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Abstract

A key limitation of all existing algorithms for shape and motion from image sequences under
orthographic, weak perspective and para-perspective projection is that they require the calibration
parameters of the camera. We present in this paper a new approach that allows the shape and
motion to be computed from image sequences without having to know the calibration parame-
ters. This approach is derived with the affine camera model, introduced by Mundy and Zisserman
[18], which is a more general class of projections including orthographic, weak perspective and
para-perspective projection models. The concept of self-calibration, introduced by Maybank and
Faugeras in [16] for the perspective camera and by Hartley for the rotating camera in [10], is then
applied for the affine camera.

This paper introduces the 3 intrinsic parameters that the affine camera can have at most. The
intrinsic parameters of the affine camera are closely related to the usual intrinsic parameters of the
pin-hole perspective camera, but different in general case. Based on the invariance of the intrinsic
parameters, the methods of self-calibration of the affine camera are proposed. It is shown that
with at least four views, an affine camera may be self-calibrated up to a scaling factor. It turns out
Euclidean (similarity) shape reconstruction only up to a global scaling factor. Another consequence
of the introduction of intrinsic and extrinsic parameters of the affine camera is that all existing
algorithm using calibrated cameras can be assembled into the same framework and some of them
can be easily extented to a batch solution.

Experimental results are presented and compared with other methods using calibrated affine
cameras.

Key words: affine camera, orthographic, weak perspective, para-perspective, self-calibration, intrinsic
parameters, affine shape.
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1 Introduction

Three dimensional metric reconstruction from image sequence is probably one of the most important
themes in computer vision. Very recently, a lot of work has been developed for invariant reconstruction
such as projective reconstruction from multiple uncalibrated images [4, 8, 22, 17], this class of methods
assumes generally a full perspective camera model and the invariant shape is generally projective
shape. Parallelly, there is also a lot of work [27, 25, 13, 23, 14] proposed for reconstruction from
the simplified camera models such as orthographic, weak perspective and para-perspective. These
simplified projection models provide a good approximation to the perspective projection model when
the depth of an object is small compared to the viewing distance. Among those, one of the most



remarquable method is the one proposed by Tomasi and Kanade called factorization method which
gives an elegant batch solution. In this case, it is known that the intrinsic invariant shape that may
be recovered is the affine shape. This affine shape can be transformed into its usual Euclidean shape
by intergrating the so called metric constraints. These metric constraints are essentially the intrinsic
parameters of the camera. It is the purpose of this paper to propose methods which allow to get
Euclidean reconstruction without having to know the intrinsic parameters of the camera from the
affine reconstruction, therefore avoid the tedious and numerically non stable calibration.

To get Fuclidean structure from uncalibrated affine cameras, the key idea is to use the self-calibration
idea originally proposed by Maybank and Faugeras in [16] for the perspective camera. More practical
self-calibration methods have been developed in [9, 10, 15], especially that for self-calibrating a rotating
camera.

We will develop the self-calibration method in the context of the affine camera model, introduced by
Mundy and Zisserman [18]. The affine camera generalises the orthographic, weak perspective and
para-perspective models. Parallelism is still preserved by the affine camera but the image plane shapes
are potentially more distorted since the image coordinates can undergo anisotropic scaling. It is not
clear what viewing process leads to the affine camera approzimation. ([18, page 514]). A number of
interesting results has been achieved by Shapiro et al. in [24] based on this concept.

In the context of the affine camera, we will first introduce the intrinsic and extrinsic parameters for
the affine camera by analogy to the perspective camera. It will be shown that the afline camera can
have at most 3 intrinsic parameters and the intrinsic parameters of the affine camera are generally
different from those of the perspective camera. Based on the invariance of these intrinsic parameters,
several self-calibration methods which allow the shape and motion to be computed from uncalibrated
affine camera will be developed.

The contributions of this paper are mainly twofold. The introduction of of the intrinsic parameters
for the affine camera and the algorithms of self-calibration for the affine camera. One of the important
consequences is that Euclidean shape and motion are computed from uncalibrated affine images.
Another one is that all algorithms using calibrated affine cameras can be nicely assembled into the
same framework in terms of the intrinsic calibration matrix of the affine camera. Therefore batch
solution for shape and motion is available for all different projection models included in the affine
camera.

The paper is organized as follows. In Section 2, the affine camera model is briefly reviewed. Then in
Section 2.1, the intrinsic and extrinsic parameters of the affine camera are introduced, and some special
examples of the affine camera are also given based on this decomposition. Later in Section 3, the affine
shape and motion from image sequences by factorization method is reviewed following Tomasi and
Kanade with the extension to the afline camera. Next in Section 4, several self-calibration methods
for the affine camera are proposed. The related work on shape and motion from image sequences
under orthographic, weak perspective and para-perspective projection is discussed and reformulated
in terms of the intrinsic parameters of the afline camera in Section 5. The experimental results are
presented in Section 6. Finally, some concluding remarks are given in Section 7.

2 Affine camera

The concept of the affine camera is reviewed in this section following Mundy and Zisserman [18] and
Shapiro et al. [24].

A pin-hole camera can be modeled as a linear mapping from P2 to P%. This mapping is represented
by a 3 X 4 matrix if homogeneous coordinates are used both for object and image points.
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The camera represented by Psy4 is usually called the perspective camera.

If p;; denote the entries of the matrix Ps.4, then by introducing the constraints ps; = pss = pss = 0
to the perspective camera, we obtain the affine camera introduced by Mundy and Zisserman in [18]:

x x

u y P11 P12 Pz P y
w|v| = Fsxa = | P21 P22 P23 P24 (2)

z z

1 1 0 0 0 paa 1

Affine camera represents a class of projections more general than orthographic, weak perspective and
para-perspective projections and less general than the full perspective projection.

In terms of non-homogeneous coordinates, by removing the common scalar factor, the equation (2) is

rewritten as
x
U Ty
(U) =Mys|y|+ (tv)
z

where mi; = Pij/P34 and ¢, = P14/P347 by = P24/P34-

One of the very attractive properties of the class of affine cameras is that it is independent of trans-
lations if the relative coordinates, with respect to a given reference point, are used both in space
and in image. For any given reference point (u,,v,)” in image and (z,,¥,, z,)” in space, the relative
coordinates (&, ?)” in image and (Z,7, 2)7 in space of a point are

- T x— T,
()= (2) e () [
o) \v—w, i "
Z Z— Z

As (up, v,)" = Moys(2,,yp, 2.)7 + (u, t,)7, it follows that the basic projection equation for the affine
camera in terms of relative coordinates is
( ) = Msy3

An affine camera M,y 3 has 6 = 2 X 3 independent parameters.

< =
2 &=

It can be easily verified that the centroid of a set of points in space is also projected into the centroid
of the points in the image plane by the affine camera. Therefore, in practice, the centroid is taken as
the reference point for the relative coordinates. We assume also in this paper that this is always done.

2.1 Intrinsic and extrinsic parameters of the affine camera

This section introduces the intrinsic and extrinsic parameters for the affine camera M, 3 following the
same idea for the perspective camera.



2.2 The general perspective camera: review

For a perspective camera Ps,4, it has at most 11 independent parameters which are separated into two
parts: the intrinsic and extrinsic parameters. This separation was achieved by uniquely decomposing
P3><4 [57 26] into

oy, cot 8 i
Psys = AsysDsya = 0 oev/sine Vg (R3><3 t3><1) .
0 0 1

Aszys is an upper triangular matrix and its 5 entries are so called the 5 intrinsic parameters of the
perspective camera which have the following interpretation: «, and «, are respectively the focal length
in horizontal and vertical pixels; (ug, vo) is the principal point; 8 is the angle between the two camera
axes. For convenience, we can also use two other equivalent parameters f, the focal length in pixels
and £ = o, /a,, called the aspect ratio of the camera instead of «, and a,.

Rsy3 and t3y; denote respectively a rotation and a translation in space. They count for the 6 = 3+ 3
extrinsic parameters of the perspective camera.

For CC'D cameras, it is generally assumed there is no skew, i.e. § = x/2. Without loss of generality
and for simplicity of the development, we use 4 parameters for the perspective camera, f, &, uy and
Vo.

2.3 The afline camera

By analogy to this intrinsic and extrinsic decomposition for the perspective camera, let consider the
affine camera represented by Msy5. by invoking QR decomposition theorem ([7, 8, 5]), then My is

decomposed as follows
a 0\ (r?
Moyz = AgyaRays = e
2x3 2x24¥2x3 (b C) (rzT)

this decomposition is unique if rank(Msy3) = 2. Asyxs is a 2 X 2 lower triangular matrix that we
call the (intrinsic) calibration matrix of the affine camera. Ay, encodes therefore at most 3 intrinsic
parameters of the affine camera. Rsy3 is a 2 X 3 matrix containing two rows of a 3 X 3 rotation matrix.
The third missing row of the rotation matrix can always be recovered if necessary by the constraint of
orthonormality. R,.s, though 2 x 3, represents a full 3D rotation whose 3 degrees of freedom® count
for the 3 extrinsic parameters of the affine camera.

The intrinsic calibration matrix A,,, can be rewritten as

s 0
A2><2 =k (Ea 1)-

k can be interpreted as the scaling factor of the affine camera, &, the aspect ratio of the affine camera,
s, the skew of the affine camera. These intrinsic parameters are generally different from those of the
perspective camera, except in some special simple cases. We are now to give some examples of intrinsic
parameters for the special cases of the affine camera.

YA 2 x 3 matrix with three constraints rir, =0, |r{||> = ||rf]* = 1.



2.4 Some special cases of the affine camera

T
For orthograhic projection, the camera matrix can be taken to be My, 3 = (5:71 ) , then
2

_ (&0
Aortho — (0 1 .

In this case, k =1, &, = & and s, = s = 0. The unique affine intrinsic afline camera parameter
is the aspect ratio which is also that of the perspective camera.

ér

T
For weak perspective projection, the camera matrix is Myyz = k ( r% ) , the calibration matrix is
2

_ (€0
Aweak—k(o 1 .

In this case, s, = 0 and there are two intrinsic parameters: the aspect ratio £, = £ which is still
the same as the perspective camera and the scaling factor k£ including the scaling effect of both
the focal length and the average depth of the object. As A, cox = kAsrino, the weak perspective
projection is also called the scaled orthographic projection.

The para-perspective projection, (c¢f. [19, 1, 24, 12]) generalises the weak perspective by projecting
parallel to a given projection direction. If the projection direction is described by two angles 8,
and 6,, where 8, lies in the zz plane with the z axis and 6, in the yz plane with the y axis. The
camera matrix of the para-perspective projection takes the following form according to [1, 24]:

& 0 —£cotd T
Myys = B N
23 (0 1 —coté, ) :2?

A two-step QR factorization of M,.3 by using Householder transformation [7] turns out the
following calibration matrix:

£ 0
Apara =k cot 8, cot 8, A/ 14cot 82 +cot 93
14cot 62 14cot 62

The scaling factor k describes the various scaling effects introduced in the para-perspective
. . 14cot 62 cot 8, cot @
projection. &, = = & and s, = v

- 1/1+cot€§+cot€§ - 1/1+cot€§+cot€§

we can see that the intrinsic parameters of the affine camera are closely related to those of the
perspective camera, but are different.

. From this para-perspective example,

It should not be surprised that 6, and 6, are also part of intrinsic parameters, they are playing
the similar role as the principal point (ug, vy) for the perspective camera.

The calibration matrix of the para-perspective and that of the weak perspective are related as
follows:

€0 1 4 cot 62 0 14 cot 62 0
Apara =k 2 2| = Aveak 2 20"
0 1 cot 0, cot 0, \/1 + cot 62 + cot 0y cot 0, cot 0, \/1 + cot 82 4 cot 0y



Remark that we may need up to 7= 542 parameters (5 intrinsic for the perspective camera and
2 angles defining the projection direction) to completely describe the calibration of the para-
perspective projection, however they are not independent in terms of the intrinsic parameters of
the affine camera, as we can have no more than 3 independent parameters.

Also, we should notice that once we know the intrinsic parameters of the affine camera, we can
not extract those of the perspective camera since we have only 3 degrees of freedom for the affine
camera instead of 5 degrees of freedom for the perspective camera, except for the case of the
weak perspective case.

3 Affine shape from uncalibrated affine cameras

It is known [13, 23, 14, 25] that affine shape can be recovered from affine cameras. The elegant
factorization method to this problem is proposed by Tomasi and Kanade [25] in orthographic projection
case, and extended to weak perspective by Weinshall and Tomasi [30] and para-perspective case by
Poelman and Kanade [20].

Following Tomasi and Kanade [25], suppose n points are tracked over v distinct views, we can write

?211 e aln
- - M,
Goreee Mon (51 sn)
D1y ... D
11 1n M;
Uyl +-+ Uyn

where s; = (24, i, z:) 7.

This equation is noted as
W2v><n = M2v><353><n

where Wy, «, is the 2v X n measurement matrix, Ms, .3 the 2v X 3 camera matrix and Sz, the 3 x n
shape matrix.

It is evident that W, ., still have the rank at most 3. Hence, the same factorization method applies.
This is also noted in [24] that the same process applies for the general affine camera.

To find Euclidean structure from the affine one, one needs to determine a non singular 3 x 3 matrix
D such that M}, 5 = Ms, 3D and S’ = D™1S represent the real affine camera matrix and Euclidean
shape, since

Wayxn = MayxsDD ™ S3y = (MayxsD) (D™ S3xn) = M3, 3550
To determine D, the so-called metric constraints were used. The different solutions for different special
cases have been proposed by Tomasi and Kanade [25], Poelman and Kanade [20], Weinshall and Tomasi
[30], Weishall [29], Shapiro et al. [24], Ullman and Basri [28]. These methods will be assembled into
the same framework in terms of calibration matrix in Section 5. All these methods share a common
point that it requires the knowledge of the intrinsic parameters of the camera, though it may have only
one, the aspect ratio, for weak perspective case. It is the main purpose of this paper to determine this
D in order to get Euclidean shape and motion without having to know the calibration of the camera.
This will be achieved by a self-calibration step which follows.



4 Self calibration for the affine camera

4.1 Basic idea

In this section, we will introduce the concept of self-calibration idea for the afline camera following the
original idea proposed for the perspective camera by Maybank and Faugeras in [16]. More practical
methods have been reported in [6, 15, 9, 11, 3, 17] for self-calibration.

The basic idea of self-calibration is to use the invariance of unknown intrinsic parameters based on
the point correspondences through the distinct views.

Although the concept of self-calibration is the same as that of Maybank and Faugeras [16], the practical
approach of self-calibration that will be developed for the affine camera is quite different from that
used by Maybank and Faugeras. It is more inspired by the recent work of Hartley in [10] for calibrating
a rotating camera.

4.2 Formulation

For the given v views and tracked n points, from the previous section, the camera matrix My, ,, and
shape matrix 3 X n are obtained up to an unknown 3 x 3 matrix D by factorizing the measurement
matrix Wo, «p.

For each view ¢, the 2 X 3 camera matrix M; is actually defined only up to an unknown linear
transformation D). The constraint that may be imposed on D is that M;D should correspond to the
real camera matrix for each view i, that is, M; D has to be decomposed into its real intrinsic A; and
extrinsic R; parameters matrices such as

Multiply each side of (3) by its transpose, and observe that for the 2 x 3 orthogonal matrix R;,
R;RT = 1. (3) becomes

M;DD* M = A;R;RT AT = A; AT (4)
T
Now, let X = DD? and M; = (ZL} ), the equation (4) is
mi Xm; m!Xn;
(m»TXni n»TXni) = AL (5)

In the self-calibration context, if we assume that the images are taken by the same afline camera,
therefore the intrinsic parameters of the camera except the individual scaling factor for each view
remain invariant during the acquisition. This means that we have the following expression:

klAl - k‘zAz — ... = k‘UAU.

It follows,
E2A AT = B2A,AT = ... = k2A, AT,

In terms of X and M; according to the equation (5),

2 (m?Xml menl) e (memv mZXnU) ‘

miXn, nfXng ) mI Xn, nlXn,



For each pair of views (¢, ), by taking the ratios of the matrix entries to cancel the different scaling
factor k; and k;, we obtain

T
mTXm, _ m; Xm;
nTXn, - n;an
mTXn, . m; Xny
nT Xn; - nTXn;
i 3

Each such equation is quadratic and homogeneous in the 6 entries of X (X is symmetric).

For v views, 2(v — 1) such independent equations are obtained. The solution for X can only be
determined up to a common scalar due to the homogeneity of the equations. X counts therefore only
for 5 independent parameters. With a minimum of 4 views, it provides 2 x (4 — 1) = 6 equations for
the 5 unknowns. A numerical solution can be expected.

4.3 Cholesky parameterization

If we compute first X, then to get D, Cholesky decomposition should be applied to X to get D such
as X = DD?. This has been widely used to derive linear algorithms in previous work on shape
and motion from the calibrated cameras, except for [25] in which a non linear algorithm is preferred.
However, this decomposition is possible and unique if and only if the computed X is positive-definite.
In case of noised data, no matter what method is used to solve for X, it may fail to be decomposable
into DD due to the non positive-definiteness of the computed X.

In the context of self-calibration, even less information than calibrated case is available. In practice, the
experiments show that the computed X by self-calibration is rarely positive-definite. The constraint
of positive-definiteness should be explicitly imposed on X. This constraint is essentially non linear.
Without loss of generality, a positive-definite X can always be parameterized (by invoking Cholesky
decomposition [7]) by ZZ* where Z is a lower triangular matrix,

21 0 0
/7 = Zy Z3 0
24 2y Zs

A multiplicative constant on Z makes X multiplied by the square of this constant. The homogeneity
of X is transmitted to 7. Therefore we assume zs = 1 without losss of generality (zs = 0 will make
7 singular). This Cholesky reparameterization, although non linear, maintains the minimum of 5
independent parameters.

If z denotes the six vector (21, 22, ..., 25, 1) of the entries of Z, the self-calibration is formulated as the
following unconstraint minimization problem.

v=1 T T T T
FXm;  mi, Xm, "Xn;  ml,Xn _
min f(z) = Y (e T Sy (T 2R T 202 - with X = 227, (6)

T T T T
= o Xy Mg X iy ni Xn; Mg X iy

This can be iteratively solved by, for instance, Levenberg-Marquart method [21]. The initial solution
can be either provided by hand (typically Z can be taken to be the identity) or by other linear methods.
This is still discussed in Section 6.

4.4 Shape and motion from Cholesky parameterization

Once Z is computed as above, it remains to determine the D such that each M;D turns out to be
decomposed into the real camera matrix for each view 7. By definition, X = ZZ% = DDT, where 7



is lower triangular and D is any non singular. Applying ) R decomposition to D, D = ZR, where R
is orthonormal. Therefore, D is determined up to a rotation R for the given Z. This rotation matrix
R can be fixed by taking any one of the views as the reference view, that is, if the view ¢ is taken
as the reference view, QR decomposes M;Z into AR;, then the unknown rotation can be taken to be
R = RT. Finally,

D= ZR!.

4.5 Some special cases of self-calibration

The above self-calibration method is developed for a general affine camera. It can be further simplified
if additional simplistic assumptions are taken for the affine camera model.

4.5.1 Weak perspective

If the affine camera is assumed to be one of the special cases, the weak perspective camera, the intrinsic
parameters matrix for the weak perspective has a diagonal form. This suggests a special method for
the weak perspective camera.

Recall for weak perspective,
r_ 2 (& 0
AAY =k (0 1)

For each individual view ¢, observing the off-diagonal entries are zero, we have

mi Xn; = 0. (7)
For each pair of views (1, j),
nlXn; — nl'Xn; '

With at least 3 views, we obtain 3 linear equations of type (7) from each individual view and 2
quadratic equations from two pairs of the 3 views. An algebraic solution with at most 4 solutions can
be expected from this system of equations.

Generally, when v views are available, the self-calibration of the weak perspective camera can be
formulated as the following minimization problem.
< mIXm;  mi Xmi

min ¢(z) = Z( — )* + Zj:(mZ»TXni)z, with X = 727", 9)

T T
ni Xn; Mg X iy

i=1
It is also interesting to remark that with at least 5 views, a linear solution is possible by using only

the linear equations of type (7).

4.5.2 Fixed (unknown) scaling factor

If we make a simplistic assumption that all views have the same unknown scaling factor (this is possible
when the motion is small or mainly rotational aroud the object), that means that all three intrinsic
parameters including the individual scaling factor are invariant. We have the following expression in
terms of calibration matrices,

Alz...:AU.



The self-calibration equations are therefore the following expressions:

T T
_ m, Xm, m, Xn,

T (menv annv) '

my Xn, nfXn,

(m?Xml menl)

For each pair of views (1, j),

miXm; = m]Tij

mi Xn; = m] Xn,
T _ T

n; Xn; = n;Xny

Each such equation is homogeneous and linear in the entries of X. With v > 3 views, X can be solved
by linear least squares method. For instance, with ||2||* = 1, a solution is obtained by SvD.

5 Related work

A lot of work has been reported in the literature for shape and motion from image sequences under
orthographic, weak perspective and para-perspective projection. All existing algorithms require the
intrinsic parameters of the camera to be known.

Using the intrinsic parameters of the affine camera introduced in this paper, the previous work can
all be reformulated as solving the following equations for X with known A; for each view,

T . T :
(mi sz ml an) = AZAZT (10)

m?fXn; nlXn;
The above equation system is the same as the equation (5) except that in (5) A; A7 is unknown.

e Tomasi and Kanade [25] initially used orthographic projection, it is equivalent to have

e (10
AZAZ'_(O 1/

thus the metric constraints are, for each view,

m! Xn; =0
myf Xm; =1
n? Xn; = 1.

e Weinshall and Tomasi [30] and Weinshall [29] worked with the weak perspective camera. The
method proposed in these papers needs to first select 4 reference points, then computes their
Gramian. In fact, this can be easily extended to a batch solution for general n points without
need of explicitly selecting 4 reference points. In the calibrated weak perspective case, the
knowledge of the intrinsic parameters for each view is coded in

(€0
aar =iz (50, (1)

it suffices to solve the following equations derived for each view,

miXn; =0
mTsz — 52 (12)
nTXn, — Sict

10



e For the general para-perspective, the known intrinsic calibration matrix is given as

A AT — g2 E(1+cotf2) & coth,, cotb,,
T & cot b, cot b, 14 cot 6 :

Poelman and Kanade [20] used a special para-perspective model due to Otha [19], by projecting
along the direction from the camera’s focal point to the object’s centroid. First the normalized
coordinates are computed by applying the calibration matrix in each image plane for image
points. Then, if (z;,y;) denotes the normalized coordinates of the centroid in the view 7. The
direction of projection are estimated by

cotf,, =x; and cotl, =y,

and the intrinsic matrix of the para-perspective camera is simplified into

2 s
AAT =gz (P TT )
' "\ vy 1ty

It remains to solve the following equations:

miXni _ gy,

nTXn; — 14y7?
m; Xm,; __ 1+xf
nTXn, T o142

Remark All these equations can be linearly solved for X, but they suffer from the problem of non
positive-definiteness of X in presence of noise. Non-linear methods can be applied using Cholesky
parameterization of X introduced in Section 4. Note that the initial method using metric constraints
of Tomasi and Kanade [25] did not use linear algorithm. They explicitly solved for DD instead of
X, however how D is parameterized is not clear in [25].

As for self-calibration, as we have mentioned in Section 4 that there have been several practical
methods available in the literature. All of them are developed for the perspective camera with more
or less free intrinsic parameters.

6 Experimental results

The self-calibration methods developed in this paper are implemented and then applied to real image
sequences. The reconstruction results obtained from the self-calibration are also compared with those
obtained by the calibrated cameras.

Poelman and Kanade at Cmu kindly provided the hotel image sequence that they have used in [20].
In this sequence, the camera motion included substantial translation away from the camera and across
the field of view. 197 points throughout the sequence of 181 images are automatically identified and
tracked. For a more detailed description of this set-up, one can consult [20].

In our experiments, not all images of the sequence are used, only 10 out of 181 images are selected
from an interval of 20 images. Four of them are illustrated in Figure 1 to have an idea of the image
sequence. The shape reconstruction by self-calibration is compared with that of calibrated para-
perspective provided by Poelman and Kanade [20].

The self-calibration algorithm uses the minimization equation (6). The starting point for the matrix
Z is always set to be the identity.

11



Figure 1: Image 1, 101, 151 and 181 of the hotel model image sequences.
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Figure 2: Top view of the reconstructed shape: (a) self-calibrated affine camera and (b) calibrated
para-perspective.
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Figure 3: Front view of the reconstructed shape: (a) self-calibrated affine camera and (b) calibrated
para-perspective.
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Figure 4: Side view of the reconstructed shape: (a) self-calibrated affine camera and (b) calibrated
para-perspective.

In Figures 2, 3 and 4, the top, front and side views of the reconstructed shape are displayed and
compared with the calibrated para-perspective solution. From the front view, it looks less accurate
than the calibrated para-perspective solution, since the right angle of the wall is still slightly deformed.
However the top view looks slightly better and also the side view tells us the depth of the hotel model
is correctly recovered.

Another experiment is conducted on the sequence of images of a cube, kindly provided by Boufama
and used in [2]. The sequence is designed to cover a small field of view so that the weak perspective
approximation is appropriate [2]. To compare the self-calibration method with the calibrated method,
the batch solution for the calibrated weak perspective using the equations (12) is implemented and
computed, it actually turned out very good results illustrated in Figure 6.(c).

Figure 5: Image 1 and 5 of the image sequences of the cube.

For self-calibration, the weak perspective projection model is still assumed, hence the self-calibration
algorithm uses the minimization equation (9). The results of the self-calibrated weak perspective are
presented in Figure (6) in which one observes that the self-calibration gives less good results than the
calibrated weak perspective, however Euclidean shape is greatly improved with respect to the initial
affine shape illustrated in Figure 6.(a).

From the experimentation that we have performed, the self-calibration algorithms performed well and
greatly improved the intial affine reconstruction. Compared with the calibrated cases, the recon-
struction is slightly less accurate, it is not surprising as the self-calibration algorithm uses much less
information than the algorithms for the calibrated cases.
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(a) (b) (c)

Figure 6: Top view of the reconstructed shape (a) the initial affine shape, (b) self-calibrated weak
perspective and (c) calibrated weak perspective.

7 Discussion

A new method for shape and motion from image sequences taken by an uncalibrated affine camera is
proposed in this paper. The method differs from all others in that it operates with uncalibrated affine
camera.

The method is developed with the affine camera model. The self-calibration of the affine camera is
based on the introduction of the three intrinsic parameters for the affine camera. It was also shown that
these intrinsic parameters of the affine camera are closely related to those of the perspective camera,
but generally different. The previous methods requiring the knowledge of calibration parameters can
also be nicely assembled into the same framework in terms of the intrinsic calibration matrix of the
affine camera, therefore can be easily integrated into the same numerical process for the affine camera.
Therefore, The experimental results show the good performance of the self-calibration method.

Acknowledgement

This work is partly supported by European Esprit BRA projects Viva which is gratefully acknowledged.
This paper benefits from the discussions with R. Hartley.

References

[1] J.Y. Aloimonos. Perspective approximation. Image and Vision Computing, 8(3):179-192, 1992.

[2] B. Boufama, D. Weinshall, and M. Werman. Shape from motion algorithms: a comparative
analysis of scaled orthography and perspective. In J.O. Eklundh, editor, Proceedings of the 3rd
Furopean Conference on Computer Vision, Stockholm, Sweden, pages 199-204. Springer-Verlag,
May 1994.

[3] F. Du and M. Brady. Self-calibration of the intrinsic parameters of cameras for active vision
systems. In Proceedings of the Conference on Computer Vision and Pattern Recognition, New
York, USA, pages 477-482, Los Alamitos, California, 1993. IEEE Computer Society Press.

[4] O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In G. San-
dini, editor, Proceedings of the 2nd Furopean Conference on Computer Vision, Santa Margherita
Ligure, Italy, pages 563-578. Springer-Verlag, May 1992.

14



[5] O. Faugeras. Three-Dimensional Computer Vision - A Geometric Viewpoint. Artificial intelli-
gence. M.I.T. Press, Cambridge, MA, 1993.

[6] O.D. Faugeras, Q.T. Luong, and S.J. Maybank. Camera Self-Calibration: Theory and Experi-
ments. In G. Sandini, editor, Proceedings of the 2nd Furopean Conference on Computer Vision,
Santa Margherita Ligure, Italy, pages 321-334. Springer-Verlag, May 1992.

[7] G.H. Golub and C.F. Van Loan. Matriz Computation. The Johns Hopkins University Press,
Baltimore, 1989.

[8] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, Urbana-Champaign, Illinois, USA,
pages 761-764, 1992.

[9] R. 1. Hartley. Estimation of relative camera positions for uncalibrated cameras. In G. Sandini, ed-
itor, Proceedings of the 2nd Furopean Conference on Computer Vision, Santa Margherita Ligure,
Ttaly, pages 579-587. Springer-Verlag, 1992.

[10] R.I. Hartley. An algorithm for self calibration from several views. In Proceedings of the Conference
on Computer Vision and Pattern Recognition, Seattle, Washington, USA, pages 908-912, 1994.

[11] R.I. Hartley. Self-calibration from multiple views with a rotating camera. In Proceedings of the 3rd
Furopean Conference on Computer Vision, Stockholm, Sweden, pages 471-478. Springer-Verlag,
1994.

[12] R. Horaud, S. christy, and F. Dornaika. Object pose: the link between weak perspective, para
perspective, and full perspective. Technical report, INRIA, 1994.

[13] J.J. Koenderink and A. J. van Doorn. Affine structure from motion. Technical report, Utrecht
University, Utrecht, The Netherlands, October 1989.

[14] C.H. Lee and T. Huang. Finding point correspondences and determining motion of a rigid object
from two weak perspective views. Computer Vision, Graphics and Image Processing, 52:309-327,
1990.

[15] Q.T. Luong. Matrice Fondamentale et Autocalibration en Vision par Ordinateur. These de
doctorat, Université de Paris-Sud, Orsay, France, December 1992.

[16] S.J. Maybank and O.D. Faugeras. A theory of self calibration of a moving camera. International
Journal of Computer Vision, 8(2):123-151, 1992.

[17] R. Mohr, L. Quan, and F. Veillon. Relative 3D reconstruction using multiple uncalibrated images.
The International Journal of Robotics Research, 1995. to appear.

[18] J.L. Mundy and A. Zisserman, editors. Geometric Invariance in Computer Vision. MIT Press,
Cambridge, Massachusetts, USA, 1992.

[19] Y. Otha, K. Maenobu, and T. Sakai. Obtaining surface orientation from texels under perspective
projection. In Proceedings of the 7Tth International Joint Conference on Artificial Intelligence,
pages 746751, 1981.

[20] C. J. Poelman and T. Kanade. A paraperspective factorization method for shape and motion
recovery. In J.O. Eklundh, editor, Proceedings of the 3rd Furopean Conference on Computer
Vision, Stockholm, Sweden, pages 97-108, May 1994.

[21] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling W.T. Numerical Recipes in C.
Cambridge University Press, 1988.

15



[22] L. Quan. Invariants of six points and projective reconstruction from three uncalibrated images.
IegE Transactions on PAMI, 17(1), January 1995.

[23] L. Quan and R. Mohr. Affine shape representation from motion through reference points. Journal
of Mathematical Imaging and Vision, 1:145-151, 1992. also in IEEE Workshop on Visual Motion,
New Jersey, pages 249-254, 1991.

[24] L.S. Shapiro, A. Zisserman, and M. Brady. Motion from point matches using affine epipolar
geometry. International Journal of Computer Vision, 1994.

[25] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factor-
ization method. International Journal of Computer Vision, 9(2):137-154, 1992.

[26] R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrol-
ogy using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation,
3(4):323-344, 1987.

[27] S. Ullman. The Interpretation of Visual Motion. The MIT Press, 1979.

[28] S. Ullman and R. Basri. Recognition by linear combinations of models. IEEE Transactions on
PAMI, 13(10):992-1006, 1991.

[29] D. Weinshall. Model-based invariants for 3-D vision. International Journal of Computer Vision,
10(1):27-42, 1993.

[30] D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape models from
image sequences. In Proceedings of the jth International Conference on Computer Vision, Berlin,
Germany. IEEE, 1993.

16



