Skip to main content
Log in

A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Beginning from a biologically based integrate and fire model of a rat whisker barrel, we employ semirigorous techniques to reduce the system to a simple set of equations, similar to the Wilson-Cowan equations, while retaining the ability for both qualitative and quantitative comparisons with the biological system. This is made possible through the clarification of three distinct measures of population activity: voltage, firing rate, and a new term called synaptic drive. The model is activated by prerecorded neural activity obtained from thalamic “barreloid” neurons in response to whisker stimuli. Output is produced in the form of population PSTHs, one each corresponding to activity of spiny (excitatory) and smooth (inhibitory) barrel neurons, which is quantitatively comparable to PSTHs from electrophysiologically studied regular-spike and fast-spike neurons. Through further analysis, the model yields novel physiological predictions not readily apparent from the full model or from experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PW:

Principal Whisker

AW:

Adjacent Whisker

RSU:

Regular-Spike Unit (excitatory/spiny)

FSU:

Fast-Spike Unit (inhibitory/smooth)

TCU:

Thalamocortical Unit

VPM:

Ventral Posterior Medical Nucleus

PSTH:

Peristimulus Histogram

PSP:

Post-Synaptic Potential

CTR:

Conditioned-Test Ratio

References

  • Anninos P, Argyrakis P (1983) A mathematical model for the decay of short-term memory with age. J. Theor. Biol. 102:191–197.

    Google Scholar 

  • Barnwell GM, Stafford FS (1977) A mathematical model of decisionmaking neural circuits controlling behavioral mode selection. Bull. Math. Biol. 39:223–237.

    Google Scholar 

  • Bertholon JF, Carles J, Eugene M, Labeyrie E (1988) A dynamic analysis of the ventilatory response to carbon dioxide inhalation in man. J. Physiol. 398:423–440.

    Google Scholar 

  • Brannan JR, Boyce WE (1981) Spatially localized interactive neuronal populations. I. A mathematical model. Bull. Math. Biol. 43:427–446.

    Google Scholar 

  • Britton NF, Skevington SM (1989) A mathematical model of the gate control theory of pain. J. Theor. Biol. 137:91–105.

    Google Scholar 

  • Brumberg JC, Pinto DJ, Simons DJ (1995) Inhibitory gradients and spatial summation in barrel cortex (Abstract). Neurosci. Abstr. 21:120.

    Google Scholar 

  • Carvell GE, Simons DJ (1995) Taskand subject-related differences in sensorimotor behavior during active touch. Somatosensory Mot. Res. 12:1–9.

    Google Scholar 

  • Cope DK, Tuckwell HC (1979) Firing rates of neurons with random excitation and inhibition. J. Theor. Biol. 80:1–14.

    Google Scholar 

  • Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH (1995) Recurrent excitation in neocortical circuits. Science 269:981–985.

    Google Scholar 

  • Ermentrout GB (1995) Phase-plane analysis of neural activity. In: MA Arbib et al., eds. Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA. pp. 732–735.

    Google Scholar 

  • Ermentrout GB (1994) XPP:X-windows phaseplane—dynamical systems software, ftp://mthbard.math.pitt.edu/pub/bardware/xpp-tut/start.html.

  • Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in coupled neural oscillators. J. Math. Biol. 29:195–217.

    Google Scholar 

  • Ermentrout GB, Troy WC (1989) The uniqueness and stability of the rest state for strongly coupled oscillators. SIAM J. Math. Anal. 20:1436–1446.

    Google Scholar 

  • Evans ER (1989) Random dilution in a neural network for biased patterns. J. Phys. A 22:2103–2118.

    Google Scholar 

  • Gerstner W, van Hemmen JL (1992) Universality in neural networks: The importance of the “mean firing rate”. Biol. Cybern. 67:195–205.

    Google Scholar 

  • Ginzberg I, Sompolinsky H (1994) Theory of correlations in stochastic neural networks. Phys. Rev. E 50:3171–3192.

    Google Scholar 

  • Grossberg S (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52:213–257.

    Google Scholar 

  • Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol. 67:1222–1229.

    Google Scholar 

  • Hasselmo ME, Schnell E (1995) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. J. Neurosci. 14:3898–3914.

    Google Scholar 

  • Hoffman GW (1986) A neural network model based on the analogy with the immune system. J. Theor. Biol. 122:33–67.

    Google Scholar 

  • Ingber L (1982) Statistical mechanics of neocortical interactions: I. Basic formulation. Physica D 5D:83–107.

    Google Scholar 

  • Ito M (1985) Processing of vibrassa sensory information within the rat neocortex. J. Neurophysiol. 54:479–490.

    Google Scholar 

  • Kawahara T (1980) Coupled Van der Pol oscillators: A model of excitatory and inhibitory neural interactions. Biol. Cybern. 39:37–43.

    Google Scholar 

  • Keller A (1995) Synaptic organization of the barrel cortex. In: EG Jones, IT Diamond, eds. Cerebral Cortex. Pleneum Press, New York, Vol. 11. pp. 221–262.

    Google Scholar 

  • Klaasen GA, Troy WC (1984) Stationary wave solutions of a system of reaction-diffusion equations derived from the Fitzhugh-Nagumo equations. SIAM J. Appl. Math. 44:96–110.

    Google Scholar 

  • Kleinfeld D, Raccuia-Behling F (1990) Circuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity. Biophys. J. 57:697–715.

    Google Scholar 

  • Kyriazi HT, Carvell GE, Brumberg JC, Simons DJ (1996) Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels. J. Neurophysiol. 75:547–560.

    Google Scholar 

  • Kyriazi HT, Carvell GE, Simons DJ (1994) OFF response transformations in the whisker/barrel system. J. Neurophysiol. 72:392–401.

    Google Scholar 

  • Kyriazi HT, Simons DJ (1993) Thalamocortical response transformations in simulated whisker barrels. J. Neurosci. 13:1601–1615.

    Google Scholar 

  • Lagerlund TD, Sharbrough FW (1989) Computer simulation of the generation of the electroencephalogram. EEG & Clin Neurophys. 72:31–40.

    Google Scholar 

  • Land PW, Buffer SA, Jr., Yaskosky JD (1995) Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. J. Comp. Neurol. 355:573–588.

    Google Scholar 

  • Lockery SR (1993) A neural-network model of sensorimotor transformations in the local binding reflex of the medicinal leech. Am. Zoo. 33:40–53.

    Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity: The alpha-rhythm of the thalamus. Kybernetik. 15:27–37.

    Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54:782–806.

    Google Scholar 

  • Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science. 259:1324–1326.

    Google Scholar 

  • Matsushita T, Moriyama S, Fukai T (1995) Switching dynamics and the transient memory storage in a model enzyme network involving Ca2+/calmodulin-dependent protein kinase II. Biol. Cybern. 72:497–509.

    Google Scholar 

  • Nicolelis MAL, Lin RCS, Woodward DJ, Chapin JK (1993) Dynamic and distributed properties of many-neuron ensemble in the ventral posterior medial thalamus of awake rats. Proc. Natl. Acad. Sci. USA. 90:2212–2216.

    Google Scholar 

  • Nunez PL (1981) A study of origins of the time dependencies of scalp EEG: ii-Experimental support of theory. IEEE Biomed. 28:281–288.

    Google Scholar 

  • Paydarfar D, Eldridge FL, Kiley JP (1986) Resetting of mammalian respiratory rhythm: Existence of a phase singularity. Am. J. Physiol. 250:R721–727.

    Google Scholar 

  • Poston T, Stewart I (1978) Nonlinear modeling of multistable perception. Beh. Science. 23:318–334.

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York.

    Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30:1138–1168.

    Google Scholar 

  • Rall, W (1989) Cable theory for dendritic neurons. In: C Koch, I Segev, eds. Methods in neuronal modeling. MIT Press. Cambridge, MA. pp. 9–62.

    Google Scholar 

  • Recanzone GH, Merzenich MM, Shreiner CE (1992) Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J. Neurophysiol. 67:1071–1091.

    Google Scholar 

  • Sejnowski TJ (1976) On global properties of neuronal interaction. Biol. Cybern. 22:85–95.

    Google Scholar 

  • Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J. Neurophysiol. 41:798–820.

    Google Scholar 

  • Simons DJ (1985) Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54:615–635.

    Google Scholar 

  • Simons DJ (1995) Neuronal integration in the somatosensory Whisker/barrel cortex. In: EG Jones, IT Diamond, eds. Cerebral Cortex. Pleneum Press, New York. Vol. 11, pp. 263–297.

    Google Scholar 

  • Simons DJ, Carvell GE (1989) Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61: 311–330.

    Google Scholar 

  • Skondras M (1988) RF-cell: A model for populations of randomly interconnected neurons. Bull. Math. Biol. 50:43–66.

    Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15:5448–5465.

    Google Scholar 

  • Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15:6700–6719.

    Google Scholar 

  • Sugitani M, Yano J, Ooyama H (1990) Somatotopic organization and columnar structure of vibrissae representation in the rat ventrobasal complex. Exp. Brain Res. 81:346–352.

    Google Scholar 

  • Tolbert DI, Bantli H, Bloedel JR (1976) Anatomical and physiological evidence for a cerebellar nucleo-cortical projection in the cat. Neurosci. 1:205–217.

    Google Scholar 

  • Welker C (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J. Comp. Neurol. 166:173–189.

    Google Scholar 

  • White EL (1989) Cortical circuits: Synaptic organization of the cerebral cortex. Structure, Function, and Theory. Birkhauser, Boston MA.

    Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12:1–24.

    Google Scholar 

  • Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol. 67:981–995.

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res. 17:205–242.

    Google Scholar 

  • Wright JJ, Kydd RR, Lees GJ (1987) Gross electrocortical activity as a linear wave phenomenon with variable temporal damping, regulated by ascending catecholamine. Int. J. Neurosci. 33: 1–13.

    Google Scholar 

  • Zetterberg LH, Kristiansson L, Mossberg K (1978) Performance of a model for a local neuron population. Biol. Cybern. 31:15–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, D.J., Brumberg, J.C., Simons, D.J. et al. A quantitative population model of whisker barrels: Re-examining the Wilson-Cowan equations. J Comput Neurosci 3, 247–264 (1996). https://doi.org/10.1007/BF00161134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161134

Keywords

Navigation