Skip to main content
Log in

Computation and analysis of image motion: A synopsis of current problems and methods

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The goal of this paper is to offer a structured synopsis of the problems in image motion computation and analysis, and of the methods proposed, exposing the underlying models and supporting assumptions. A sufficient number of pointers to the literature will be given, concentrating mostly on recent contributions. Emphasis will be on the detection, measurement and segmentation of image motion. Tracking, and deformable motion issues will be also addressed. Finally, a number of related questions which could require more investigations will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aach, T., Kaup, A., and Mester, R. 1993. Statistical model-based change detection in moving video.Signal Processing, 31:165–180.

    Google Scholar 

  • Adelson, E.H. and Bergen, J.R. 1985. Spatiotemporal energy models for the perception of motion.Journal of the Optical Society of America A, 2:284–299.

    Google Scholar 

  • Adelson, E.H. and Bergen, J.R. 1986. The extraction of spatiotemporal energy in human and machine vision. In Proc. IEEE Workshop on Motion: Representation and Analysis, pp. 151–155.

  • Adiv, G. 1985. Determining three-dimensional motion and structure from optical flow generated by several moving objects.IEEE Trans. on Pattern Analysis and Machine Intelligence, 7:384–401.

    Google Scholar 

  • Aggarwal, J.K. and Nandhakumar, N. 1988. On the computation of motion from image sequences: A review. In Proceedings of the IEEE, 76(8):917–935.

  • Allmen, M. and Dyer, C.R. 1990. Computing spatiotemporal surface flow. In Proc. 3rd International Conference on Computer Vision, Osaka, Japan, pp. 47–50.

  • Allmen, M. and Dyer, C.R. 1993. Computing spatiotemporal relations for dynamic perceptual organization.CVGIP: Image Understanding, 58(3):338–351.

    Google Scholar 

  • Aloimonos, J., Weiss, I., and Bandyopadhyay, A. 1988. Active vision.Int. Journal of Computer Vision, 1(4):333–356.

    Google Scholar 

  • Aloimonos, J. 1990. Purposive and qualitative active vision. In Proc. DARPA Image Understanding Workshop, pp. 816–828.

  • Amit, Y., Grenander, U., and Piccioni, M. 1991. Structural image restoration through deformable templates.Journal of the American Statistical Association, 86(414):376–387.

    Google Scholar 

  • Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion.International Journal of Computer Vision, 2:283–310.

    Google Scholar 

  • Ayer, S., Schroeter, P., and Bigun, J. 1994. Segmentation of moving objects by robust motion parameter estimation over multiple frames. In Proc. 3rd European Conf. on Computer Vision, Stockholm, pp. 316–327.

  • Baaziz, N. and Labit, C. 1994. Multiconstraint wiener-based motion compensation using wavelet pyramids.IEEE Trans. on Pattern Analysis and Machine Intelligence, 3(5):688–692.

    Google Scholar 

  • Bajcsy, R. 1988. Active perception. In Proceedings of the IEEE, 76(8):996–1005.

  • Baker, H.H. and Bolles, R. 1989. Generalizing epipolar-plane image analysis on the spatio-temporal surface.International Journal of Computer Vision, 3(1):33–49.

    Google Scholar 

  • Bandopadhay, A. and Ballard, D.H. 1991. Egomotion perception using visual tracking.Computational Intelligence, 7:39–47.

    Google Scholar 

  • Barman, H., Haglund, L., Knutsson, H., and Granlund, G. 1991. Estimation of velocity, acceleration, and disparity in time sequences. In Proc. IEEE Workshop on Visual Motion, Princeton, NJ, pp. 44–51.

  • Barnard, S.T. and Thompson, W.B. 1980. Disparity analysis of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4):333–340.

    Google Scholar 

  • Barron, J.L., Fleet, D.J., and Beauchemin, S.S. 1994. Performance of optical flow techniques.International Journal of Computer Vision, 12(1):43–77.

    Google Scholar 

  • Bar-Shalom, Y. 1978. Tracking methods in a multitarget environment.IEEE Trans. on Automatic Control, 23(4):618–626.

    Google Scholar 

  • Bascle, B., Bouthemy, P., Deriche, N., and Meyer, F. 1994. Tracking complex primitives in an image sequence. In Proc. 12th International Conference on Pattern Recognition, Jerusalem, pp. 426–431.

  • Basseville, M. 1988. Detecting changes in signals and systems—A survey.Automatica, 24(3):309–326.

    Google Scholar 

  • Battiti, R., Amaldi, E., and Koch, C. 1991: Computing optical flow across multiple scales.International Journal of Computer Vision, 6(2):133–145.

    Google Scholar 

  • Bergen, J.R., Anandan, P., Hanna, K.J., and Hingorani, R. 1992. Hierarchical model—Based motion estimation. In Proc. 2nd European Conference on Computer Vision, Genova, pp. 237–252.

  • Bertero, M., Poggio, T., and Torre, V. 1988. Ill-posed problems in early vision. In Proceedings of the IEEE, 76:869–890.

  • Biemond, J., Looijenga, L., Boeke, D.E., and Plompen, R.H.J.M. 1987. A pel-recursive wiener-based displacement estimation algorithm.Signal Processing, 13(4):399–412.

    Google Scholar 

  • Black, M.J. and Anandan, P. 1991. Robust dynamic motion estimation over time. In Proc. Computer Vision and Pattern Recognition Conference, Hawaii, pp. 296–302.

  • Black, M.J. 1992. Combining intensity and motion for incremental segmentation and tracking over long image sequences. In Proc. 2nd European Conference on Computer Vision, Genova, pp. 485–493.

  • Black, M.J. and Anandan, P. 1993. A framework for the robust estimation of optical flow. In Proc. 4th International Conference on Computer Vision, Berlin, pp. 231–236.

  • Blackman, S.S. 1986.Multiple Target Tracking With Radar Applications, Artech House.

  • Blake, A., Curwen, R., and Zisserman, A. 1993. A framework for spatiotemporal control in the tracking of visual contours.International Journal of Computer Vision, 11(2):127–145.

    Google Scholar 

  • Blostein, S.D. and Huang, T.S. 1991. Detecting small, moving objects in image sequences using sequential hypothesis testing.IEEE Trans. Signal Processing, 39(7):1611–1629.

    Google Scholar 

  • Bober, M. and Kittler, J. 1994. Robust motion analysis. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 947–952.

  • Bouthemy, P. and Benveniste, A. 1984. Modeling of atmospheric disturbances in meteorological pictures.IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-6(5):587–600.

    Google Scholar 

  • Bouthemy, P. and Santillana Rivero, J. 1987. A hierarchical likelihood approach for region segmentation according to motion-based criteria.1st International Conference on Computer Vision, London, pp. 463–467.

  • Bouthemy, P. 1989. A maximum-likelihood framework for determining moving edges.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(5):499–511.

    Google Scholar 

  • Bouthemy, P. and François, E. 1993. Motion segmentation and qualitative dynamic scene analysis from an image sequence.Int. Journal of Computer Vision, 10(2):157–182.

    Google Scholar 

  • Bouthemy, P. and Lalande, P. 1993. Recovery of moving object masks in an image sequence using local spatiotemporal contextual information.Optical Engineering, 32(6):1205–1212.

    Google Scholar 

  • Brailean, J.C. and Katsaggelos, A.K. 1995. A recursive nonstationary MAP displacement vector field estimation algorithm.IEEE Trans. on Image Processing, 4(4):416–429.

    Google Scholar 

  • Brown, C.M. 1990. Prediction and cooperation in gaze control.Biological Cybernetics, 63:61–70.

    Google Scholar 

  • Brown, L.G. 1992. A survey of image registration techniques.ACM Computing Surveys, 24(4):325–376.

    Google Scholar 

  • Burger, W. and Bhanu, B. 1987. Qualitative motion understanding. In Proc. International Joint Conference on Artificial Intelligence, pp. 819–821.

  • Burt, P.J., Yen, C., and Xu, X. 1982. Local correlation measures for motion analysis: A comparative study.Pattern Recognition and Image Processing Conference, Las Vegas, pp. 269–274.

  • Burt, P.J., Bergen, J.R., Hingorani, R., Kolezynski, R., Lee, W.A., Leung, A., Lubin, J., and Shvayster, H. 1989. Object tracking with a moving camera. In Proc. IEEE Workshop on Visual Motion, Irving, pp. 2–12.

  • Buxton, B.F. and Buxton, H. 1984. Computation of optical flow from the motion of edges features in image sequences.Image and Vision Computing, 2(2):59–75.

    Google Scholar 

  • Campani, M. and Verri, A. 1990. Computing optical flow from an overconstrained system of linear algebraic equations. In Proc. 3rd International Conference on Computer Vision, Osaka, pp. 22–26.

  • Campani, M. and Verri, A. 1992. Motion analysis from first-order properties of optical flow.CVGIP: Image Understanding, 56(1):90–107.

    Google Scholar 

  • Carlsson, S. 1988. Information in the geometric structure of retinal flow field. In Proc. 2nd International Conference on Computer Vision, pp. 629–633.

  • Chang, M.M., Sezan, M.I., and Tekalp, A.M. 1994. An algorithm for simultaneous motion estimation and seene segmentation. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing, Adelaide, pp. 221–224.

  • Chaumette, F., Boukir, S., Bouthemy, P., and Juvin, D. 1994. Optimal estimation of 3D structures using visual servoing. In Proc. Conf. Computer Vision and Pattern Recognition, Seattle, pp. 347–354.

  • Chin, T.M., Karl, W.C., and Willsky, A.S. 1994. Probabilistic and sequential computation of optical flow using temporal coherence.IEEE Trans. on Image Processing, 3(6):773–788.

    Google Scholar 

  • Chuang, C.H. and Jay Kuo, C.C. 1993. A wavelet deformable model for shape description and multiscale elastic matching. In Proc. SPIE Conf. Visual Communication and Image Processing, 2094:954–965.

    Google Scholar 

  • Cipolla, R. and Blake, A. 1992. Surface orientation and time-to-contact from image divergence and deformation. In Proc. 2nd European Conf. on Computer Vision, Genova, pp. 188–202.

  • Cohen, I., Ayache, N., and Sulger, P. 1992. Tracking points on deformable objects using curvature information. In Proc. 2nd European Conference on Computer Vision, Genova, Italy, pp. 458–466.

  • Cohen, L. 1991. On active contour models and balloons.Computer Vision, Graphics, and Image Processing: Image Understanding, 53(2):211–218.

    Google Scholar 

  • Cootes, T.F., Hill, A., Taylor, C.J., and Haslam, J. 1994. Use of active shape models for locating structures in medical images.Image and Vision Computing Journal, 12(6):355–365.

    Google Scholar 

  • Cootes, T.F., Taylor, C.J., Cooper, D.H., and Graham, J. 1995. Active shape models—Their training and application.Computer Vision and Image Understanding, 61(1):38–59.

    Google Scholar 

  • Cornelius, N. and Kanade, T. 1983. Adapting optical flow to measure object motion in reflectance and X-ray image sequences.ACM sigraph/sigart workshop on motion, Toronto, Canada, pp. 50–58.

  • Cornilleau-Peres, V. and Droulez, J. 1993. Velocity-based correspondence in stereokinetic images.CVGIP: Image Understanding, 58(2):137–146.

    Google Scholar 

  • Cowart, A., Snyder, W., and Ruedger, W. 1983. The detection of unresolved targets using the hough transform.Computer Vision, Graphics and Image Processing, 21:222–238.

    Google Scholar 

  • Crowley, J.L., Stelmaszyk, P., and Discours, G. 1988. Measuring image flow by tracking edge lines.Second International Conference on Computer Vision, pp. 658–664.

  • Darrell, T. and Pentland, A. 1991. Robust estimation of a multilayered motion representation. In Proc. IEEE Workshop on Visual Motion, Princeton, pp. 173–178.

  • DeCastro, E. and Morandi, C. 1987. Registration of translated and rotated images using finite fourier transform.IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:700–703.

    Google Scholar 

  • Deriche, R. and Faugeras, O. 1990. Tracking line segments.Image and Vision Computing, 8(4):261–270.

    Google Scholar 

  • Donohoe, G.W., Hush, D.R., and Ahmed, N. 1988. Change detection for target detection and classification in video sequences. In Proc. International Conference on Acoustics, Speech and Signal Processing, New-York, pp. 1084–1087.

  • Dubes, R.C. and Jain, A.K. 1989. Random field models in image analysis.Journal of Applied Statistics, 16(2):131–164.

    Google Scholar 

  • Duncan, J.H., Owen, R.L., Staib, L.H., and Anandan, P. 1991. Measurement on nonrigid motion using contour shape descriptor. In Proc. Conference on Computer Vision and Pattern Recognition, Hawai, pp. 318–324.

  • Duncan, J.H. and Chou, T.C. 1992. On the detection of motion and the computation of optical flow.IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(3):346–352.

    Google Scholar 

  • Eghbali, H.J. 1979. K-S test for detecting changes from landsat imagery data.IEEE Trans. on Systems, Man, and Cybernetics, SMC-9(1):17–23.

    Google Scholar 

  • Enkelmann, W. 1988. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences.Computer Vision, Graphics, and Image Processing, 43:150–177.

    Google Scholar 

  • Espiau, B., Chaumette, F., and Rives, P. 1992. A new approach to visual servoing.IEEE Trans. On Robotics and Automation, 8(3):313–326.

    Google Scholar 

  • Faugeras, O. 1993. Three-dimensional vision: A geometric viewpoint, MIT Press.

  • Faugeras, O. and Papadopoulo, T. 1993. A theory of the motion fields of curves.Int. Journal of Computer Vision, 10(2):125–156.

    Google Scholar 

  • Fermüller, C. and Aloimonos, Y. 1993. The role of fixation in visual motion analysis.Int. Journal of Computer Vision, 11(2):165–186.

    Google Scholar 

  • Fleet, D.J. and Jepson, A.D. 1985. Velocity extraction without form interpretation. In Proc. IEEE Workshop on Computer Vision: Representation and Control, pp. 179–185.

  • Fleet, D.J. and Jepson, A.D. 1989. Hierarchical construction of orientation and velocity selective filters.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(3):315–325.

    Google Scholar 

  • Ford, R.M., Stickland, R.N., and Thomas, B.A. 1994. Image models for 2D flow visualization and compression.CVGIP: Graphical Models and Image Processing, 56(1):75–93.

    Google Scholar 

  • François, E. and Bouthemy, P. 1990. Derivation of qualitative information in motion analysis.Image and Vision Computing, 8(4):279–287.

    Google Scholar 

  • Fuh, C.S. and Maragos, P. 1989. Region-based optical flow estimation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 130–135.

  • Geman, S. and Geman, D. 1984. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741.

    Google Scholar 

  • Geman, S., Geman, D., Graffigne, C., and Dong, P. 1990. Boundary detection by constrained optimization.IEEE Trans. on Pattern Analysis and Machine Intelligence, 12:609–628.

    Google Scholar 

  • Gennert, M.A. and Negahdarípour, S. 1987. Relaxing the brightness constancy assumption in computing optical flow. MIT AI Lab. Technical Report 975.

  • Germain, F. and Skordas, T. 1994. An image motion estimation technique based on a combined statistical test and spatiotemporal generalised likelihood ratio approach. In Proc. 3rd European Conf. on Computer Vision, Stockholm, pp. 152–157.

  • Gibson, J.J. 1950.The Perception of the Visual World Houghton Mifflin, Boston, MA.

    Google Scholar 

  • Glazer, F. 1984. Multilevel relaxation in low-level computer vision.Multiresolution Image Processing and Analysis, A. Rosenfeld, (Ed.), Springer Verlag, pp. 312–320.

  • Gong, S. and Brady, M. 1990. Parallel computation of optical flow. In Proc. 1st European Conference on Computer Vision, Antibes, France, pp. 124–133.

  • Gordon, D.A. 1965. Static and dynamic visual fields in human space perception.Journal of the Optical Society of America, 55:1296–1303.

    Google Scholar 

  • Gordon, G.L. 1989. On the tracking of featureless objects with occlusion.IEEE Workshop on Visual Motion, Irving, pp. 13–20.

  • Grenander, U., Chow, Y., and Keenan, D.M. 1991.Hands. A Pattern Theoretic Study of Biological Shapes, Springer Verlag.

  • Grosso, E., Sandini, G., and Tistarelli, M. 1989. 3D object reconstuction using stereo and motion.IEEE Trans. on Systems, Man. and Cybernetics, 19(6):465–1476.

    Google Scholar 

  • Guo, Y., Xu, G., and Tsuji, S. 1994. Tracking of human body motion based on a stick figure model.Journal of Visual Communication and Image Representation, 5(1):1–9.

    Google Scholar 

  • Hartley, R. 1985. Segmentation of optical flow fields by pyramid linking.Pattern Recognition Letters. 3:253–262.

    Google Scholar 

  • Haynes, S.M. and Jain, R. 1983. Detection of moving edges.Computer Vision, Graphics, and Image Processing, 21:345–367.

    Google Scholar 

  • Heeger, D.J. 1987. A model for the extraction of image flow.Journal of the Optical Society of America A, 4:1455–1471.

    Google Scholar 

  • Heeger, D.J. 1987. Optical flow using spatiotemporal filters.International Journal of Computer Vision, pp. 279–302.

  • Heitz, F. and Bouthemy, P. 1990. Multimodal Motion Estimation and Segmentation Using Markov Random Fields. In Proc. 10th International Conference on Pattern Recognition, Atlantic City, pp. 378–382.

  • Heitz, F. and Bouthemy, P. 1993. Multimodal estimation of discontinuous optical flow using markov random fields.IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(12):1217–1232.

    Google Scholar 

  • Herlin, I. and Ayache, N. 1992. Features Extraction and Analysis Methods for Sequences of Ultrasound Images.Image and Vision Computing Journal, 10(10):673–682.

    Google Scholar 

  • Hildreth, E. 1984. Computations underlying the measurement of visual motion.Artificial Intelligence, 23:309–354.

    Google Scholar 

  • Hoetter, M. 1992. Differential estimation of the global motion parameters zoom and pan.Signal Processing, 16:282–287.

    Google Scholar 

  • Horaud, R. and Skordas, T. 1989. Stereo correspondence through feature grouping and maximal cliques.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(11):1168–1180.

    Google Scholar 

  • Horn, B.K.P. and Schunck, B.G. 1981. Determining optical flow.Artificial Intelligence, 17:185–203.

    Google Scholar 

  • Horn, B.K.P. 1986.Robot Vision, MIT Press.

  • Horowitz, B. and Pentland, A. 1991. Recovery of non-rigid motion and structure. In Proc. Computer Vision and Pattern Recognition Conference, Hawaii, pp. 325–330.

  • Hsu, Y.Z., Nagel, H.H., and Rekers, G. 1984. New likelihood test methods for change detection in image sequences.Computer Vision, Graphics and Image Processing, 26:73–106.

    Google Scholar 

  • Huang, T.S. and Blostein, S.D. 1985. Robust algorithms for motion estimation based on two sequential stereo pairs. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Fransisco, pp. 518–523.

  • Huang, T.S. and Netravali, A.N. 1994. Motion and structure from feature correspondences: A review. In Proceedings of the IEEE, 82(2):252–268.

  • Hutchinson, J., Koch, C., Luo, J., and Mead, C. 1988. Computing motion using analog and binary resistive networks.Computer, 11:52–63.

    Google Scholar 

  • Hwang, V.S. 1989. Tracking feature points in time-varying images using an opportunistic selection approach.Pattern Recognition, 22(3):247–256.

    Google Scholar 

  • Hwang, T. and Clark, J. 1990. On local detection of moving edges. In Proc. 10th International Conference on Pattern Recognition, Atlantic City, pp. 180–181.

  • Irani, M., Rousso, B., and Peleg, S. 1992. Detecting and tracking multiple moving objects using temporal integration. In Proc. 2nd European Conference on Computer Vision, Genova, pp. 282–287.

  • Irani, M., Rousso, B., and Peleg, S. 1994. Computing occluding and transparent motions.International Journal of Computer Vision, 12(1):5–16.

    Google Scholar 

  • Iu, S.-L. 1995. Robust estimation of motion vectors fields with discontinuity and occlusion using local outliers rejection.Journal of Visual Communication and Image Representation, 6(2):132–141.

    Google Scholar 

  • Jacobson, L. and Wechsler, H. 1987. Derivation of optical flow using a spatio-temporal frequency approach.Computer Vision, Graphics, and Image Processing, 38:73–106.

    Google Scholar 

  • Jain, R.C. 1985. Dynamic scene analysis.Progress in Pattern Recognition 2, L. Kanal and A. Rosenfeld (Eds.), north Holland. pp. 125–167.

  • Jerian, C.P. and Jain, R. 1991. Structure and motion: A critical analysis of methods.IEEE Trans. on Systems, Man, and Cybernetics, 21:572–588.

    Google Scholar 

  • Karmann, K.P. and Brandt, A. 1989. Moving object recognition using an adaptive background memory. In Proc. 3rd International Workshop on Time-varying Image Processing and Moving Object Recognition, Florence, pp. 289–296.

  • Karmann, K.P., Brandt, A., and Gerl, R. 1990. Moving object segmentation based on adaptive reference images. In Proc. 5th European Signal Processing Conf., Barcelona, pp. 951–954.

  • Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models.International Journal of Computer Vision, 1(4):321–331.

    Google Scholar 

  • Kearney, J.K. and Thompson, W.B. 1987. Optical flow estimation: An error analysis of gradient-based methods with local optimization.IEEE Transactions on Pattern Analysis and Machine Intelligence, 9:229–243.

    Google Scholar 

  • Kervrann, C. and Heitz, F. 1994. A hierarchical framework for the segmentation of deformable objects in image sequences. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, pp. 724–728.

  • Kim, Y.C. and Aggarwal, J.K. 1987. Determining object motion in a sequence of stereo images.IEEE Journal on Robotics and Automation, 3(6):599–614.

    Google Scholar 

  • Koenderink, J.J. and VanDoorn, A.J. 1975. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer.Optica Acta, 22:773–791.

    Google Scholar 

  • Konrad, J. and Dubois, E. 1988. Multigrid bayesian estimation of image motion fields using stochastic relaxation. In Proc. 2nd International Conference on Computer Vision, pp. 354–362.

  • Konrad, J. and Dubois, E. 1992. Bayesian estimation of motion vector fields.IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(9):910–927.

    Google Scholar 

  • Lehmann, E.L.Testing Statistical Hypotheses, John Wiley and Sons, 1986.

  • Létang, J.M., Rebuffel, V., and Bouthemy, P. 1993. Motion detection robust to perturbations: A statistical regularization and temporal integration framework. In Proc. 4th International Conference on Computer Vision, Berlin, pp. 21–30.

  • Letgers, G.R. and Young, T.Y. 1982. A mathematical model for computer image tracking.IEEE Trans. on Pattern Analysis and Machine Intelligence, 4(6):583–594.

    Google Scholar 

  • Little, J.J. and Gillett, W.E. 1990. Direct evidence for occlusion in stereo and motion. In Proc. 1st International Conference on Computer Vision, Antibes, France, pp. 336–340.

  • Liu, J. and Skerjane, R. 1993. Stereo and motion correspondence in a sequence of stereo images.Signal Processing: Image Communication, 5:305–318.

    Google Scholar 

  • Ma, J., Lu, X., and Wu, C. 1987. A motion constraint under spacevarying or time-varying illumination.Pattern Recognition Letters, 5(3):203–205.

    Google Scholar 

  • Mailloux, G.E., Langlois, F., Simard, P.L., and Bertrand, M. 1989. Restoration of the velocity field of the heart from two-dimensional echocardiograms.IEEE Trans. on Medical Imaging, 8(2):143–153.

    Google Scholar 

  • Markandey, V. and Flinchbaugh, B.E. 1990. Multispectral constraints for optical flow computation. In Proc. 3rd International Conference on Computer Vision, Osaka, Japan, pp. 38–41.

  • Marroquin, J., Mitter, S., and Poggio, T. 1987. Probabilistic solution of ill-posed problems in computer vision.Journal of the American Statistical Association, 82(397):76–89.

    Google Scholar 

  • Maurizot, M., Bouthemy, P., Delyon, B., Iouditski, A., and Odobez, J.M. 1995. Determination of singular points in 2D deformable flow fields. In Proc. 2nd IEEE Int. Conference on Image Processing, Washington D.C.

  • Medioni, G. and Nevatia, R. 1984. Matching images using linear features.IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):675–685.

    Google Scholar 

  • Meer, P., Mintz, D., Rosenfeld, A., and Kim, D.Y. 1991. Robust regression methods for computer vision: A review.International Journal of Computer Vision, 6(1):59–70.

    Google Scholar 

  • Meyer, F. and Bouthemy, P. 1992. Estimation of time-to-collision maps from first order motion models and normal flows.Proc. 11th International Conference on Pattern Recognition, The Hague, pp. 78–82.

  • Meyer, F. and Bouthemy, P. 1994. Region-based tracking using affine motion models in long image sequences.CVGIP: Image Understanding, 60(2):119–140.

    Google Scholar 

  • Mishra, S.K., Goldgof, D.B., and Huang, T.S. 1991. Motion analysis and epicardial deformation estimation from angiography data.Proc. Conf. Computer Vision and Pattern Recognition, Hawaii, pp. 331–336.

  • Mitiche, A., Grisell, R., and Aggarwal, K.J. 1988. On smoothness of a vector field—Application to optical flow.IEEE Trans. on Pattern Analysis and Machine Intelligence, 10(6):943–949.

    Google Scholar 

  • Mitiche, A., Wang, Y.F., and Aggarwal, J.K. 1987. Experiments in computing optical flow with the gradient-based multiconstraint method.Pattern Recognition, 20:173–179.

    Google Scholar 

  • Mitiche, A. 1988. A computational approach to the fusion of stereopsis and kineopsis.Motion Understanding: Robot and Human, W.N. Martin and J.K. Aggarwal (Eds.), Kluwer Academic, pp. 81–99.

  • Mitiche, A. 1994. Computational analysis of visual motion.Plenum Publishing Corp..

  • Moloney, C.R. and Dubois, E. 1991. Estimation of motion fields from image sequences with illumination variation. In Proc. International Conference on Acoustics, Speech, and Signal Processing, Toronto, Canada, pp. 2425–2428.

  • Murray, D.W. and Buxton, B.F. 1987. Scene segmentation from visual motion using global optimization.IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(2):220–228.

    Google Scholar 

  • Murray, D.W. and Buxton, H. 1990.Experiments in the Machine Interpretation of Visual Motion, MIT Press.

  • Nagel, H.H. and Enkelmann, W. 1986. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences.IEEE Trans. Pattern Analysis and Machine Intelligence, 8(5):565–593.

    Google Scholar 

  • Nagel, H.H. 1986. Image sequences-ten (octal) years-from phenomenology towards a theoretical foundation. In Proc. International Conference on Pattern recognition, pp. 1174–1185.

  • Nagel, H.H. 1987. On the estimation of optical flow: Relations between different approaches and some new results.Artificial Intelligence, 33:299–324.

    Google Scholar 

  • Nagel, H.H. 1988. From image sequences towards conceptual descriptions.Image and Vision Computing, 6(2):59–74.

    Google Scholar 

  • Nagel, H.H. 1989. On a constraint equation for the estimation of displacement rates in image sequences.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(1):13–30.

    Google Scholar 

  • Nagel, H.H. 1990. Extending the orienred smoothness constraint into temporal domain and the estimation of derivatives of optical flow. In Proc. 1st European Conference on Computer Vision, Antibes, France, pp. 138–148.

  • Nagel, H.H., Socher, G., Kollnig, H., and Otte, M. 1994. Motion boundary detection in image sequences by local stochastic tests. In Proc. 3rd European Conf. on Computer Vision, Stockholm, pp. 305–315.

  • Nakayama, K. and Loomis, J.M. 1974. Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis.Perception, 3:63–80.

    Google Scholar 

  • Nakayama, K. and Shimojo, S. 1989. Intermediate and higher order aspects of motion processing: Temporal and spatial pooling of velocity signals and the role of hidden lines and surfaces.Neural Mechanisms of Visual Perception, D.Lam and C.Gilbert (Eds.), Portfolio Publishing Company, The Woodlands, TX, pp. 281–296.

    Google Scholar 

  • Nastar, C. and Ayache, N. 1994. Fast segmentation, tracking and analysis of deformable objects. In Proc. 4th International Conf. on Computer Vision, Berlin, pp. 275–279.

  • Negahdaripour, S. and Lee, S. 1992. Motion recovery from image sequences using only first-order optical flow information.International Journal of Computer Vision, 9(3):163–184.

    Google Scholar 

  • Negahdaripour, S. and Yu, C.H. 1993. A generalized brightness change model for computing optical flow. In Proc. 4th Int. Conf. on Computer Vision, Berlin, pp. 2–11.

  • Nelson, R.C. and Aloimonos, J. 1989. Obstacle avoidance using flow field divergence.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(10):1102–1106.

    Google Scholar 

  • Nelson, R.C. 1991. Qualitative detection of motion by a moving observer.International Journal of Computer Vision, 7(1):33–46.

    Google Scholar 

  • Nelson, R.C. and Polana, R. 1992. Qualitative recognition of motion using temporal texture.CVGIP: Image Understanding, 56(1):78–89.

    Google Scholar 

  • Nesi, P. 1993. Variational approach to optical flow estimation managing discontinuities.Image and Vision Computing Journal, 11(7):419–439.

    Google Scholar 

  • Nicolas, H. and Labit, C. 1992. Global motion identification for image sequence analysis and coding. In Proc. International Conference on Acoustics, Speech, and Signal Processing, Toronto, pp. 2825–2828.

  • Odobez, J.M. and Bouthemy, P. 1994. Detection of multiple moving objects using multiscale MRF with camera compensation. In Proc. 1st IEEE Int. Conf. on Image Processing, Austin, pp. 257–261.

  • Odobez, J.M. and Bouthemy, P. 1995. Robust multiresolution estimation of parametric motion models.Journal of Visual Communication and Image Representation, 6(4):348–365.

    Google Scholar 

  • Pahlavan, K., Uhlin, T., and Eklundh, J.O. 1992. Integrating primary occular processes. In Proc. 2nd European Conference on Computer Vision, Genova, pp. 526–541.

  • Pearl, J. 1986. On evidential reasoning in a hierarchy of hypotheses.Artificial Intelligence, 28:9–15.

    Google Scholar 

  • Peleg, S. and Rom, H. 1990. Motion-based segmentation. In Proc. 10th International Conference on Pattern Recognition, Atlantic City, pp. 109–113.

  • Pentland, A.P. 1990. Automatic extraction of deformable part models.International Journal of Computer Vision, 4:107–126.

    Google Scholar 

  • Pentland, A.P. and Sclaroff, S. 1991. Closed-form solutions for physically-based shape modeling and recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):715–729.

    Google Scholar 

  • Rao, A.R. and Jain, R.C. (1992). Computerized flow field analysis: Oriented texture fields.IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(7):693–709.

    Google Scholar 

  • Reid, D.B. 1979. An algorithm for tracking multiple targets.IEEE Trans. on Automatic Control, 24(6):843–854.

    Google Scholar 

  • Rimey, R.D. and Brown, C.M. 1992. Where to look next using a bayes net: Incorporating geometric constraints.Proc. 2nd European Conference on Computer Vision, Genova, pp. 542–550.

  • Rohr, K. 1994. Toward model-based recognition of human movements in image sequences.Computer Vision, Graphics, and Image Processing: Image Understanding, 59(1):94–115.

    Google Scholar 

  • Rougée, A., Levy, B., and Willsky, A.S. 1987. Reconstruction of two-dimensional velocity fields as a linear estimation problem. In Proc. 1st International Conference on Computer Vision, London, pp. 646–650.

  • Sandini, G. and Tistarelli, M. 1990. Active tracking strategy for monocular depth inference over multiple frames.IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(1):13–27.

    Google Scholar 

  • Schalkoff, R.J. and McVey, E.S. 1982. A model and tracking algorithm for a class of video targets.IEEE Trans. on Pattern Analysis and Machine Intelligence, 4(1):2–10.

    Google Scholar 

  • Schnörr, C. 1991. Determining optical flow from irregular domains by minimizing quadratic functionals of a certain class.International Journal of Computer Vision, 6(1):25–38.

    Google Scholar 

  • Schunck, B.G. 1986. The image flow contraint equation.Computer Vision, Graphics and Image Processing, 35:20–46.

    Google Scholar 

  • Schunck, B.G. 1989. Image flow segmentation and estimation by constraint line clustering.IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(10):1010–1027.

    Google Scholar 

  • Sethi, I.K. and Jain, R. 1987. Finding trajectories of feature points in a monocular image sequence.IEEE Trans. on Pattern Analysis and Machine Intelligence, 9(1):56–73.

    Google Scholar 

  • Sezan, M.I. and Lagendijk R.L. (Eds.) 1993.Motion analysis and image sequence processing, Kluwer Academic Publishers.

  • Shizawa, M. and Mase, K. 1990. Simultaneaous multiple optical flow estimation. In Proc. IEEE 10th International Conference on Pattern Recognition, Atlantic City, pp. 274–278.

  • Shizawa, M. and Mase, K. 1991. Principle of superposition: A common computational framework for analysis of multiple motion. In Proc. IEEE Workshop on Visual Motion, Princeton, pp. 164–172.

  • Simoncelli, E.P., Adelson, E.H., and Heeger, D.J. 1991. Probability distributions of optical flow. In Proc. Conference on Computer Vision and Pattern Recognition, Hawai, pp. 310–315.

  • Singer, R.A. 1970. Estimating optimal tracking filter performance for manned maneuvering targets.IEEE Trans. on Aerospace and Electronic Systems, 6(4):473–483.

    Google Scholar 

  • Singh, A. 1992. Incremental estimation of image flow using a kalman filter.Journal of Visual Communication and Image Representation 3(1):39–57.

    Google Scholar 

  • Skifstad, K. and Jain, R. 1989. Illumination independent change detection for real world image sequences.Computer Vision, Graphics, and Image Processing, 46:387–399.

    Google Scholar 

  • Snyder, M.A. 1991. On the mathematical foundations of smoothness constraints for the determination of optical flow and surface reconstruction.IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(11):1105–1114.

    Google Scholar 

  • Spoerri, A. and Ullman, S. 1987. The early detection of motion boundaries. In Proc. 1 st International Conference on Computer Vision, London, pp. 209–218.

  • Staïb, L.H. and Dunean, J.S. 1992. Boundary finding with parametrically deformable models.IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(11):1061–1075.

    Google Scholar 

  • Stiller, C. 1993. A statistical image model for motion estimation. In Proc. Int. Conf. on Acoustics, Speech and Signal Processing, Mineapolis, pp. 193–196.

  • Stuller, J. and Krishnamurthy, G. 1983. Kalman filter formulation of low-level television motion estimation.Computer Vision, Graphics, and Image Processing, 21:169–204.

    Google Scholar 

  • Sull, S. and Ahuja, N. 1991. Segmentation, matching and estimation of structure and motion of textured piecewise planar surfaces.Proc. IEEE Workshop on Visual Motion, Princeton, pp. 274–279.

  • Tamtaoui, A. and Labit, C. 1991. Constrained disparity and motion estimation for 3D TV image sequence coding.Signal Processing: Image Communication 4:45–54.

    Google Scholar 

  • Tekalp, A.M. 1995.Digital Video Processing, Prentice Hall.

  • Terzopoulos, D. 1986. Image analysis using multigrid relaxation methods.IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2):129–139.

    Google Scholar 

  • Terzopoulos, D. and Witkin, A. 1988. Deformable models. Physically based models with rigid and deformable components.IEEE Computer Graphics and Applications, 8:41–51.

    Google Scholar 

  • Terzopoulos, D. and Metaxas, D. 1991. Dynamic 3D models with local and global deformations: Deformable superquadrics.IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):703–714.

    Google Scholar 

  • Thoma, R. and Bierling, M. 1989. Motion compensating interpolation considering covered and uncovered background.Signal Processing: Image Communication, 1(2):191–212.

    Google Scholar 

  • Thompson, W.B., Berzins, V.A., and Mutch, K.M. 1985. Dynamic occlusion analysis in optical flow fields.IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(4):374–383.

    Google Scholar 

  • Thompson, W.B. and Kearney, J.K. 1986. Inexact vision. In Proc. IEEE Workshop on Motion: Representation and Analysis, Charleston, pp. 15–21.

  • Thompson, W.B. and Pong, T.G. 1990. Detecting moving objects.International Journal of Computer Vision, 4:39–57.

    Google Scholar 

  • Tistarelli, M. and Sandini, G. 1992. Dynamic aspects in active vision.CVGIP: Image Understanding, 56(1):108–129.

    Google Scholar 

  • Tistarelli, M. 1994. Multiple constraints for optical flow. In Proc. 3rd European Conf. on Computer Vision, Stockholm, pp. 61–70.

  • Torr, P.H.S. and Murray, D.W. 1993. Statistical detection of independent movement from a moving camera.Image and Vision Computing Jal, 11(4):180–187.

    Google Scholar 

  • Tretiak, O. and Pastor, L. 1984. Velocity estimation from image sequences with second order differential operators. In Proc. International Conference of Pattern Recognition and Image Processing, Montreal, Canada, pp. 16–19.

  • Tziritas, G. and Labit, C. 1994.Motion Analysis for Image Sequence Coding, Elsevier Publisher.

  • Ulstad, M.S. 1973. An algorithm for estimating small scale differences between two digital images.Pattern Recognition,5:323–333.

    Google Scholar 

  • Vaidya, V.G. and Haralick, R.M. 1993. Wigner distribution for 2D motion estimation from noisy images.Journal of Visual Communication and Image Representation, 4(4):281–297.

    Google Scholar 

  • Vemuri, B.C. and Badisavljevic, A. 1994. Multiresolution stochastic hybrid shape models with fraetal priors.ACM Transactions on Graphices, 13(2):177–207.

    Google Scholar 

  • Verri, A. and Poggio, T. 1989. Motion field and optical flow: Qualitative properties.IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:490–498.

    Google Scholar 

  • Verri, A., Girosi, F., and Torre, V. 1990. Differential techniques for optical flow.Journal of the Optical Society of America A, 7:912–922.

    Google Scholar 

  • Wang, J.Y.A. and Adeison, E.H. 1994. Representing moving images with layers.IEEE Trans. on Image Processing, 3(5):625–638.

    Google Scholar 

  • Watson, A.B. and Ahamuda, A.J. 1985. Model of human visualmotion sensing.Journal of Optical Society of America A, 2:322–342.

    Google Scholar 

  • Waxman, A.M. and Wohn, K. 1985. Contour evolution, neighborhood deformation, and global image flow.International Journal of Robotics Systems, 4(3)95–108.

    Google Scholar 

  • Waxman, A.M. and Duncan, J. 1986. Binocular image flows: Steps toward stereo-motion fusion.IEEE Trans. on Pattern Analysis and Machine Intelligence, 8:715–729.

    Google Scholar 

  • Waxman, A.M., Kamgar-Parsi, B., and Subbarao, M. 1987. Closedform solutions to image flow equations for 3D structure and motion.International Journal of Computer Vision, 1(3):239–258.

    Google Scholar 

  • Waxman, A.M., Wu, J., and Bergholm, F. 1988. Convected activation profiles and the measurement of visual motion. In Proc. Conference on Computer Vision and Pattern Recognition, Ann Arbor, pp. 717–723.

  • Weber, J. and Malik, J. 1995. Robust computation of optical flow in a multi-scale differential framework.Int. Journal of Computer Vision, 14:67–81.

    Google Scholar 

  • Weiss, L.E. and Sanderson, A.C. 1990. Dynamic sensor-based control of robots with visual feedback.IEEE Trans. on Robetics and Automation, 4:39–57.

    Google Scholar 

  • Weng, J. 1990. A theory of image matching. In Proc. 3rd International Conference on Computer Vision, Osaka, pp. 200–209.

  • Werkhoven, P. and Toet, A. 1986. The estimation of displacement vector fields by means of adaptive affine transformations. In Proc. 8th International Conference on Pattern Recognition, Paris, pp. 798–800.

  • Wiklund, J. and Granlund, G.H. 1987. Image sequence analysis for object tracking. In Proc. 5th Scandinavian Conference on Image Analysis, pp. 641–648.

  • Wiflick, D. and Yang, Y.H. 1991. Experimental evaluation of motion constraint equations.Computer Vision, Graphics, and Image Processing: Image Understanding, 54(2):206–214.

    Google Scholar 

  • Wohn, K., Davis, L.S., and Thrift, P. 1983. Motion estimation based on multiple local constraints and nonlinear smoothing.Pattern Recognition, 16:563–570.

    Google Scholar 

  • Wohn, K. and Waxman, A.M. 1990. The analytic structure of image flows: Deformation and segmentation.Computer Vision, Graphics, and Image Processing, 49:127–151.

    Google Scholar 

  • Wohn, K.Y., Wu, J., and Brockett, R.W. 1991. A contour-based recovery of image flow: Iterative transformation method.IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(8):746–760.

    Google Scholar 

  • Wong, R.Y. and Hall, E.L. 1978. Sequential hierarchical scene matching.IEEE Trans. on Computer, 27(4):359–366.

    Google Scholar 

  • Woodham, R.J. 1990. Multiple light source optical flow.Proc. 3rd International Conference on Computer Vision, Osaka, pp. 42–46.

  • Wu, S.F. and Kittler, J. 1993. A gradient-based method for general motion estimation and segmentation.Journal of Visual Communication and Image Representation, 4(1):25–38.

    Google Scholar 

  • Yang, Y.H. and Levine, M.D. 1992. The background primal sketch: An approach for tracking moving objects.Machine Vision and Applications, 5:17–34.

    Google Scholar 

  • Yuille, A.L. and Grzywacz, N.M. 1989. A mathematical analysis of the motion coherence theory.Int. Journal of Computer Vision, 3:155–175.

    Google Scholar 

  • Yuille, A.L. 1992. Feature extraction from faces using deformable templates.International Journal of Computer Vision, 8(2):90–111.

    Google Scholar 

  • Zheng, Q. and Chellappa, R. 1993. A computational vision approach to image registration.IEEE Trans. on Pattern Analysis and Machine Intelligence, 2(3):311–326.

    Google Scholar 

  • Zhao, W.Z., Qi, F.H., and Young, T.Y. 1989. Dynamic estimation of optical flow field using objective functions.Image and Vision Computing, 7(4):259–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitiche, A., Bouthemy, P. Computation and analysis of image motion: A synopsis of current problems and methods. Int J Comput Vision 19, 29–55 (1996). https://doi.org/10.1007/BF00131147

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00131147

Keywords

Navigation