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Abstract. We consider secret sharing schemes which, through an initial issuing of
shares to a group of participants, permit a number of different secrets to be protected.
Each secret is associated with a (potentially different) access structure and a particu-
lar secret can be reconstructed by any group of participants from its associated access
structure without the need for further broadcast information. We consider ideal secret
sharing schemes in this more general environment. In particular, we classify the collec-
tions of access structures that can be combined in such an ideal secret sharing scheme
and we provide a general method of construction for such schemes. We also explore the
extent to which the results that connect ideal secret sharing schemes to matroids can be
appropriately generalized.
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1. Introduction

The basic idea behind secret sharing schemes and their relevance to cryptology is well
documented (see [25]). Informally a secret sharing scheme permits a group of partici-
pants to jointly protect a secret through the issue of a related share of the secret to each
participant. The scheme is designed so that if a set of participants pool their shares, then
only those sets that are specified to be in the access structure of the scheme will be able
to use their shares to reconstruct the secret.

Many secret sharing applications, particularly those associated with key-management
and key-distribution problems, require the protection of more than one secret, possibly
with different access structures associated with each secret. The precise generalization
of a secret sharing scheme to include the option of protecting more than one secret is
not immediately apparent. For instance:

e Should all the secrets be available for potential reconstruction during the lifetime
of the scheme, or should the access of secrets be further controlled by enabling the
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reconstruction of a particular secret only after extra information has been broadcast
to the participants?

e Should a scheme be used just once, to reconstruct one or all of the secrets, or should
the scheme be designed to enable multiple use?

e Ifaschemeis to be used more than once: in the event that a particular secret has been
“reconstructed” by a group of participants, does the exact value of the secret remain
undisclosed or is it known by the participants who enabled its reconstruction, or,
indeed, is it known by all of the participants?

The desirable properties of a particular scheme depend on both the requirements of the
application and also on the implementation. We consider here perhaps the most straight-
forward definition of a secret sharing scheme with multiple secrets. In this model all
of the secrets are available for reconstruction without the need for additional broadcast
information and the schemes are designed for one-time use only (of course, if an im-
plementation is done in such a way that the value of the secret is not revealed to any
of the participants, then such a scheme can be used repeatedly). Schemes of this type
which have the same threshold access structures (see later) for each secret have been
studied in [11], [16], and [21]. Schemes of this type which permit different threshold
access structures for each secret have been studied in [3], [71, [14], [15], and [20] (we
note that the schemes in [3], [7], and [20] can be used repeatedly as the threshold access
structures are trivial). Schemes of this type which have more general monotone access
structures -for each secret were discussed in [6] and [23]. Schemes that allow repeated
usage (a class of schemes with multiple secrets) and assume that reconstructed secrets
become public knowledge have been studied in [5], [8], [13], [17], and [26]. Finally,
secret sharing schemes with multiple secrets that require broadcast information have
been studied in [2], [4], [5], and [19] (in particular, [2] and [19] dealt with the problem
of disenrolling participants from a scheme).

All of the access structures under consideration in this paper are monotone. An access
structure I" defined on a participant set P is monotone ifforallA € B € P,if A € I',then
B € I'. We can describe I" uniquely by the collection I' ™ of minimal sets of ", that is, the
sets A C Psuchthat A € Tbut A\a ¢ I"'foralla € A.Weletcore(I') ={peP:pec A
for some A € I'"} and say that I" is connected if core(I') = P. If |P| = n, then, for
1 <k < n, the (k, n)-threshold access structure I is such that ' = {A C P: |A| > k}.
If k = 1, then we say that the threshold access structure is trivial.

A single secret sharing scheme is said to be ideal if the size of each share is the same
as the size of the secret. We extend this definition and describe a secret sharing scheme
with multiple secrets to be ideal if all of the secrets and all of the shares are the same size
(this definition will be formalized later). Ideal single secret sharing schemes have been
extensively studied (see, for example, [9] and [10]). In particular, the close relationship
between ideal secret sharing schemes and matroids has been investigated in [1], [10],
{12], [24], and [27].

In Section 2 we review the information-theoretic model of a single secret sharing
scheme and recall the relationship between ideal schemes and matroids. In Section 3
we generalize the definition of a secret sharing scheme to permit more than one secret.
Section 4 discusses separators of matroids and separators of probability measures. These
concepts are fundamental to the establishment of our main result, which is described in
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Section 5. This is a classification of ideal secret sharing schemes with multiple secrets. In
particular we discuss which sets of access structures can “co-exist” in an ideal scheme.
Finally, in Section 6 we examine the extent to which the relationship between ideal
schemes and matroids can be extended to the multiple secret environment.

2. Single Secret Sharing Schemes

In this section we recall some basic results concerning (ideal) single secret sharing
schemes. First, we review some notation and the definition of entropy, noting that all
logarithms used in this paper have base 2. For finite sets A and B we write AB for
A U B, and we write x for the set {x}. Let X be a finite set and let (X) be a finite
collection of tuples, such that the entries of each m € (X) are indexed by the elements
of X. Form = (m)rex € (X) and for A C X, let w4 denote the tuple (7,),c4 and
let {A) = {ma: m € (X)}. Let p be a probability measure on (X), and let 8(A) be
the random variable defined by the projection (X) — (A). The measure p induces a
probability mass function p4 of 6(A) on (A), such that, for each @ € (A), we have
pala) = Z[ﬂe()(): Ta=a) p(r). Let [A]l, = {a € (A): pa(a) > O}. The entropy H,(A)
of 6(A) is

Hy(A)=— Y pala)log pa(@).
a€[A],

When there is no ambiguity, we write [A] for [A], and H(A) for H,(A).For A, B C X,
a € [A], and B € [B], let pa (@, B) = 3 cix): ny=anz=p) P (7). The measure p
induces the conditional probability mass function p4 s such that, for each ¢ € [A] and
B € [B], pais(a, B) = pa,g(a, B)/ps(B). The conditional entropy H(A|B = B) of
6(A) given that 6(B) = Bis H(A|B = B) = — }_ 14 PaiB(@, B) log paa(a, B), and
the conditional entropy H(A|B) of 8(A) given 6(B) is

H(A|IB)= ) ps(B)H(A|B) = B).
Be[B]

We note, in particular, the following elementary properties of entropy:

Result 1 [28]. Let p be a probability measure on (X) and let A, B, C € X. Then:

(1) H(AB) > H(A).

(2) H(A|B) > H(A|BC).

(3) H(AB) < H(A) + H(B), with equality if and only if A and B are independent
random variables, whichisifand only if ps g (¢, B) = pa(e)pg(B) foralla € [A]
and 8 € [B].

(4) H(A|B) = H(AB) — H(B).

Let P be a (finite) set of participants, let I' denote a monotone access structure on P,
and let s (s ¢ P) denote the secret variable. Further, let p be a probability measure on
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(sP). Then M = (P, s, p) is a secret sharing scheme for I if, for A C P:

(1) If A € T, then H(s|A) = 0.
(2) If A ¢ T, then H(s|A) = H(s).

If " is connected, then we say that M is connected. Using Result 1, it is straightforward
to show that if p € core(I"), then H(p) > H(s). Since it is desirable to minimize the
size H(p) of the share of each participant p in a secret sharing scheme, we say that M is
ideal if H(p) = H(s) for every p € core(I"). We refer to H(s) as the size of the secret
s and call an access structure I ideal if there is an ideal secret sharing scheme M for I'.

To implement a secret sharing scheme, a trusted dealer selects a tuple 7 € [sP] with
probability p (). Participant p € P is given share 7, and the secret value is 7. Any
subset A € T is able to determine the value of s since the probability that the secret is
75, given the pooled shares w4, is 1. Further, if any subset A ¢ I" pools their shares to
form 74, then the probability that any o € [s] is the secret is exactly the same as for
someone outside the scheme who knows M but not the value of any shares.

2.1. Ideal Secret Sharing Schemes and Matroids

First we review the definition and some properties of matroids, as found in [22]. A
matroid T = (£, 1) comprises a finite set £ and a collection Z of subsets of £ such that:

() pel
)IfAeZand BC A, then B e T.
(3) If A, B € T and |A| < |B|, then an element b € B\ A with Ab € T exists.

An element of 7 is an independent set and a subset of £ not in Z is a dependent set.
A minimal dependent set of T is a circuit. A matroid is connected if, for each pair of
distinct elements x,y € &, there is a circuit containing both x and y. Given any set
A C £, the size of a maximal independent set B C A is a constant, and this constant is
the rank of A and is denoted by ranky A. The rank of set T is the rank of £, denoted by
ranky T. When there is no confusion, ranky is denoted by rank.

Let T = (£,7) be amatroid and let A C £. Let Z|A = {I € E\A: | € T}.
Then T|A = (E\A, Z|A) is a matroid, called the restriction of T at A. We note that if
B C E\A, thenrankr|4(B) = rank7(B). Further, let 7- A = {I € £\A: CI € T forall
C C AsuchthatC € Z}. Then T - A = (E\A, T - A) is a matroid, called the contraction
of T at A. We note that if B C £\ A, then rank7.4(B) = ranky(AB) — rank7(A) [22,
Proposition 3.1.6].

The following result first appeared in [10], and this version appeared in [12].

Result 2. Let M = (P, s, p) be an ideal secret sharing scheme for I'. If I" is connected,
then associated with M there is a connected matroid T (M) = (sP, 7) satisfying:

(1) If A C sP, then rank(A) = H(A)/H(s).

(2) The dependent sets of T (M) are precisely the sets A C sP such thata € A
satisfying H (a|A\a) = O exists.

(3) The circuits of T (M) containing s are precisely the sets sA for A e T'™.

We say that T (M) is the matroid associated with M.
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Result 3 [12, Theorem 6]. Let [ be an ideal access structure. Then the matroid T (M)
associated with an ideal secret sharing scheme M = (P, s, p) for I" depends only on I

Thus, for any ideal secret sharing scheme M for I', we may refer to the matroid associated
with M as the matroid associated with T .

Conversely, let T = (sP, I) be a matroid with distinguished point s, and let '~ =
{A C P:sAisacircuitof T}. NowletI'(T) = {B C P: B D Aforsome A € I'"}. Then
I'(T) is a monotone access structure, called the monotone access structure associated
with T. Given a matroid T, it is an open problem as to when I'(T’) is ideal. It was shown
in [10] that if T is representable then ["(T') is ideal, however, in [24] it was shown that
the access structure associated with the (nonrepresentable) Vamos matroid is not ideal.

We need the following slight extension of the idea of the matroid associated with an
ideal secret sharing scheme to the case of a finite set with a probability measure. Let Z
be a finite set and let p be a probability measure on (Z), such that H,(a) is a constant
h for all a € Z. Suppose that forall A C Z and for all a € Z we have H(alA) = 0O or
H (a) (and hence forany A € Z, H,(A) is a multiple of #). Then, by a similar proof to
that of Result 2, the pair (Z, p) has an associated matroid T = (Z, T) satisfying:

(1) If A C Z, then rank(A) = H(A)/h.
(2) The dependent sets of T are precisely the sets A C Z such that a € A satisfying
H(a|A\a) = 0 exists.

2.2. Restrictions and Contractions

We now recall the definition and some properties of restrictions and contractions of
an access structure from Martin [18]. We consider, in particular, the case in which the
underlying access structure is ideal. Let I' be a monotone access structure on a participant
set P, and let A C P. The restriction I'|A of " at A is the access structure defined on
P\AasT|A = {B € P\A: B € T'}. The contraction I" - A of T at A is the access
structure defined on P\AasI' - A = {B € P\A: AB € I'}. Note that if A € T, then
(' - A~ = {9}

Result 4 [18]. Let M = (P, s, p) be a secret sharing scheme for I'. Let A C P and
let @ = P\A. Then there is a secret sharing scheme M|A = (Q, s, 1) for I'| A, with
i = psg. Further, if M is ideal, then M|A is ideal.

Result 5[18]. Let M = (P, s, p) be a secret sharing scheme for I". Let A C P satisfy
A €T and let Q = P\A. Then there is a secret sharing scheme M - A = (Q, s, u) for
I" - A, where for a given o € [A] we have p(w) = p;0a(w, @), foreach w € (sQ). (If
A € T, then (T - A)~ = {0}, so we need not consider this case.) Further, if M is ideal,
then M - A is ideal.

Let M = (P, s, p) be an ideal secret sharing scheme for I", with associated matroid T .
We remark that for A C P it holds that M|A has associated matroid 7|A and if A ¢ T,
then M - A has associated matroid 7 - A.
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3. Secret Sharing Schemes with One or More Secrets

In this section we generalize the idea of a single secret sharing scheme to that of a secret
sharing scheme with one or more secrets. Let P be a finite set of participants, and let
S be a finite set of secrets. Let I' = (I';);cs be a tuple of monotone access structures
on P. Note that I will continue to represent an access structure associated with a single
secret. Let p be a probability measure on (SP). Then M = (P, S, p) is a secret sharing
scheme for I if, for each s € S, the scheme M; = (P, s, psp) is a secret sharing scheme
for I'y. For s € S, let P; = core(I'y), and note that (P, 5, pep,) is a connected secret
sharing scheme for [';.

Note that this model is a slight generalization of the model proposed in [6]. In the
model in [6] it was further required that if 7 € S and A & T for each s € T, then
H(T|A) = H(T). Note also that in both models it follows that for s, s’ € S, if [y # [y,
then the secrets s and s’ are necessarily independent.

We call M; a component scheme of M, and we remark that M, is not necessarily
connected. We say that M is connected if P = | ), Ps, that is, each participant is in the
core of some access structure I';. Further, M is ideal if a constant 2 > 0 exists such that
H(x) = h forevery x € SU (|, s Ps) (or, equivalently, if each component scheme is
ideal and all the components schemes have the same secret size).

Example6. LetP = {a,b,c}, S = [5.1}, '] = {abc}, and I';” = {ab}. Let (SP)
be the collection of 5-tuples given by the columns of the matrix [A]|A>], where the
following two matrices are A; and A,, respectively:

s{01233012230112301230032130122103
1]01233012230112300123301223011230
al00001111222233330000111122223333],
b|01230123012301230123012301230123
cf000000000000000GO0LTITIT1ITT111IYLL1 1 IQ1]
s[23011230012330123012210312300321]
1101233012230112300123301223011230
al00001111222233330000111122223333
b{01230123012301230123012301230123
€122222222222222223333333333333333]

Let o be the uniform probability measure on (SP). It is straightforward to verify that
M = (P. S, p) is a connected ideal secret sharing scheme for I' = ([, I').

We now extend the definitions of restriction and contradiction of a single secret sharing
scheme to the case of a secret sharing scheme with one or more secrets. In particular,
we sometimes wish to restrict or contract at a subset of SP, not just at a subset of
P.Let I = (I');es be a collection of access structures on a participant set P, and
let A C SP. Let R = S\A. The restriction T'|A of T at A is the access structure
T'|A = (I'|(A N P))ser defined on P\ A. The contraction " - A of I at A is the access
structure I' - A = (Iy - (A N P));er defined on P\ A.
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Theorem 7. Let M = (P, S, p) be a secret sharing scheme for T' = ([')ses. Let
A C SP and let Q = P\A and R = S\A. Then there is a secret sharing scheme
MIA = (Q, R, u) for T|A, with u = pro. Further, if M is ideal, then M|A is ideal.

Proof. Since M is a secret sharing scheme for I, then for each s € R we have M, =
(P, s, psp) is a secret sharing scheme for I';. By Result 4, M |(A N P) = (Q, s, u*),
with u* = p;¢, is a secret sharing scheme for I';|{(A N P). Thus M|A = (Q, R, pro)
is a secret sharing scheme for I'| A. For x € RQ, we have Hypo(x) = Hy(x); s0if M
is ideal, then M|A is ideal. O

Theorem 8. Let M = (P, S, p) be a secret sharing scheme for T' = (I'y)ses. Let
A C SP and let Q = P\A and R = S\A. Then there is a secret sharing scheme
M- A= (Q R,u) forT' - A, where for a given @ € [A N P] we have p(w) =
PrQanP)(w, ), for each w € (RQ). Further, if M is ideal, then M - A is ideal.

Proof. Since M is a secret sharing scheme for T', then for each s € R, we have
M; = (P,s, pyp) is a secret sharing scheme for I'y. Let @ € [A N P]. By Result 5,
M- (ANP) = (Q,s, u*) is a secret sharing scheme for I'; - (A N P), where u° (@) =
Psgianp) (@, ), forw € (sQ). Thus M - A = (Q, R, u) is a secret sharing scheme for
I'- A, with p(w) = projanp)(w, @) for w € (RQ). If M is ideal, then, for s € S and
x € core([s - (AN P)), we have Hy(x) = H,s(x), so M - A is ideal. O

We note that if M = (P, S, p) is a secret sharing scheme for ' = (I';),¢s, then M| X,
with X = (S\s)(P\P), is a connected secret sharing scheme for [;.

4. Separators of Matroids and Probability Measures

In this section we discuss the concept of separators, both of matroids and of probability
measures. The results shown here are later used to establish our main result. Let T =
(£, 7) be amatroid, and let A C £. The set A is a separator of T if rank A +rank £\ A =
rank £. We note that A is a separator of T if and only if each circuit of T lies either in
A or in £\ A (see Proposition 4.2.1 of [22]). The next two results are needed to prove
Theorem 11, We write I' = A|A; tomean that T" = {A|, Ay: A; € Ay, A; € As).

Result 9 [22,3.1.11]. Let T = (£, I) be a matroid, and let X C £. Then the circuits
of T - X are the minimal nonempty members of the set {C\ X: where C is a circuit of T}.

Result 10 [22, 1.4.11]. Let T be a matroid and let C and D be two circuits in 7 with
CND # @ Then, forany x € C\D and y € C N D, there is a circuit in (CD)\y
containing x.

Theorem 11. LetT = (sAB, I) be a connected matroid, where A, B # @and ANB =
@. The following three conditions are equivalent:

(a) A and B are separators of Ts.
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(b) Forany A|, Ay C A and B\,.B; € B such that s A, B\ and s A, B; are circuits of
T, then sA|B; and s Ay By are also circuits of T.

(c) If the monotone access structure U is associated with T, then I' = A | A,, where
Ay and A, are monotone access structures on A and B, respectively.

Proof. Itis clear that conditions (b) and (c) are equivalent, so it is enough to show that
(a) is equivalent to (b).

Suppose (b) holds. We show that each circuit in T not containing s is contained in
either A or B, implying that A and B are separators of T'|s. First, let the set of circuits
inT throughs be C = {sA;B;j: Ai €S A, B, € B,1<i<a,l=<j<b)Byd43d2of
[22], the circuits of T not containing s are the minimal sets of the form

D;jxi = sA;B;A B — ﬂ sA.By
5A-BsCsA; AcB; By

(A;Ak— N AC>U(B,-B,— N Bd), )
A CA A B;CB; B

where sA; B; and s A; B, are distinct members of C. If B; = By, then we have

Dijij=AiA— [ Ae (2)
ASAA

Thusif B; # By, then (1) does not represent a minimal set, since D; jx,; © D; jx.. Hence

the only circuits not through s are of the form of (2) (or the equivalent for A; = Ay),

that is, contained in either A or B. Hence A and B are separators of 7'|s, and (a) holds.
For the converse, suppose that (a) holds. First we prove that

if sA| By and s A; B; are any two circuits of T, then Ay ¢ Ay and By & B;. (3)

Suppose, on the contrary, that A; C Az, and let p € A2\ Ay. Applying Result 10 using
circuits sA;B; and s A B, a circuit psA;B; € B A, B, exists. Since A is a separator
of T|s and p € A, it follows that psA2 B, C A and hence psA;B> € A;. However, A;
is an independent set (as it is a proper subset of the circuit s A2 B;), so cannot contain
a circuit. This contradiction proves that A; ¢ A, and a similar argument shows that
By ¢ B, hence (3) holds.

For X € AB, we have ranky(X) = rankr(X). Also, since T is connected,
rankr (s AB) = rankr{(AB) so

rankr (s AB) = rank7(AB) = rank7(A) + rankr(B). “4)

Let sA| By be a circuit of T, where A; € A and B; C B. Inthe contraction T - B, sA,
is a circuit (by (3) and Result 9), so rankr.g, (s A|) = rankr.p, (A) and hence

rankr.p, (s A) = rankr.p, (A). 5
For X C sAB\ By,

ranky. g (X) = rankr (X B|) — rankr (B;). (6)
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Substituting X = A, and noting that s ¢ AB and A is a separator of T|s, we have
rankr. g, (A) = rankr (A B))—rankr(B/) = ranky;(AB;)—rankr;(B) = ranky(A) =
rankr (A). Combining with (5) gives

rankr.g, (s A) = rankz (A). ‘ €))

Also from (6)
rankr.g, (B\B) = rankr(B) — ranky(By), (8)
rankr.g, (sAB\B|) = ranky(sAB) — rankr(B;). 9
So

ranl'(r.lgI (sA) + rankr.p,(B\B))
= ranky(A) + (ranky(B) — rank7(B,)) by (7) and (8)
= rankr.g, (SAB\B)) by (4) and (9),

that is, sA is a separator of T - B;. Now let s A; B> be another circuit in 7. By Result 9,
sA2B,\ B contains a circuit in T - By. As B, is an independent set, and as sA is a
separator of T - By, there is a circuit sA, in T - By for some A, C A,. By Result 9,
s A5 By is acircuitin T for some B; C Bj. Applying (3) twice, we see that A), = A and
B} = B;. Thus sA, B, is a circuitin T, and, similarly, s A| B, is a circuit in T. Hence (b)
holds, as required. ]

We now define separators of probability measures. We then show the relationship
between separators of probability measures and separators of their associated matroid,
and then prove some properties of separators. Let p be a probability measure on a finite set
(Z),and let A € B C Z. We say that A is a separator of (B, p) if H(A|B\A) = H(A),
which holds if and only if H(B\A|A) = H(B\A) which is if and only if H(B) =
H(A) + H(B\A). So A is a separator of B if and only if B\ A is a separator of B, which
is if and only if 6(A) and 6(B\A) are independent random variables. Note that A is a
separator of (B, p) if and only if A is a separator of (B, pg).

Lemma 12. Let p be a probability measure on a finite set (Z )for which an associated
matroid T = (Z, I) exists. Then the separators of (Z, p) are precisely the separators
of T.

Proof. By definition of (Z, p) being associated with the matroid T, there is a constant
h > 0 with H(A) = h x rankr(A) forall A C Z.Let A C Zand B = Z\A. Then A
is a separator of (Z, p) if and only if H(Z) = H(A) + H(B). Dividing by h, this holds
if and only if ranky(Z) = rankr(A) + rankr(B), hence if and only if A is a separator
of T. O

We now give some properties of separators of probability measures. Note that although
what follows could be stated in terms of independent random variables (in particular,
Lemma 13), we find the language of separators convenient in this context.
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Lemma 13. Let p be a probability measure on a finite set (Z), and let A,B C Z. If
A and B are both separators of (Z, p), then so are AB and A N B. Further, suppose
A C B. If A is a separator of (Z, p), then A is a separator of (B, p), and if B is a
separator of (Z, p), then A is a separator of (A(Z\B), p).

Proof. First, note that for any three disjoint subsets W, X, Y of Z we have (by Result 1)

HWX)+ HWY)—- HWXY) HWY)-HYIWX)
= HWY+ HY|W) - H(Y|WX)

H(W). (10)

v

Nowlet X = ANB,Y = Z\(AB), A; = A\B, and B| = B\A, so that Z is the disjoint
unionof X, Y, Ay, By. Since A = XA, and B = X B) are separators of (Z, p), it follows
that

H(A\BXY) = H(A1X)+ H(B\Y) (1)
= H(BiX)+ H(A\Y). (12)
Thus
HX)+ H({Y) > HX|AB\Y)+ H(Y|A B X)

H(AByXY)~ H(A\B\Y)+ H(A|B,XY) - H(A B X)
= H(A|X)+ H(B\Y) - H(A|B\Y)+ H(B X)
+ H(AY) — H(A B X) by (11) and (12)
= (H(A1X)+ H(B1X) — H(A1 B, X))
+ (H(A\Y)+ H(B,Y) — H(A1B\Y))
> H(X)+ H(Y) by applying (10) twice.

Hence equality holds throughout, and in particular H(X|A,B,Y) = H(X) and
H(Y|AB|X)=H).Thus X = AN B and Y = Z\(AB) are separators of (Z, p),
implying that A B is also a separator of (Z, p).

Now suppose that A C B. We have H(A) > H(A|B\A) > H(A|Z\A) = H(A),
since A is a separator of (Z, p). Thus equality holds throughout, and, in particular, A is
a separator of (B, p). If B is a separator of (Z, p), then Z\ B is a separator of (Z, p),
so, by the previous part of this lemma, Z\ B is a separator of (A(Z\B), p). Hence A is
a separator of (A(Z\ B), p), as required. O

Lemma 14. Let p be a probability measure on a finite set (Z), let A € B C Z and
a € Z. Suppose that A is a separator of (B, p) and that H{a|A) = 0. Then for A’ C A
we have H(a|A'(B\A)) = H(a|A’). Further, aA is a separator of (aB, p).

Proof. Let B’ = B\A. First note that since A is a separator of (B = AB’, p), then A’
is a separator of (A’ B’, p), by Lemma 13. Also, aA’ is a separator of (aA'B’, p), as we
now show, using H(aA) = H(A). H(B') = H(B'|A") > H(B'laA) = H(aAB') —
H(aA) > H(AB") — H(A) = H(A) + H(B') — H(A) = H(B'); so equality holds
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throughout, implying that B’, and hence also aA', is a separator of (aA’B’, p) (choosing
A’ = A shows that aA is a separator of (aB, p)). Thus, H(a|A") > H(a]A'B’) =
H(aA'B') — H(A'B') = H(aA") + H(B') — H(A") — H(B') = H(a|A’). Equality
holds throughout, hence H(a|A'B’) = H(alA’), as required. O

5. Construction and Classification of Ideal Secret Sharing Schemes

In this section we give a complete classification of the collections of secret sharing
schemes which occur as the components of an ideal secret sharing scheme. In doing so,
we show explicitly how to construct a secret sharing scheme from such a collection of
components.

Lemmals. Let M = (P, s, p) be an ideal secret sharing scheme for T, let P, =
core(I") and let A C P\P;. Then'|A =T - A and H(B|A) = H(B) forany B C P;.

Proof. Let A C P\P;. For B C P, we have B € T if and only if AB € I". Thus
MNA=T-A.

In particular, if @ = P\P;, then'|@ =T - Q@ (= I/, say). Hence P; = core(I'| Q) =
core(I" - Q). By Results 4 and 5 M|Q = (Ps,s,t)and M - Q = (P, 5, u) are ideal
secret sharing schemes for I'', where T = p;p, and for some fixed ¢ € [Q], and any
w € (sPs), u(w) = psp,jo(w, ). As M|Q and M - Q are connected ideal schemes for
the same access structure I, they are associated with the same matroid T = (sP;, 7).
Further, H;(s) = H,(s) (= h, say). So for B C P,, H,(B) = h x ranky(B) and
H,(B) = h x rankr(B). However, H;(B) = H,(B) and H,(B) = H,(B|Q = «a).
Hence H,(B) = H,(B|Q). So B is a separator of (BQ, p) and by Lemma 13, for any
A C @, B is aseparator of (AB, p) and so H,(BfA) = H,(B). O

For the remainder of this section, let M = (P, S, p) be a connected, ideal secret
sharing scheme for I' = ([';)cs, and let P, = core(T;) (for s € S). Foreach X C S,

let
PX = (ﬂ Ps) N <ﬂ ’P\Ps) .
seX sgX

That is, PX is the set of participants which are in P; for all s € X and not in P, for
any s ¢ X. We note that the nonempty sets PX, for X C S, partition P and that the
nonempty sets PX, for s € X C S, partition P;.

Lemma 16. For any X C S, PX is a separator of (P, p) and of (P;, pp,) for each
seX.

Proof. Lets € S and let A = P\P;. By Lemma 15, H(P;|A) = H(P;) so that P is
a separator of AP, = P. Thus P\P; is also a separator of (P, p), and the result follows
from Lemma 13. (]
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The next result gives necessary and sufficient conditions on a collection of ideal single
secret sharing schemes in order that it can occur as the collection of components of an
ideal secret sharing scheme with multiple secrets. These conditions are that each access
structure is a product of access structures on the subsets PX of participants, and that
the respective probability mass functions agree on the subsets PX. Our theorem shows
explicitly the construction of an ideal secret sharing scheme from its component schemes.

Theorem 17. Leth > 0. Let T' = ([y);es be a collection of ideal access structures
on a participant set ‘P, with set S of secrets. For s € S, let P; = core(['y) and let
T; = (sPs, ;) be the matroid associated with T's. Suppose that P = |, Ps. There is
a connected ideal secret sharing scheme M = (P, S, p) forT with H(s) = hfors € S
if and only if the following conditions hold:

(@) Foreachs € S and each X € S with s € X, PX is a separator of T;|s (equiva-
lently, for each s € S we have T's = [[;cycs AX where each A is a (possibly
empty) access structure on PX).

(b) Foreachs € S there are secret sharing schemes M; = (Ps, s, p*) for s satisfying
H,:(s) = hand such that foreach s, t withs, t € Sandeach X C Swiths,t € X
we have (0°)px = (p")px.

Proof. Suppose there is a connected ideal secret sharing scheme M = (P, S, p) for
T with H(s) = hfors € S. For s € S let M; be the ideal single secret sharing
scheme M; = (P;, s, p° = psp,) for [y, and note that M, has associated matroid T;.
Let s € S. By Lemma 16, PX is a separator of (P, p) and of (P, pp,). By Lemma 12,
PX is a separator of T;|s and the first part of (a) holds. Since P; = | J . sEXCS) PX,
the equivalent statement follows from repeated applications of Theorem 11. Further,
Hps(s) = Hp,, (s) = H,(s) = h and foreach s, r € S with s # ¢ and each X C S with
5.t € X, then PX C P, NP, so that (p°)px = ppx = (p')px and (b) holds.

Conversely, suppose (a) and (b) hold. For X C S, let pX denote (p*)px forany s € X.
Property (b) ensures that p* is well defined. For s € S and X C S withs € X, PX is
a separator of T;|s (by (a)) and PX is a separator of (P;, p®), by (b) and Lemma 12. By
Result 1(3), this means pp, (1) = ]_[(Xg& seX) X (rpx) form € (Ps). For w € [sPs],,
since H,s(s|P;) = 0,

P (W) = pp (wp)op, (wilwp,) = pp (wp) =[] PX@we. (13
{XCSS: seX)

Let (SP) be the collection of tuples 7 € (X;es[s5]ps) x (X xcs[PX] o*) such that r,p, €
[sPs],s foreach s € S. For each m € (SP), let

p(m) =[] p*(rpx) (14)

Xcs

(so (SP) = [SP],). We now show that M = (P, S, p) is an ideal secret sharing
scheme for I" (which is necessarily connected, by hypothesis). We first show that p is a
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probability measure. We have

2 pm = ) [[e¥@e  byad

TE(SP) ne(SP) XCS

[T > Par=t

XCS n'e[Pl,x

Thus p is a probability measure on {(SP). By (14) and Result 1(3), for any X C S, P¥
is a separator of (P, p), hence

HPX|P\P*) = H(PY). (15)

We now show that M, = (P, s, pyp) is a secret sharing scheme for ;. Since we already
know that M; = (P, s, p*) is a secret sharing scheme for Iy, it is enough to show that
the following two conditions are satisfied:

M, = MJI((P\P,)),  thatis, pp, =0’ (16)
foral ACP, and B CP\P,, wehave H,(s|AB) = H,(s|A). (17)
Let w € [sPs],. Then

ppw) = Y pm= > Jle@em  byas
(me[SP),: 7sp=w} {(me[SP,: ayp,=w} XS
= ] eP*@e)=p'w by(s).
[XCS: seX)

Uixcs: sex) P¥ and each P¥ is a separator of (P, p) (by (15)), it follows by Lemma 13
that P is a separator of (P, p). Since H,(s|P;) = 0, by definition of p and Lemma 14,
sP; is a separator of (sP, p). Again by Lemma 13, s A is a separator of (s A(P\P), p).
By Lemma 14, H,(s|A) = H,(s|AB) as required. It follows that M is an ideal secret
sharing scheme for I a

Hence (16) holds. We now prove (17). Let A € P, and B C P\P;. As P, =

Example 18. We verify conditions (a) and (b) of Theorem 17 in the case of Example 6.
The participant set P = {a, b, c} is partitioned by P* = {c} and P** = {a, b}.

(@) Iy = {abc} on Ps, so I’y = ASAY where A = {c} and A" = {ab). Similarly,
I'; = {ab}on P, so 'y = AJA}* where A} = @ and A} = {ab}.

(b) Note that M; = (abc, s, psapbc) is an ideal secret sharing scheme for 'y, with

H, . (s) = H,(s). Similarly, M; = (ab, ¢, p;ap) is an ideal secret sharing scheme
for I',, with Hpmb(t) = H,(t). Since M is ideal, H,(s) = H,(t) = h, say. Further,
(psabc)ab = Pap = (ptab)ab-

Example19. Let S = {s,t} and P = {a,b.c,d}. Let '] = {ab, acd, bed} and
I = {ab,cd}. So P, = P, = P and hence P°* = P' = @ and P** = P. We have
[y = ASAY, where A} = @ and A} = T;. Also T, = AJA, where A} = § and
A$* =T,. An ideal secret sharing scheme for (T, I';) is given by the set of tuples
{(s.t,a.b,c,d)=(a, B+ B, a+28,8+y,.v)|e, B.y € GF(3)},

with each tuple occurring with probability 1/27.
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6. Ideal Secret Sharing Schemes and Matroids

As mentioned in Section 2.1, the matroid associated with an ideal single secret sharing
scheme has proved to be an extremely important tool in the attempt to characterize such
schemes. It is natural to ask whether an ideal secret sharing scheme (with more than one
secret) determines a matroid in the same way. To be precise, let M = (P, S, p) be an
ideal secret sharing scheme for I' = (I )5es, and let A(M) = {A € SP: thereisa € A
such that H(a|A\a) = 0} (see Section 2.1). If A(M) is the collection of dependent sets
of a matroid T = (SP, T), then we say that T is the matroid associated with M.

We first show by counterexample that, in contrast to the single secret case, not every
connected ideal secret sharing scheme has an associated matroid. Motivated by this
example, we investigate which sets X C SP are always associated with a matroid. In
Theorem 20 we show that there is always an associated matroid when X = sP for some
s € 8. In Theorem 21 and its corollary we consider the special case where the cores of
a subset of the access structures are pairwise disjoint.

We then view the matroid association from a different viewpoint. By Theorem 20 we
can find a matroid on sP for any s € S, and, by the counterexample below, there is not
necessarily a matroid on st for two secrets s and ¢. If there is not a matroid on st P, this
means that there is A C P witheither0 < H(s|tA) < H(s)or0 < H(t|sA) < H(t).In
Theorem 24 we investigate how this affects the relationship between the access structures
s and [,.

The final theorem in this section remarks that if SP is associated with a representable
matroid 7', then an ideal secret sharing scheme for I' = (I's);¢s can be easily obtained
using known methods (where, for s € S, T's is the access structure associated with
T|(S\s)).

Suppose that the secret sharing scheme M = (P, S, p) has associated matroid T =
(SP, I). It then follows that H(a|A) = H(a)orOforalla € SP,and A C SP (since the
rank function is integer-valued, and so every H(a|A) is a multiple of H(a)). However,
for the ideal secret sharing scheme M given in Section 3, we have 0 < H(s|ct) =
H(stc) — H(ct) < H(s) since, for example, 000 € [stc] occurs with probability 1/16
and 121, 123 € [stc] each occur with probability 1/32. Thus an ideal secret sharing
scheme does not necessarily have an associated matroid defined on SP, associated in
the same way as in the single secret case.

We now investigate to what extent we can guarantee an associated matroid.

First we recall the following definition. Let 1 = (£,,Z;) and T> = (&,1;) be
matroids, satisfying £ N & = (. The direct sum of T) and T is the matroid 7\ ® T, =
(£1&,. ) where T = {I11,: I € I, I, € I,}. Since foreach I, € 7y, I, € I, we have
| b| = |I1] + | L], it follows that rank(£,&;) = rank(£;) + rank(&,); hence &) and &,
are separators of T} & T». Further, T|E; = T, and T'|&; = T;. In a similar way, we can
define the direct sum of a finite number of matroids, provided they are defined on disjoint
sets. Conversely, given any matroid T = (£, Z) with a separator A, and B = £\ A we
have T = (T|A) @ (T|B). Finally, we note that in the case of matroids T} = (£, 1)
and T» = (&,, 1) satisfying £ N & # @, it is not always possible to find a matroid
T =& &, Dsuchthat Ty =L and T|E =T,.

We note the following useful observation, which is the basis of Theorems 20 and
21. Let M = (P. S, p) be an ideal secret sharing scheme for I'. Suppose there are
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X € SP and separators X|, ..., X, of (X, px) which partition X. Suppose there are
matroids Ty, ..., T, associated with X, ..., X,. Then M’ = M|SP\ X has an associated
matroid, whichis T = T, @ --- & T,, defined on the set X. We use this observation,
together with Lemmas 14 and 16, to show there is a matroid associated with the union
of the set of participants with the set containing any one secret.

Theorem 20. Let M = (P, S, p) be a connected ideal secret sharing scheme for
' = (Fy)ses, and consider the secret sharing scheme M|(S\s) = (P, s, psp) for [';.
Then a matroid defined on the set sP and associated with M|(S\s) exists.

Proof. Foreachs € SletT; = (sP;, Z;) be the matroid associated with the (connected
ideal) secret sharing scheme M; = (P;, s, psp,). By Lemmas 12 and 16, foreach X € S,
PX is a separator of T;|s. Let X C S.Fors,t € X, PX € P, NP, so T,|(SP\P¥) =
T;|(SP\PX). Hence we can define Ty = T,|(SP\PX) = (PX,I%), forany s € X.
Since sP = (sP,) U (le: sEXCS) PX), the required matroid is (@XQS\S Iy)eT,. O

Now consider again Example 6. We showed that there is a matroid T\, = (sabc, T)
with circuit set {abcs} associated with the secret sharing scheme M| = (abc, s, p)) for
I's. There is a second secret sharing scheme M, = (ab, ¢, p;) for I', with associated
matroid 75 = (tab, I,) with circuit set {abt}. The example shows that the secret ¢ and
the circuit abt cannot be adjoined to the matroid 7; to form a new matroid associated with
the secret sharing scheme M whose component parts are M; and M;. In the next theorem
we show conditions under which the matroid associated with one of the components of a
secret sharing scheme can be extended in this way to include other component schemes.

Theorem 21. Let M = (P, S, p) be a connected ideal secret sharing scheme for
' = ([y)ses- Suppose X C S exists such that for each s € X there is a set X; C S
with s € X; and H(s|P%s) = 0. Then there is a matroid defined on the set XP and
associated with M|(S\X) = (P, X, pxp) for (Ty)sex.

Proof. We show that P*s = P, for each s € X. For s € X, as P%: is a separator
of (P, pp,) (Lemma 16), and H(s|P*:) = 0, then sP%: is a separator of (sP;, p;p,)
by Lemma 14. Let T, = (sP;, Z;) be the matroid associated with M, = (P;, s, psp,)
for I';. By Lemma 12, sP%; is a separator of T;, so each circuit sC of T, lies in sPX:
(Section 4); hence P, = PX: (Result 2(3)), as we claimed. Note that the existence of
the sets X and X; (s € X) is equivalent to the existence of X C S with the properties:
(a) P,NP, = B foreach s,t € X with s # ¢, and (b) for each s € X and each
u € S\X either P, NP, = @ or P; C P,. This follows by the equality P; = P*:. As
XP = (Usex P YU (Uycs\x PY), the associated matroid is

(@r)=(@,7)

where Ty is as defined in Theorem 20. - O
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Asacorollary, we obtain the (unsurprising) result that if an ideal secret sharing scheme
has component schemes defined on pairwise disjoint sets of participants, then the secret
sharing scheme has an associated matroid, which is the direct sum of the matroids
associated with the component schemes.

Corollary 22. Let M = (P, S, p) be a connected ideal secret sharing scheme for
I'= (Ty)ses.- Ifforeach s, t € S, s # t, we have P, NP, = @, then there is a matroid
defined on the set SP and associated with M.

Since not every ideal secret sharing scheme has an associated matroid, and as suggested
by the idea of direct sums of matroids, we now ask: given an ideal secret sharing scheme
M = (P, S, p) for I, does a matroid T = (SP, T) exist such that T|SP\(sP,) = T,
for each s € S? Our next example shows that such a matroid T can sometimes be found.
Note that we are not asking that the matroid be associated with M, and indeed in this
example it is not, as argued above.

Example 23. Recall the ideal secret sharing scheme M = (abc, st, p) forT' = (I'y, T)
where I’ = (abc} and I, = {ab} discussed in Example 6. Let T) = (sabc, I)
and 7> = (tab, I;) denote the matroids associated with I'; and T, respectively. Let
T = (stabc,T) be the matroid with the set of circuits {abcs, abt, cst}, so that the
dependent sets of T are

A = {abcs, abcst, abt, abct, abst, cst, acst, best)

and each other subset of srabc is independent. It is straightforward to verify that T{t = T
and T'isc = T».

As discussed at the beginning of this section we now consider the case when two
secrets s, # € S cannot be adjoined to P in such a way that there is an associated matroid
on (stP, pup). By Theorem 20, fora € sP and A C sP we have either H (a|A) = H (a)
or 0. Similarly for tP. So if there is no matroid associated with s¢P, then A C P with
0 < H(s|tA) < H(s) exists.

Theorem 24. LetM = (P, S, p) be a secret sharing scheme for U = ([ );cs. Suppose
there is A C P for which H(s|tA) < H(s) for somes #1,s.t € S. Then AT, C T,
where AT, = {AB|B € T',}.

Proof. Suppose B € I';,sothat H(¢t|B) = 0.Now H(sAB) = H(stAB) = H(s|tAB)
+ H(tAB) < H(s|tA) + H(AB) < H(s) + H(AB). Hence H(s|AB) < H(s) so
AB eT;. O

Corollary 25. Let M = (P, S, p) be a secret sharing scheme for T' = (Fy)ses.
Suppose H(s|t) < H(s) for somes # t,s,t € S.Then Ty = [,

Proof. Weapply Theorem24and A = @.SoI", C I's. Now H(t|s) = H(sit)+ H(t)—
H(s) < H(t), so applying Theorem 24 again we obtain I’y C I',. Hence I', = I';,, O
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Illustrating Theorem 24 with Example 6, where A = {c}, we have 0 < H(s|At) < H(s),
and so cI'y € I';. Actually, in this case I'[ {abc} and I',] = {ab} ,socI’; =T,.

We now complete this section by remarking that, as in the single secret sharing case
[10], if there is an appropriate representable matroid, then we can find an ideal secret
sharing scheme.

Theorem 26. Let T = (SP, I) be a representable matroid. For each s € S suppose
that T|(S\s) has associated access structure T's, and let Py = core T If P = | J, .5 Ps»
then there is a connected ideal secret sharing scheme M = (P, S, p) for T = (F)ges.-

Proof. To obtain the tuples {SP], with a uniform probability measure p is a straight-
forward generalization of the technique in [10]. ]

7. Concluding Remark

We have classified ideal secret sharing schemes with more than one secret in terms of
the ideal single secret sharing schemes that must exist for such a scheme to be formed.
These schemes thus allow a group of participants to share more than one secret, while
holding a share whose size is the same as that of each of the secrets. We have also shown
that the link between matroids and ideal secret sharing schemes does extend to these
more complex schemes, but have shown that the relationship is less straightforward in
this case.
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