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Self-calibration of an A�ne Camera from Multiple ViewsLong QUANLIFIA - CNRS - INRIA,46, avenue Felix Viallet,38031 Grenoble, FranceLong.Quan@imag.frAbstractA key limitation of all existing algorithms for shape and motion from image sequences underorthographic, weak perspective and para-perspective projection is that they require the calibrationparameters of the camera. We present in this paper a new approach that allows the shape andmotion to be computed from image sequences without having to know the calibration parame-ters. This approach is derived with the a�ne camera model, introduced by Mundy and Zisserman[18], which is a more general class of projections including orthographic, weak perspective andpara-perspective projection models. The concept of self-calibration, introduced by Maybank andFaugeras in [16] for the perspective camera and by Hartley for the rotating camera in [10], is thenapplied for the a�ne camera.This paper introduces the 3 intrinsic parameters that the a�ne camera can have at most. Theintrinsic parameters of the a�ne camera are closely related to the usual intrinsic parameters of thepin-hole perspective camera, but di�erent in general case. Based on the invariance of the intrinsicparameters, the methods of self-calibration of the a�ne camera are proposed. It is shown thatwith at least four views, an a�ne camera may be self-calibrated up to a scaling factor. It turns outEuclidean (similarity) shape reconstruction only up to a global scaling factor. Another consequenceof the introduction of intrinsic and extrinsic parameters of the a�ne camera is that all existingalgorithm using calibrated cameras can be assembled into the same framework and some of themcan be easily extented to a batch solution.Experimental results are presented and compared with other methods using calibrated a�necameras.Key words: a�ne camera, orthographic, weak perspective, para-perspective, self-calibration, intrinsicparameters, a�ne shape. R.T. Imag-Li�a 26, Nov. 19941 IntroductionThree dimensional metric reconstruction from image sequence is probably one of the most importantthemes in computer vision. Very recently, a lot of work has been developed for invariant reconstructionsuch as projective reconstruction from multiple uncalibrated images [4, 8, 22, 17], this class of methodsassumes generally a full perspective camera model and the invariant shape is generally projectiveshape. Parallelly, there is also a lot of work [27, 25, 13, 23, 14] proposed for reconstruction fromthe simpli�ed camera models such as orthographic, weak perspective and para-perspective. Thesesimpli�ed projection models provide a good approximation to the perspective projection model whenthe depth of an object is small compared to the viewing distance. Among those, one of the most1



remarquable method is the one proposed by Tomasi and Kanade called factorization method whichgives an elegant batch solution. In this case, it is known that the intrinsic invariant shape that maybe recovered is the a�ne shape. This a�ne shape can be transformed into its usual Euclidean shapeby intergrating the so called metric constraints. These metric constraints are essentially the intrinsicparameters of the camera. It is the purpose of this paper to propose methods which allow to getEuclidean reconstruction without having to know the intrinsic parameters of the camera from thea�ne reconstruction, therefore avoid the tedious and numerically non stable calibration.To get Euclidean structure from uncalibrated a�ne cameras, the key idea is to use the self-calibrationidea originally proposed by Maybank and Faugeras in [16] for the perspective camera. More practicalself-calibration methods have been developed in [9, 10, 15], especially that for self-calibrating a rotatingcamera.We will develop the self-calibration method in the context of the a�ne camera model, introduced byMundy and Zisserman [18]. The a�ne camera generalises the orthographic, weak perspective andpara-perspective models. Parallelism is still preserved by the a�ne camera but the image plane shapesare potentially more distorted since the image coordinates can undergo anisotropic scaling. It is notclear what viewing process leads to the a�ne camera approximation. ([18, page 514]). A number ofinteresting results has been achieved by Shapiro et al. in [24] based on this concept.In the context of the a�ne camera, we will �rst introduce the intrinsic and extrinsic parameters forthe a�ne camera by analogy to the perspective camera. It will be shown that the a�ne camera canhave at most 3 intrinsic parameters and the intrinsic parameters of the a�ne camera are generallydi�erent from those of the perspective camera. Based on the invariance of these intrinsic parameters,several self-calibration methods which allow the shape and motion to be computed from uncalibrateda�ne camera will be developed.The contributions of this paper are mainly twofold. The introduction of of the intrinsic parametersfor the a�ne camera and the algorithms of self-calibration for the a�ne camera. One of the importantconsequences is that Euclidean shape and motion are computed from uncalibrated a�ne images.Another one is that all algorithms using calibrated a�ne cameras can be nicely assembled into thesame framework in terms of the intrinsic calibration matrix of the a�ne camera. Therefore batchsolution for shape and motion is available for all di�erent projection models included in the a�necamera.The paper is organized as follows. In Section 2, the a�ne camera model is brie
y reviewed. Then inSection 2.1, the intrinsic and extrinsic parameters of the a�ne camera are introduced, and some specialexamples of the a�ne camera are also given based on this decomposition. Later in Section 3, the a�neshape and motion from image sequences by factorization method is reviewed following Tomasi andKanade with the extension to the a�ne camera. Next in Section 4, several self-calibration methodsfor the a�ne camera are proposed. The related work on shape and motion from image sequencesunder orthographic, weak perspective and para-perspective projection is discussed and reformulatedin terms of the intrinsic parameters of the a�ne camera in Section 5. The experimental results arepresented in Section 6. Finally, some concluding remarks are given in Section 7.2 A�ne cameraThe concept of the a�ne camera is reviewed in this section following Mundy and Zisserman [18] andShapiro et al. [24].A pin-hole camera can be modeled as a linear mapping from P3 to P2. This mapping is representedby a 3� 4 matrix if homogeneous coordinates are used both for object and image points.2



w0B@uv11CA = P3�40BBB@xyz11CCCA (1)The camera represented by P3�4 is usually called the perspective camera.If pij denote the entries of the matrix P3�4, then by introducing the constraints p31 = p32 = p33 = 0to the perspective camera, we obtain the a�ne camera introduced by Mundy and Zisserman in [18]:w0B@uv11CA = P3�40BBB@xyz11CCCA = 0B@p11 p12 p13 p14p21 p22 p23 p240 0 0 p341CA0BBB@xyz11CCCA : (2)A�ne camera represents a class of projections more general than orthographic, weak perspective andpara-perspective projections and less general than the full perspective projection.In terms of non-homogeneous coordinates, by removing the common scalar factor, the equation (2) isrewritten as  uv! = M2�30B@xyz1CA +  tutv!where mij = pij=p34 and tu = p14=p34, tv = p24=p34.One of the very attractive properties of the class of a�ne cameras is that it is independent of trans-lations if the relative coordinates, with respect to a given reference point, are used both in spaceand in image. For any given reference point (ur; vr)T in image and (xr; yr; zr)T in space, the relativecoordinates (~u; ~v)T in image and (~x; ~y; ~z)T in space of a point are ~u~v! =  u � urv � vr! and 0B@~x~y~z1CA = 0B@x� xry � yrz � zr1CA :As (ur; vr)T = M2�3(xr; yr; zr)T + (tu; tv)T , it follows that the basic projection equation for the a�necamera in terms of relative coordinates is ~u~v! = M2�30B@~x~y~z1CA :An a�ne camera M2�3 has 6 = 2� 3 independent parameters.It can be easily veri�ed that the centroid of a set of points in space is also projected into the centroidof the points in the image plane by the a�ne camera. Therefore, in practice, the centroid is taken asthe reference point for the relative coordinates. We assume also in this paper that this is always done.2.1 Intrinsic and extrinsic parameters of the a�ne cameraThis section introduces the intrinsic and extrinsic parameters for the a�ne camera M2�3 following thesame idea for the perspective camera. 3



2.2 The general perspective camera: reviewFor a perspective camera P3�4, it has at most 11 independent parameters which are separated into twoparts: the intrinsic and extrinsic parameters. This separation was achieved by uniquely decomposingP3�4 [5, 26] into P3�4 = A3�3D3�4 = 0B@�u cot � u00 �v= sin � v00 0 11CA�R3�3 t3�1� :A3�3 is an upper triangular matrix and its 5 entries are so called the 5 intrinsic parameters of theperspective camera which have the following interpretation: �u and �v are respectively the focal lengthin horizontal and vertical pixels; (u0; v0) is the principal point; � is the angle between the two cameraaxes. For convenience, we can also use two other equivalent parameters f , the focal length in pixelsand � = �u=�v, called the aspect ratio of the camera instead of �u and �v.R3�3 and t3�1 denote respectively a rotation and a translation in space. They count for the 6 = 3+ 3extrinsic parameters of the perspective camera.For CCD cameras, it is generally assumed there is no skew, i.e. � = �=2. Without loss of generalityand for simplicity of the development, we use 4 parameters for the perspective camera, f , �, u0 andv0.2.3 The a�ne cameraBy analogy to this intrinsic and extrinsic decomposition for the perspective camera, let consider thea�ne camera represented by M2�3. by invoking QR decomposition theorem ([7, 8, 5]), then M2�3 isdecomposed as follows M2�3 = A2�2R2�3 =  a 0b c! rT1rT2 ! ;this decomposition is unique if rank(M2�3) = 2. A2�2 is a 2 � 2 lower triangular matrix that wecall the (intrinsic) calibration matrix of the a�ne camera. A2�2 encodes therefore at most 3 intrinsicparameters of the a�ne camera. R2�3 is a 2�3 matrix containing two rows of a 3�3 rotation matrix.The third missing row of the rotation matrix can always be recovered if necessary by the constraint oforthonormality. R2�3, though 2� 3, represents a full 3D rotation whose 3 degrees of freedom1 countfor the 3 extrinsic parameters of the a�ne camera.The intrinsic calibration matrix A2�2 can be rewritten asA2�2 = k �a 0sa 1! :k can be interpreted as the scaling factor of the a�ne camera, �a the aspect ratio of the a�ne camera,sa the skew of the a�ne camera. These intrinsic parameters are generally di�erent from those of theperspective camera, except in some special simple cases. We are now to give some examples of intrinsicparameters for the special cases of the a�ne camera.1A 2� 3 matrix with three constraints rT1 r2 = 0, krT1 k2 = krT2 k2 = 1.4



2.4 Some special cases of the a�ne cameraFor orthograhic projection, the camera matrix can be taken to be M2�3 =  �rT1rT2 !, thenAortho =  � 00 1! :In this case, k = 1, �a = � and sa = s = 0. The unique a�ne intrinsic a�ne camera parameteris the aspect ratio which is also that of the perspective camera.For weak perspective projection, the camera matrix is M2�3 = k �rT1rT2 !, the calibration matrix isAweak = k � 00 1! :In this case, sa = 0 and there are two intrinsic parameters: the aspect ratio �a = � which is stillthe same as the perspective camera and the scaling factor k including the scaling e�ect of boththe focal length and the average depth of the object. As Aweak = kAortho , the weak perspectiveprojection is also called the scaled orthographic projection.The para-perspective projection, (cf. [19, 1, 24, 12]) generalises the weak perspective by projectingparallel to a given projection direction. If the projection direction is described by two angles �xand �y, where �x lies in the xz plane with the x axis and �y in the yz plane with the y axis. Thecamera matrix of the para-perspective projection takes the following form according to [1, 24]:M2�3 =  � 0 �� cot �x0 1 � cot �y !0B@rT1rT2rT31CA :A two-step QR factorization of M2�3 by using Householder transformation [7] turns out thefollowing calibration matrix:Apara = k0@ � 0cot �x cot �y1+cot �2x p1+cot �2x+cot �2y1+cot �2x 1AThe scaling factor k describes the various scaling e�ects introduced in the para-perspectiveprojection. �a = 1+cot �2xp1+cot �2x+cot �2y �, and sa = cot �x cot �yp1+cot �2x+cot �2y . From this para-perspective example,we can see that the intrinsic parameters of the a�ne camera are closely related to those of theperspective camera, but are di�erent.It should not be surprised that �x and �y are also part of intrinsic parameters, they are playingthe similar role as the principal point (u0; v0) for the perspective camera.The calibration matrix of the para-perspective and that of the weak perspective are related asfollows:Apara = k � 00 1! 1 + cot �2x 0cot �x cot �y q1 + cot �2x + cot �2y! = Aweak  1 + cot �2x 0cot �x cot �y q1 + cot �2x + cot �2y! :5



Remark that we may need up to 7 = 5+2 parameters (5 intrinsic for the perspective camera and2 angles de�ning the projection direction) to completely describe the calibration of the para-perspective projection, however they are not independent in terms of the intrinsic parameters ofthe a�ne camera, as we can have no more than 3 independent parameters.Also, we should notice that once we know the intrinsic parameters of the a�ne camera, we cannot extract those of the perspective camera since we have only 3 degrees of freedom for the a�necamera instead of 5 degrees of freedom for the perspective camera, except for the case of theweak perspective case.3 A�ne shape from uncalibrated a�ne camerasIt is known [13, 23, 14, 25] that a�ne shape can be recovered from a�ne cameras. The elegantfactorization method to this problem is proposed by Tomasi and Kanade [25] in orthographic projectioncase, and extended to weak perspective by Weinshall and Tomasi [30] and para-perspective case byPoelman and Kanade [20].Following Tomasi and Kanade [25], suppose n points are tracked over v distinct views, we can write0BBBBBBB@~u11 : : : ~u1n: : : : : : : : :~uv1 : : : ~uvn~v11 : : : ~v1n: : : : : : : : :~vv1 : : : ~vvn1CCCCCCCA = 0B@M1: : :Mf1CA�s1 : : : sn�where si = (~xi; ~yi; ~zi)T .This equation is noted as W2v�n = M2v�3S3�nwhere W2v�n is the 2v� n measurement matrix, M2v�3 the 2v � 3 camera matrix and S3�n the 3� nshape matrix.It is evident that W2v�n still have the rank at most 3. Hence, the same factorization method applies.This is also noted in [24] that the same process applies for the general a�ne camera.To �nd Euclidean structure from the a�ne one, one needs to determine a non singular 3 � 3 matrixD such that M 02v�3 = M2v�3D and S0 = D�1S represent the real a�ne camera matrix and Euclideanshape, since W2v�n = M2v�3DD�1S3�n = (M2v�3D)(D�1S3�n) = M 02v�3S 03�n:To determine D, the so-called metric constraints were used. The di�erent solutions for di�erent specialcases have been proposed by Tomasi and Kanade [25], Poelman and Kanade [20], Weinshall and Tomasi[30], Weishall [29], Shapiro et al. [24], Ullman and Basri [28]. These methods will be assembled intothe same framework in terms of calibration matrix in Section 5. All these methods share a commonpoint that it requires the knowledge of the intrinsic parameters of the camera, though it may have onlyone, the aspect ratio, for weak perspective case. It is the main purpose of this paper to determine thisD in order to get Euclidean shape and motion without having to know the calibration of the camera.This will be achieved by a self-calibration step which follows.6



4 Self calibration for the a�ne camera4.1 Basic ideaIn this section, we will introduce the concept of self-calibration idea for the a�ne camera following theoriginal idea proposed for the perspective camera by Maybank and Faugeras in [16]. More practicalmethods have been reported in [6, 15, 9, 11, 3, 17] for self-calibration.The basic idea of self-calibration is to use the invariance of unknown intrinsic parameters based onthe point correspondences through the distinct views.Although the concept of self-calibration is the same as that of Maybank and Faugeras [16], the practicalapproach of self-calibration that will be developed for the a�ne camera is quite di�erent from thatused by Maybank and Faugeras. It is more inspired by the recent work of Hartley in [10] for calibratinga rotating camera.4.2 FormulationFor the given v views and tracked n points, from the previous section, the camera matrix M2v�n andshape matrix 3 � n are obtained up to an unknown 3� 3 matrix D by factorizing the measurementmatrix W2v�n.For each view i, the 2 � 3 camera matrix Mi is actually de�ned only up to an unknown lineartransformation D. The constraint that may be imposed on D is that MiD should correspond to thereal camera matrix for each view i, that is, MiD has to be decomposed into its real intrinsic Ai andextrinsic Ri parameters matrices such as MiD = AiRi: (3)Multiply each side of (3) by its transpose, and observe that for the 2 � 3 orthogonal matrix Ri,RiRTi = I . (3) becomes MiDDTMTi = AiRiRTi ATi = AiATi : (4)Now, let X = DDT and Mi =  mTinTi !, the equation (4) is mTi Xmi mTi XnimTi Xni nTi Xni! = AiATi : (5)In the self-calibration context, if we assume that the images are taken by the same a�ne camera,therefore the intrinsic parameters of the camera except the individual scaling factor for each viewremain invariant during the acquisition. This means that we have the following expression:k1A1 = k2A2 = : : := kvAv:It follows, k21A1AT1 = k22A2AT2 = : : : = k2vAvATv :In terms of X and Mi according to the equation (5),k21  mT1Xm1 mT1Xn1mT1Xn1 nT1Xn1! = : : : = k2v  mTvXmv mTvXnvmTvXnv nTvXnv! :7



For each pair of views (i; j), by taking the ratios of the matrix entries to cancel the di�erent scalingfactor ki and kj, we obtain 8><>: mTi XminTi Xni = mTj XmjnTj XnjmTi XninTi Xni = mTj XnjnTj XnjEach such equation is quadratic and homogeneous in the 6 entries of X (X is symmetric).For v views, 2(v � 1) such independent equations are obtained. The solution for X can only bedetermined up to a common scalar due to the homogeneity of the equations. X counts therefore onlyfor 5 independent parameters. With a minimum of 4 views, it provides 2� (4� 1) = 6 equations forthe 5 unknowns. A numerical solution can be expected.4.3 Cholesky parameterizationIf we compute �rst X , then to get D, Cholesky decomposition should be applied to X to get D suchas X = DDT . This has been widely used to derive linear algorithms in previous work on shapeand motion from the calibrated cameras, except for [25] in which a non linear algorithm is preferred.However, this decomposition is possible and unique if and only if the computed X is positive-de�nite.In case of noised data, no matter what method is used to solve for X , it may fail to be decomposableinto DDT due to the non positive-de�niteness of the computed X .In the context of self-calibration, even less information than calibrated case is available. In practice, theexperiments show that the computed X by self-calibration is rarely positive-de�nite. The constraintof positive-de�niteness should be explicitly imposed on X . This constraint is essentially non linear.Without loss of generality, a positive-de�nite X can always be parameterized (by invoking Choleskydecomposition [7]) by ZZT where Z is a lower triangular matrix,Z = 0B@z1 0 0z2 z3 0z4 z5 z61CA :A multiplicative constant on Z makes X multiplied by the square of this constant. The homogeneityof X is transmitted to Z. Therefore we assume z6 = 1 without losss of generality (z6 = 0 will makeZ singular). This Cholesky reparameterization, although non linear, maintains the minimum of 5independent parameters.If z denotes the six vector (z1; z2; : : : ; z5; 1) of the entries of Z, the self-calibration is formulated as thefollowing unconstraint minimization problem.min f(z) = v�1Xi=1(mTi XminTi Xni � mTi+1Xmi+1nTi+1Xni+1 )2 + (mTi XninTi Xni � mTi+1Xni+1nTi+1Xni+1 )2; with X = ZZT : (6)This can be iteratively solved by, for instance, Levenberg-Marquart method [21]. The initial solutioncan be either provided by hand (typically Z can be taken to be the identity) or by other linear methods.This is still discussed in Section 6.4.4 Shape and motion from Cholesky parameterizationOnce Z is computed as above, it remains to determine the D such that each MiD turns out to bedecomposed into the real camera matrix for each view i. By de�nition, X = ZZT = DDT , where Z8



is lower triangular and D is any non singular. Applying QR decomposition to D, D = ZR, where Ris orthonormal. Therefore, D is determined up to a rotation R for the given Z. This rotation matrixR can be �xed by taking any one of the views as the reference view, that is, if the view i is takenas the reference view, QR decomposes MiZ into ARi, then the unknown rotation can be taken to beR = RTi . Finally, D = ZRTi :4.5 Some special cases of self-calibrationThe above self-calibration method is developed for a general a�ne camera. It can be further simpli�edif additional simplistic assumptions are taken for the a�ne camera model.4.5.1 Weak perspectiveIf the a�ne camera is assumed to be one of the special cases, the weak perspective camera, the intrinsicparameters matrix for the weak perspective has a diagonal form. This suggests a special method forthe weak perspective camera.Recall for weak perspective, AAT = k2  �2 00 1!For each individual view i, observing the o�-diagonal entries are zero, we havemTi Xni = 0: (7)For each pair of views (i; j), mTi XminTi Xni = mTj XmjnTj Xnj : (8)With at least 3 views, we obtain 3 linear equations of type (7) from each individual view and 2quadratic equations from two pairs of the 3 views. An algebraic solution with at most 4 solutions canbe expected from this system of equations.Generally, when v views are available, the self-calibration of the weak perspective camera can beformulated as the following minimization problem.min�(z) = v�1Xi=1(mTi XminTi Xni � mTi+1Xmi+1nTi+1Xni+1 )2 + vXi=1(mTi Xni)2; with X = ZZT : (9)It is also interesting to remark that with at least 5 views, a linear solution is possible by using onlythe linear equations of type (7).4.5.2 Fixed (unknown) scaling factorIf we make a simplistic assumption that all views have the same unknown scaling factor (this is possiblewhen the motion is small or mainly rotational aroud the object), that means that all three intrinsicparameters including the individual scaling factor are invariant. We have the following expression interms of calibration matrices, A1 = : : := Av:9



The self-calibration equations are therefore the following expressions: mT1Xm1 mT1Xn1mT1Xn1 nT1Xn1! = : : : =  mTvXmv mTvXnvmTvXnv nTvXnv! :For each pair of views (i; j), 8><>: mTi Xmi = mTj XmjmTi Xni = mTj XnjnTi Xni = nTj XnjEach such equation is homogeneous and linear in the entries of X . With v � 3 views, X can be solvedby linear least squares method. For instance, with kxk2 = 1, a solution is obtained by Svd.5 Related workA lot of work has been reported in the literature for shape and motion from image sequences underorthographic, weak perspective and para-perspective projection. All existing algorithms require theintrinsic parameters of the camera to be known.Using the intrinsic parameters of the a�ne camera introduced in this paper, the previous work canall be reformulated as solving the following equations for X with known Ai for each view, mTi Xmi mTi XnimTi Xni nTi Xni! = AiATi : (10)The above equation system is the same as the equation (5) except that in (5) AiATi is unknown.� Tomasi and Kanade [25] initially used orthographic projection, it is equivalent to haveAiATi =  1 00 1! ;thus the metric constraints are, for each view,8><>: mTi Xni = 0mTi Xmi = 1nTi Xni = 1:� Weinshall and Tomasi [30] and Weinshall [29] worked with the weak perspective camera. Themethod proposed in these papers needs to �rst select 4 reference points, then computes theirGramian. In fact, this can be easily extended to a batch solution for general n points withoutneed of explicitly selecting 4 reference points. In the calibrated weak perspective case, theknowledge of the intrinsic parameters for each view is coded inAiATi = k2i  �2i 00 1! ; (11)it su�ces to solve the following equations derived for each view,( mTi Xni = 0mTi XminTi Xni = �2i : (12)10



� For the general para-perspective, the known intrinsic calibration matrix is given asAiATi = k2i  �2i (1 + cot �2xi) �i cot �xi cot �yi�i cot �xi cot �yi 1 + cot �2yi ! :Poelman and Kanade [20] used a special para-perspective model due to Otha [19], by projectingalong the direction from the camera's focal point to the object's centroid. First the normalizedcoordinates are computed by applying the calibration matrix in each image plane for imagepoints. Then, if (xi; yi) denotes the normalized coordinates of the centroid in the view i. Thedirection of projection are estimated bycot �xi = xi and cot �yi = yi;and the intrinsic matrix of the para-perspective camera is simpli�ed intoAiATi = k2i  1 + x2i xiyixiyi 1 + y2i! :It remains to solve the following equations:8<: mTi XninTi Xni = xiyi1+y2i ;mTi XminTi Xni = 1+x2i1+y2i :Remark All these equations can be linearly solved for X , but they su�er from the problem of nonpositive-de�niteness of X in presence of noise. Non-linear methods can be applied using Choleskyparameterization of X introduced in Section 4. Note that the initial method using metric constraintsof Tomasi and Kanade [25] did not use linear algorithm. They explicitly solved for DDT instead ofX , however how D is parameterized is not clear in [25].As for self-calibration, as we have mentioned in Section 4 that there have been several practicalmethods available in the literature. All of them are developed for the perspective camera with moreor less free intrinsic parameters.6 Experimental resultsThe self-calibration methods developed in this paper are implemented and then applied to real imagesequences. The reconstruction results obtained from the self-calibration are also compared with thoseobtained by the calibrated cameras.Poelman and Kanade at Cmu kindly provided the hotel image sequence that they have used in [20].In this sequence, the camera motion included substantial translation away from the camera and acrossthe �eld of view. 197 points throughout the sequence of 181 images are automatically identi�ed andtracked. For a more detailed description of this set-up, one can consult [20].In our experiments, not all images of the sequence are used, only 10 out of 181 images are selectedfrom an interval of 20 images. Four of them are illustrated in Figure 1 to have an idea of the imagesequence. The shape reconstruction by self-calibration is compared with that of calibrated para-perspective provided by Poelman and Kanade [20].The self-calibration algorithm uses the minimization equation (6). The starting point for the matrixZ is always set to be the identity. 11



Figure 1: Image 1, 101, 151 and 181 of the hotel model image sequences.
(a) (b)Figure 2: Top view of the reconstructed shape: (a) self-calibrated a�ne camera and (b) calibratedpara-perspective.
(a) (b)Figure 3: Front view of the reconstructed shape: (a) self-calibrated a�ne camera and (b) calibratedpara-perspective. 12



(a) (b)Figure 4: Side view of the reconstructed shape: (a) self-calibrated a�ne camera and (b) calibratedpara-perspective.In Figures 2, 3 and 4, the top, front and side views of the reconstructed shape are displayed andcompared with the calibrated para-perspective solution. From the front view, it looks less accuratethan the calibrated para-perspective solution, since the right angle of the wall is still slightly deformed.However the top view looks slightly better and also the side view tells us the depth of the hotel modelis correctly recovered.Another experiment is conducted on the sequence of images of a cube, kindly provided by Boufamaand used in [2]. The sequence is designed to cover a small �eld of view so that the weak perspectiveapproximation is appropriate [2]. To compare the self-calibration method with the calibrated method,the batch solution for the calibrated weak perspective using the equations (12) is implemented andcomputed, it actually turned out very good results illustrated in Figure 6.(c).
Figure 5: Image 1 and 5 of the image sequences of the cube.For self-calibration, the weak perspective projection model is still assumed, hence the self-calibrationalgorithm uses the minimization equation (9). The results of the self-calibrated weak perspective arepresented in Figure (6) in which one observes that the self-calibration gives less good results than thecalibrated weak perspective, however Euclidean shape is greatly improved with respect to the initiala�ne shape illustrated in Figure 6.(a).From the experimentation that we have performed, the self-calibration algorithms performed well andgreatly improved the intial a�ne reconstruction. Compared with the calibrated cases, the recon-struction is slightly less accurate, it is not surprising as the self-calibration algorithm uses much lessinformation than the algorithms for the calibrated cases.13
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