimal� This scheme can also be helpful in fusing a constraint

�k when some of its associated points point
�k� are unavailable�

In the case where a constraint �k is non	linear� we need a reasonable guess for the locations

of its associated points to serve as linearization points during the fusion of �k� However� it is

possible that at time of fusion of �k� part of its associated points have not yet been matched�

In such a case� the matching step is performed simultaneously with the fusion of �k� Thus�

if the match is rejected� �k must be relinearized about new matched measurements and �k

must be fused again�

The proposed algorithm is general and additional strategies can be applied to improve it� It

is possible to improve the matching process assisting with intrinsic features 
such as� color

or local shape�� It is possible to use more sophisticated strategy to choose the �rst costraint

to be fused� This could be the constraint associated with the easiest point to match or the

one that is associated with the most reliable measurements�

��



� Constrained Objects Having Multiple�Point Com�

ponents

We easily extend the solution for objects having one point per component to objects that

have multiple	point components� For every component Ck� one must estimate the transfor	

mation �Tk which describes the pose of the component� The transformation Tk is composed

of a quaternion �qk and a translation vector tk as described in Section � for rigid objects�

The process of evaluating all the transformations fTig is similar to the methods previously

described for models having a single point per component�

�� Using the batch approach 	 The solution consists of two computational phases� In

the �rst phase the transformation �Tk is estimated for each component Ck using the

measurements associated with the points belonging to this component� In this phase

the constraints existing between the components are not taken into consideration and

the position of each component is estimated as if it was a single rigid object� The pose

estimation of each component is computed as elaborated in Section �� At the end of

the �rst phase we have a set of evaluated transformations and their uncertainties�

�T �

�
BBBBB�

�T�

�T�
���
�Tn

�
CCCCCA and � �

�
BBBB�

��

��
���
�n

�
CCCCA 
��

In the second phase we consider 
 �T��� as an a priori estimation for the transformations

and we consider the set of constraints as arti�cial perfect �measurements�� Fusing the

constraint �measurements� with the a priori estimations is performed as in the single	

point component case�

�� Using the incremental approach 	 The evaluated parameter vector in this method is T

as given in Equation �� Since each component is considered a rigid object the informa	

tion obtained from a measurement is fused as described in Section �� The information

obtained from a constraint is fused as described in Section ���� The order in which the

measurements and constraints are fused follows the algorithm given in Section � with

the following two changes�

The constraints are now associated with components rather than with single points�

��



therefore� in the algorithm� the components fCkg replace the model points� Addition	

ally� following the fusion of the constraints associated with component Ck� we �nd and

fuse matched measurements for all the features points fuk�igi�����mk

the feature points

belonging to component Ck�� The interpretation method for each component is similar

to that for a rigid body� as presented in ���
� where in this case there is additional

a priori information about Tk from the previously fused constraints� This order of

interpretation ensures that prior to fusion of a point in any component� all available

information from neighboring components and mutual constraints have been exploited

in order to assist in rejecting irrelevant matches�

In the case where every component contains several model points� there is no need to re	

strict the measurements to be �D since the pose of the component can be estimated from

projections 
�D measurements� as mentioned in Section � and elaborated in ���
�

	 Inequality Constraints

Inequality constraints appear in many man made objects� These constraints can assist in

rejection of inconsistent interpretations that contradict the inequalities� Examples of such

inequality constraints can be found in articulated models such as scissors and robot arms

that are limited in the range of feasible angles between parts� Another example can be found

in the work by Grimson ��� ��
 where points are restricted to match segments of the model

by limiting the range of distances between points�

The inequality constraints can be reduced to equality constraints by rewriting a given con	

straint�

g
x� � �

as an equality constraint

g
x�� �� � �

where � is a new variable that is added to the state vector and is estimated during the

�ltering process� Thus� every inequality constraint increases by one the dimensionality of

the vector to be estimated� The initial a priori uncertainty associated with the parameter

� is in�nite�

��



�
 Computational Aspects

���� The Initial Guess

When dealing with the K�F� solution to the problem of constrained systems� one should

note that similar to all other methods of constrained optimization ���
 the K�F� method

may erroneously converge to a local minima� Thus� here too the solution depends on the

initial guess� i�e� on the a priori estimate supplied to the �lter� However� we emphasize that

from our experience of simulations of constrained systems� the system does converge to the

global minima when a reasonable a priori estimate is given� and we �nd that its basin of

attraction is quite large� Figure � displays results of simulations of a constrained system� for

two a priori estimates� It can be shown that the a priori estimate input in�uences the �nal

solution of the system�

���� Stability

Several problems may prevent the local iterations from converging or cause the solution to

oscillate about the true solution� These problems arise from two main sources�

�� The fusion of perfect measurements with noisy measurements may create an ill	posed

matrix which must be inverted during the �ltering process� Inversion of such matrices

creates computational imprecisions during the process�

�� The linear approximation of the non linear measurement model 
which includes the

constraints� may create imprecisions that can prevent convergence� This is speci�cally

true when the a priori estimate is distant from the true solution 
since linearization is

performed around this a priori estimate��

In order to improve the linear approximation of non	linear measurements 
and constraints�

we employ local	iterations ���
 in the batch K�F� process� In the incremental method� lo	

cal iterations are applied at each fusion step� Additionally� the incremental method applies

global iterations 
see ���
� which repeats the full estimation process while performing lin	

earization of the non	linear equations about the solution obtained at the end of the previous

global iteration� The global iterations in the incremental method have the same e�ect as the

local iterations in the batch method� however the former will require fewer iterations since

the additional local iterations assist in the convergence�
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Figure �� Two examples of a priori estimates 
a and c� and their
corresponding solutions 
b and d�� Model points are represented
by black circles� measurements and their uncertainty by rectangles
and distance constraints by bold lines� The dotted lines connect
between a measurement and its associated model point�

From our experience of simulated constrained systems� we �nd that quite often the iter	

ations oscillate about the true solution� speci�cally when the actual 
noisy� measurements

are distant from the true locations� This phenomenon is similar to the oscillations of a physi	

cal system of springs about a stable state in a frictionless environment 
see ���
 for a physical

analogy to the K�F��� We extend the K�F� process to deal e�ciently with this problem by

adding a damping force to the process�

Incorporating a damping force is a common technique in optimization methods� There

is a known trade	o� between the rate of convergence and the reliability of the convergence�

as a function of the damping strength added to the system� Adding a damping force to

the K�F� process is simple in the case where the a priori estimate input is a user de�ned
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initial guess with an associated in�nite uncertainty 
Section ������� In this case� the a priori

estimate �T� is given a �nite uncertainty rather than an in�nite one� Additionally� during the

iterative process� we continuously update the a priori estimate input by taking the resulting

estimate obtained at the previous step� This method adds a damping force� in the direction

of the a priori estimate and can be shown to improve the condition of the inverted matrix in

the K�F� updating equations� This is similar to convergence of a physical system of springs

containing friction� As the uncertainty of the a priori estimate is smaller� the damping force

is larger� We should note that Lowe ���
� in dealing with pose estimation of articulated ob	

jects using minimization of free parameters� also includes a damping factor to stabilize the

solution� Additionally he discusses the relation between the strength of the damping force�

and the rate and assurance of the convergence� This relation was de�ned by Levenberg and

Marquardt ���� ��
 and holds in our case as well� When the damping factor is small 
i�e� the

a priori uncertainty is large�� the process is similar to the Newton iteration� which ensures

fast convergence but a small basin of attraction� As the damping factor increases 
smaller a

priori uncertainty�� the process is more similar to regular gradient	descent methods result	

ing in decreasing incremental steps but increasing the basin of attraction� Marquardt ���


suggest a simple algorithm for adjusting the damping strength at each step� This algorithm

is easily implemented in our framework� Implementing this method gave very good results

and allowed a smooth and stable convergence of the process� However� it must be to note

that as the number of non	linear constraints increases� the stability of the process decreases�

and a more accurate initial guess is required in order to guarantee convergence� Convergence

results on simulated constrained systems with and without damping factor can be seen in ���
�

Another advantage of using the damping force� is that the initial guess inserted into the

system based on some external knowledge 
such as �expected� position�� can serve not only

as a linearization point but also as an additional� already matched� measurement that can

assist in rejecting false matches� This can be done only if the initial guess has some �nite

uncertainty 
as in this case�� This idea is used in an elegant way� while in the matching

stage the initial guess contributes its information� in the �nal stage� where the real mea	

surement has been fused� the initial guess does not bias the solution as having an additional

measurement�
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���� Existence of a Solution

Till now we assumed that a solution exists for the constrained system� However� this as	

sumption is not always true� there are cases where the constraints con�ict with one another

and no solution exists� Furthermore� even when no con�icts arise in the system� some cases

can not be solved in the usual method� In order to analyze those cases in which the system

does not have a solution� let us consider the batch implementation 
described in Section ����

where the actual measurements are supplied to the �lter as an a priori estimate input and

the constraints are given as �measurements� with zero uncertainty� In this implementation�

the K�F� equations involve inversion of the matrix� H�HT 
see Equation ��� The process

will fail when this matrix is singular� Thus� it is su�cient to study the singularity cases of

this matrix� H is a d � �n matrix� � is an �n � �n matrix and H�HT is a d � d matrix


d �
P
dim
�j� and n is the number of model points�� Let us �rst suppose that k � �n � d

in which case Rank
H� � k� therefore also Rank
H�HT � � k � d � But H�HT is a d� d

matrix� therefore it is singular� In other words� there is no solution when the system is

over	constrained 
more constraint equations than unknowns�� On the other hand� suppose

that d � k but some of the constraints are dependent on other constraints� This means

that if constraint linearization is performed at the true solution� some rows of H will be

linearly dependent on other rows� In this case H�HT is singular since Rank
H� � d hence

Rank
H�HT � � d� The cases when H�HT can not be inverted can be easily identi�ed in

the course of the solution process� When this happens� we can try an additional linearization

point� since singularity may be the result of a special con�guration of the linearization point�

When this fails and there is a reason to suspect that the constraints are not contradicting

we can attempt to �nd a maximal set of rows in H which are linearly independent and

try to solve the resulting system 
in the incremental implementation the last constraint is

eliminated� in the batch implementation H�HT is inverted using SVD decomposition ��

���� Complexity

The complexity of each iteration of the K�F� is max�O
d��� O
k�d�
 where d is the dimension	

ality of the measurement vector and k � �n is the dimensionality of the state vector� This

complexity is due to matrix inversion and matrix multiplications during the computation of

the K�F� equations�

In the batch process k is proportional to the number of model points and d depends on

the type of implementation� If the measurement input consists only of constraint �mea	
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surements� we have d �
P

i dim
�i�� In the implementations which add a user de�ned a

priori estimate to the system the measurement input also includes the actual measurements�

and then d �
P

i dim
�i� � dim
T �� However� the system must not be over	constrained� soP
i dim
�i� � dim
T �� Thus� d � �dim
T � and the upper bound of the complexity of each

iteration is O
n���

In the incremental process every fusion of a single measurement requires time complexity

of O
n�� 
the dimensionality d of each measurement is constant in this case�� Thus� the

complexity of a single global iteration is� similar to the batch method� O
n�� 
assuming the

number of local iterations is restricted��

The rate of convergence 
number of iterations� also depends on the implementations� If

no damping factor is added to the system� the convergence rate of the system is equivalent

to that of the Newton iterations which is quadratic near the solution ���
� When a damping

factor is use to stabilize the process� the rate of convergence decreases as the strength of the

damping increases�

Run time can be reduced if the matrix M � H�HT is not inverted at each iteration�

Instead� one can use an approximation of M obtained from previous stages� This approach

is appropriate in those implementations where the rate of convergence is low 
due to high

damping factor� so the state	vector T� and accordingly the matrix M � do not change greatly

between iterations 
T is the linearization point producing M�� In terms of run time� the

simulated examples shown in Figure � run on a Sparc� workstation for about �	� seconds�

�� Results

���� Simulated Data

We applied the constraint fusion method to estimate the pose of a �D constrained model con	

sisting of single point components� We used the parametric modeler described in ���
 which

we developed based on our techniques� The modeler enables the de�nition of constraint

graphs using the following types of constraints� co	linearity of three points� a particular

distance between two points� a particular distance between a point and a �xed location� con	

straining a point to lie on a �xed line and constraining a point to be on one side of a �xed

line 
inequality constraint�� It was demonstrated that the algorithm is capable of computing

solutions to complex models� Not surprisingly� the batch and the incremental techniques
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Figure �� An example of measurements and constraints with three model points�
The model points to be positioned are shown as full circles� A measurement 
a�
is represented as a rectangle positioned at the measurement location and having
width and length proportional to the s�t�d� of the measurement� A �xed location

distance constraint 
b� is represented by a line segment with one endpoint at the
�xed location and the other connected to the constrained point� An inter�point

distance constraint 
c� is represented by a line segment connecting the constrained
points� A three points co�linearity constraint 
d� is represented by a �xed length
line segment connected on both its ends and its middle to the constrained points� A
point on right of line constraint 
e� is represented by an arrow	headed line segment
connected to a model point� A point on line constraint 
f� is represented by a
double arrow	headed line connected to a model point�
The connections between constraints and associated model points� are marked by
dashed lines�

gave the same solution for di�erent model con�gurations�

The following �gures were created using this software� In the �gures� model points and

constraints are represented as shown in Figure � and described in the caption� Figure �

shows four complex examples which include inequality constraints� As can be seen� the so	

lutions conserve the model constraints� Further examples with various initial guesses and

di�erent measurements can be found in ���
�

In order to con�rm the validity of the results� we applied the suggested methods to sev	

eral simple examples containing only two degrees of freedom� The obtained results were

compared to �energy� maps describing the Mahalanobis distance 
 �T � �u��T���
 �T � �u�� at

��



each permitted position� Figure �� shows two examples of constrained objects having two

degrees of freedom denoted � and 	� The energy maps corresponding to these examples

describe the energy of the system for every �� 	 pair 
Figure ��	bottom�� The displays show

that the solution obtained by the constraint fusion method 
marked as X in the energy map�

indeed corresponds to the minimum energy solution�
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Figure �� Some examples of constrained models including inequality constraints�
Four examples are shown� the original input 
measurements� constraints and model
points� are shown on the left and the solution is shown on the right�
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Figure ��� Two cases 
a and b� of a constrained model with two degrees of freedom 
denoted
� and 	�� a�� b� 	 the initial guess of the solution� a�� b� 	 the �nal solution� The energy
maps corresponding to each case is shown at the bottom� White values denote low energy
of the system� The black crosses mark the �� 	 corresponding to the �nal solution of a�� b�
as obtained using our method� It is seen that the �nal solution indeed corresponds to the
minimum energy�
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Figure ��� A schematic diagram of a lamp model having �� points�

���� Real Image Data

We used the constraint fusion method to estimate the position of a real articulated �D object

from �D images� The articulated model used� is a desk lamp shown in Figure ��� having �

degrees of freedom� We consider the lamp model as a ��	point model 
as shown in Figure ���

and we included the following constraints into the model�

� �� constant distance constraints between pairs of points in the model 
for example

points �� and ����

� � parallel constraints between � pairs of points 
between points � and �� and points

�� and ����

� �� co	planar constraints between � or more points 
points �������� and � are con	

strained to be co	planar��

� � co	linear constraints between � points 
points �� � and � are co	linear��

Measurements of the �D location of the points and the measurement uncertainty were ob	

tained from stereo image pairs� This data is noisy due to digitization� inconsistent lighting

and imprecise feature matching� The uncertainties due to noise were modeled according to
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the auto	correlation of the image features ���
� We estimated the pose of the lamp compo	

nents from the noisy �D measurements and from the constraints� using the constraint fusion

technique� The evaluated vector is a �� � � dimensional location vector composed of the ��

locations of the model points� Figures ��a and ��b show � examples of lamp images having �

di�erent positions� Figures ��c and ��d show the corresponding results as synthetic images

created from the estimated location vector� As can be seen� there is high correlation between

the real model location and the synthesized reconstruction�

a� b�

c� d�

Figure ��� a	b� Images of a desk lamp at di�erent positions� c	d� The corre	
sponding result shown as a synthetic image created from the estimated location
vector�

Additionally� the angles �� and �� 
shown in Figure ��� were physically measured in sev	

eral positions of the lamp� These values were also extracted from the pose estimate obtained

with our method� The real values and the constructed values for four typical examples are
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compared in the following table�

pose A pose B pose C pose D
Real �� ���� ���� ���� ����
Values �� ���� ����� ���� ����

Reconstructed Values �� ���� ���� ���� ����
Without Constraints �� ���� ����� ���� ����

Reconstructed Values �� ���� ���� ���� ����
With Constraints �� ���� ����� ���� ����

The table shows the improvement in the reconstructed angle values when the fusion includes

the constraints� The di�erence between the real angle value and the reconstructed value

decreases when the constraints are fused� The s�t�d of these di�erences is ���� for the re	

construction without fusing the constraints and ���� for the reconstruction with constraint

fusion�

The importance of propagating the pose information of each component to its neighboring

components� is shown in Figures �� and ��� Figure �� shows several views of a synthesized

lamp reconstructed only from the �D measurements taken on the lamp shown in Figure ��b�

Figure �� shows the same views after mutual information was propagated between the com	

ponents through the constraints� The improvement is signi�cant� as demonstrated�

���� The Measurement Interpretation

Figure �� shows a limited part of the interpretation tree 
I�T�� which is constructed for

the desk lamp interpretation� This I�T� is used for the matching process as described in

Section �� Each node on the kth level of this I�T� represents a possible matching between

the kth model point� as numbered in Figure ��� and some particular measured point� The

measurements are numbered according to their real correspondence 
i�e� the true match of

the kth measured point is the kth model point�� The score of each match is shown at the

appropriate node where the value is the Mahalanobis distance � calculated using the formula

given in Section �� For each level in the I�T� we show the three best scored nodes� The

model constraints are fused during the parsing of the I�T� as described by the algorithm in

Section �� The distance constraints between model points k and j 
denoted by dist
k� j��
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Figure ��� Several views of a synthesized lamp reconstructed from the �D measurements
only�

Figure ��� Several views of a synthesized lamp reconstructed from the �D measurements
and the model constraints�

are shown in the �gure at the level at which they are fused� As can be seen the score of

the correct matches are� in most cases� signi�cantly lower than the erroneous matches� An

example where the score of the correct match is not signi�cantly lower can be seen in the

�th level where measurement no� � scores ���� and measurement no� �� scores ���� This

relatively small di�erence is caused by the fact that the distance between point � and � is

indeed similar to the distance between point � and ��� Therefore� the constraint dist
�� ��

which has been fused prior to this stage can not give a signi�cant indication as to which

measurement is the correct one� In such a case� the IT should be explored in both directions�
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Figure ��� Results of the matching algorithm for the lamp model� A section of the
pruned interpretation tree is displayed� Every level of the tree corresponds to one
model point� and each node at a particular level corresponds to a possible match
between the model point and a measured point� The score of each match is shown
at the node where the value is the Mahalanobis distance of this match� For each
level in the interpretation tree the three best scored nodes are shown� The distance
constraints 
denoted by dist
k� j�� are shown at the level at which they are fused�
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�� Conclusion

This paper presented a framework based on Kalman �ltering and constraint fusion for model

based pose estimation and interpretation that is general enough to cover articulated and other

types of non	rigidly constrained models� The constraints are general and can be associated

with any number of di�erent parts of the model� The validity of the framework was shown

on real and simulated images�

The constraint fusion method has several advantages over existing methods�

�� In any pose estimation method� exploiting the information supplied by the measure	

ment requires a de�nition of the functional dependence between the measurement and

the estimated parameters� In the parametric methods 
Section ��� this dependence is

not simple since it must include all the parameters on which the measurement depends�

Additionally� the order of the nonlinearity of the dependence equations increases with

the number of parameters� In the constraint fusion method� the functional dependence

includes only the local parameters 
i�e� only the parameters that de�ne the transfor	

mation of the measured component� since the dependence of the measurement on other

parameters is expressed through the constraints of the model� This local dependence

is simply de�ned and is not as highly nonlinear as that of the parametric methods�

Additionally� there is no need to reduce the constrained parameter space into a set of

free parameters 
as is performed in the parametric methods�� thus the de�nition of the

set of parameters to be estimated is simple�

�� Using the constraint fusion method� constraints can be added at run time and there	

fore this method can be used in interactive systems� In the parametric methods� the

constraints must be given and analysed prior to the estimation process�

�� The information obtained on the position of a given component is propagated to all

other components of the model through the constraints between them� Thus the es	

timated pose of a certain component takes into consideration all the existing mea	

surements and all the de�ned constraints 
this is not true in the divide and conquer

methods��

�� The proposed scheme enables an e�cient simultaneous matching procedure that allows

incremental fusion of additional matches that improve the pose estimation and the

search complexity in the I�T�

��



�� The existing methods of pose estimation of constrained models� deal with articulated

objects and with constraints that are due to prismatic or revolute joints between the

model components� In the constraint fusion method we are not limited to any type

of constraints and can deal with all types of constraints including co	linearity� co	

planarity� constant distance� constant angle� etc� Additionally� we deal with inequality

constraints such as limited range of distances between points or limited range of angles�

�� The constraint fusion method uses K�F� tools and so includes the advantages associated

with the K�F� such as explicitly dealing with the measurement uncertainty� simple

updating of the solution given additional measurements� easy parallelization� and the

possibility of using an e�cient matching strategy�

There are computational aspects that were not covered in this paper such as methods

to speed up the computation and to reduce the time complexity using Optimal Smoothing�

This technique is described in ���
�

This framework has also been carried over to graphics in which it is used in a paramet	

ric modeler system ���
� Additionally� the method can be easily extended to handle �exible

models made of elastic materials� This extension can be performed by associating non	zero

uncertainty with the arti�cial �measurements� produced from the constraints� Current work

extends the framework to deal with dynamic articulated systems� This extension is relevant

to keyframe animation and inverse kinematics�

Appendix�

A The Extended Kalman Filter Equations for Pose

Estimation of a Single Component

Assume an estimation process for a seven dimensional parameter vector T�

T �

�
�q
t

�

At each step k we have� from the previous step� an a priori estimate of the evaluated vector
�Tk�� with an associated uncertainty matrix �k��� and a new measurement �u�

k with its

uncertainty �k� The mathematical relationship between the measurement and the evaluated

��



vector is represented by a vector equation�

hk
u
�

k�T� � �

In our case�

hk � Ruk � t� u�

k � � �

where R and t are the rotational matrix and the translation vector and can be constructed

from T� In our case hk is non	linear� therefore� transition from step k � � to step k is

performed using a linear approximation of hk by taking the �rst order Taylor expansion

around 
�Tk��� �u�

k� �

hk
uk�u
�

k�T� � � � �hk
uk� �u
�

k�
�Tk��� �

�hk

�u�

k


u�

k � �u�

k� �
�hk

�T

T� �Tk��� 
��

Equation � can be rewritten as a linear equation�

zk � HkT� 
k �

where

zk � ��hk
uk� �u
�

k�
�Tk��� � 


�hk

�T
� �Tk��

Hk �
�hk

�T
�

�
�hk

��q
�
�hk

�t

�
�

�
�� d� d� d� d� � � �
�d� �d� d� d� � � �
d� �d� �d� d� � � �

�
	



k �
�hk

�u�

k


u�

k � �u�

k�

and where �
BBB�

d�
d�
d�
d�

�
CCCA � �

�
�����

qk��
� �qk��

� qk��
�

qk��
� qk��

� qk��
�

�qk��
� qk��

� qk��
�

�qk��
� �qk��

� qk��
�

�
				
uk �


see ���
 for explanations about the representation of a rotation matrix by a unit quaternion��

zk represents the new three dimensional �measurement� vector�Hk is a ��� matrix denoting

a linear connection between the �measurement� and the actual transformation T� Both zk

and Hk can be derived from �u�

k � uk and �Tk��� The term 
k is the noise in the �measurement�

��



zk and satis�es�

Ef
kg � �

Ef
k

T
k g �

�
�hk

�u�

k

�
�k

�
�hk

�u�

k

�T

� Wk

Ef
k

T
� g � � k �� � �

The K�F� fuses the new measurement with the a priori estimate of the evaluated vector

T and produces an updated estimate �Tk with the associated uncertainty �k� The K�F� fuser

equations are�

state estimate update � �Tk � �Tk�� �Kk
zk �Hk
�Tk���

state covariance update � �k � �k�� �KkHk�k��

Kalman gain matrix � Kt � �k��HT
k 
Hk�k��HT

k � �k��� �

The constraint of the quaternion k�qk� � � is not necessarily conserved in the estimated

transformation �Tk� In order to enforce this constraint an additional arti�cial measurement

is fused� The additional measurement is derived by linearizing the constraint equation around

�Tk���

� � 
�Tk���T
�
I
 �
� �

�
�Tk�� � �
�Tk���T

�
I
 �
� �

�
T

where the measurement 
the left side of the equation� is associated with zero uncertainty�

B Batch Solution for an Articulated Object

Assume the articulated object as illustrated in Figure �� This object has �ve point compo	

nents fuig�i�� and four articulated constraints f�j
T�g
j��� Each constraint is of the form

�j
tk� tl� � ktl � tkk
� � d�k�l � � 
���

representing the constant Euclidean distance existing between the points uk and ul� Addi	

tionally� assume a single measurement 
�u�

k��k� for each model point uk� Linearization of

Equation �� around 
�u�

k� �u
�

l� yields�

�

�

d�k�l � v�

k�l� � vk�ltl � vk�ltk

��



where

vk�l � �u�

l � �u�

k �

Linearizing all the constraint equations and concatenating them into a single vector equation

gives�

z � HT 
���

where

z �
�

�

�
BBB�

d���� � v�
���

d���� � v�
���

d���
 � v�
��


d���� � v�
���

�
CCCA � H �

�
����
v��� �v��� � � �
v��� � �v��� � �
� � v
�� �v
�� �
� � v��� � �v���

�
			
 � T �

�
BB�
t�
���
t�

�
CCA �

Solving the illustrated example is performed by supplying the K�F� fuser with the following

inputs�

�� The a priori estimate for the evaluated transformation will be��
���
�
BB�

�u�

�
���
�u�

�

�
CCA �

�
BB�

�� �
� � �

� ��

�
CCA
�
		


�� The measurement is the vector z 
of size ��� and its associated uncertainty 	 a ��� ��

zero matrix�

�� The mathematical relationship between z and the evaluated parameters T� is given by

Equation �� as formulated above�
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