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Abstract. Differential cryptanalysis is a method of attacking iterated mappings 
based on differences known as characteristics. The probability of a given 
characteristic is derived from the XOR tables associated with the iterated 
mapping. If ~- is a mapping ~r: Z~ --, Z~", then for each AX, AY ~ Z~ the 
XOR table for ~r gives the number of input pairs of difference AX = X + X' 
for which ~r(X) + Ir(X') = AY. 

The complexity of a differential attack depends upon two properties of the 
XOR tables: the density of zero entries in the table, and the size of the largest 
entry in the table. In this paper we present the first results on the expected 
values of these properties for a general class of mappings ~r. We prove that if 
7r: Z~' ~ Z~' is a bijective mapping, then the expected size of the largest entry 
in the XOR table for ~r is bounded by 2m, while the fraction of the XOR table 
that is zero approaches e-1/2 = 0.60653. We are then able to demonstrate that 
there are easily constructed classes of iterated mappings for which the probabil- 
ity of a differential-like attack succeeding is very small. 
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1. Introduction 

Different ia l  cryptanalysis is a statistical at tack popular ized  by Biham and  Shamir  

[3], [5] that  has b e e n  appl ied to a wide range of cryptosystems including 
L U C I F E R ,  DES,  FEAL,  R E D O C ,  and  Kahfre  [7], [8], [10], [17], [18], [25]. The  

at tack is universal  in that  it can be used against  any cryptographic mapp ing  
which is cons t ructed  f rom i terat ing a fixed round  func t ion  (compare  this with the 
universal i ty of  the bir thday paradox against  hash functions) .  For  this reason the 
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differential attack must be considered one of the most general cryptanalytic 
attacks known to date. The main shortcoming of differential cryptanalysis is that 
large amounts of chosen-ciphertext may be required to determine the key, which 
will not be possible in most practical circumstances. Nevertheless, differential 
cryptanalysis has caused the revision and redesign of several iterated mappings 
[1], [5], [6], [19] and together with linear cryptanalysis are the only known attacks 
which can theoretically recover DES keys in time less than the expected cost of 
exhaustive search [4]. Importantly, the method has shown that the security of 
DES is not significantly increased if independent subkeys are used. 

We give a brief description of differential cryptanalysis with reference to 
product ciphers, though any iterated mapping could be used. For a product 
cipher E that consists of R rounds, let E,(X, K) be the ciphertext of the 
plaintext X under the key K for r rounds, 1 _< r < R, where ER(X, K) = 
E(X,  K) = C is the mapping for X. Let AC(r) = Er(X, K) + Er(X', K) be the 
difference between the ciphertexts of two plaintexts X, X'  after r rounds where 
1 < r < R. An r-round characteristic is defined as an (r + 1)-tuple 
I)r(AX , AY1, AY 2 . . . . .  Ale,) where AX is a plantext difference, and the AY/ are 
ciphertext differences. A plaintext pair X, X'  of difference A X is called a right 
pair with respect to a key K and a characteristic f~r(AX, AY1, AY z . . . . .  AYe) if, 
when the pair X, X'  is encrypted, AC( i )=  AY~ for 1 < i < r. That is, the 
characteristic correctly predicts the ciphertext differences at each round. The 
characteristic 12r has probability pn, if a fraction pnr of the plaintext pairs of 
difference A X are right pairs. On the other hand, if X, X'  is not a right pair, 
then it is said to be a wrong pair (with respect to the characteristic and the key). 
A table which records the number of pairs of difference AX that give the 
output difference Ay for a mapping ,r is called theXOR table distribution of ~r. 
A characteristic AX, AY is said to be impossible for ,r if its corresponding XOR 
table entry is zero. Also a characteristic is said to be nonzero if w(AX) > 0, 
where w(.) is the Hamming weight function. 

Assume that we wish to determine the subkey K R that is being used in round 
R. The method of differential cryptanalysis proceeds as follows: 

Step 1. Find a highly probably r-round characteristic f ~ ( A X ,  AY1,AY 2, 
. . .  ,AYe) which gives (partial) information about the input and out- 

put differences of the round mapping F at round R. 
Step 2. Uniformly select a ciphertext pair X, X '  with difference A X and 

encrypt this pair, assuming that X, X'  is a right pair. Determine 
candidate subkeys K' 1, K~ . . . . .  K~ such that each K~ could have 
caused the observed output difference. Increment a counter for each 
candidate subkey K~. 

Step 3. Repeat Step 2 until one subkey K~ is distinguished as being counted 
significantly more often than other subkeys. Take K~ to be the actual 
subkey. 

If X, X'  is a right pair, then one of the candidate subkeys K'I, K~ . . . . .  K~ is the 
actual subkey KR, and K R will be counted for each right pair. On the other 
hand, if X, X'  is a wrong pair, then we assume that the candidate keys are 
distributed uniformly over the set of possible subkeys for the round, and K R will 
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be counted with small probability. Similarly, we assume that any key other than 
the actual subkey will also be counted infrequently. It is then natural to define 
the complexity of a differential cryptanalysis to be the number of encrypted 
plaintext pairs of a specified difference required to determine the key or subkey. 
From experiments on restricted versions of DES, Biham and Shamir [3] found 
that the complexity of the attack was approximately c/p n*, where pn* is the 
probability of the characteristic being used, and c is a constant bound as 
2 < c < 8 .  

A variant of the attack is to perform Step 2 using only a subset of the subkey 
bits which could be counted for that round. For example, in DES each subkey is 
48 bits in length which could possibly require 248 counters to record the 
individual frequencies of the candidate subkeys. It is then more practical to 
count on fewer key bits, and for DES it is natural to count on 6k key bits, 
representing the subkey bits entering k S-boxes. Observe that those S-boxes Sj 
whose subkeys are not being counted may still be used to discard, before 
counting, those ciphertext pairs X, X '  which yield an impossible characteristic 
for Sj when X, X '  is assumed to be a right pair. That is, if for S-box Sj the 
observed input/output difference is AXj, AYj, and AXj, A~ is an impossible 
characteristic in the XOR table for Sj, then the pair encrypted to produce the 
differences AXj, AYj cannot be a right pair. By filtering plaintext pairs in this 
way, the ratio of right to wrong pairs that will be counted is enlarged, and the 
actual subkey will be distinguished more directly. Thus the density of impossible 
characteristics in an S-box is important to determine the effectiveness of this 
filtering process. 

1.1. Results 

Observe that an r-round characteristic is simply the concatenation of r 1-round, 
or single round, characteristics defined on the round mapping F. It then follows 
that the probability of the r-round characteristic IIr can be bound as pn, < 
( p C t ) r  where pa  is the probability of the most likely nonzero single round 
characteristic. At present there are no general bounds known for pa.  The main 
result of this paper is to bound pn when the round mapping F is derived from a 
set of bijective mappings. These results will lead to bounds on the probability of 
characteristics in a large class of product ciphers. 

Let or: Z~' ~ Z~' be an bijective mapping, which is referred to as an m-bit 
permutation. The set of all m-bit permutations is known as the symmetric group 
on 2 m objects and is denoted as S2m. Let A~(AX, AY) be the value of the XOR 
table entry of the pair AX, AY ~ Z~' for the permutation r ~ S2m. We consider 
A~(AX, Ay)  as a random variable A,~(AX, AY): S 2. ~ {0, 2 . . . . .  2m}, assuming 
the uniform distribution on the set S2m. We prove (Theorem 2.1) that 

Pr(A~(AX, AY) = O) = - -  
1 2"-t (2m-1)  2 

2"! ~ ( - 1 )  k. . 2 k . k ! . ( 2  m --  2k)W (1) 
k=0 k " 

from which we are able to determine the exact distribution of A,~(AX, Ay)  (see 
Corollary 2.1). Note that (1) gives the distribution of a single entry in the XOR 
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table, but we are interested in global properties of the table such as the largest 
entry and the fraction of the table that is zero. Fortunately, we are able to 
manipulate the distribution of (1) to yield bounds on such global properties of 
the XOR table. In Section 3 we prove, for large m, the expected probability of 
the most likely nonzero characteristic for an m-bit permutation is at most 
m / 2  ml when the uniform distribution on $2 m is assumed. Equivalently, the 
expected maximum entry in the XOR table for nonzero characteristics is at most 
2m for large m. Experiments indicate that this bound is significant for m >_ 8 
(see Table 1 in Section 3). Theorem 3.1 indicates that the individual entries of 
an XOR table are expected to be distributed in the interval [0, 2 . . . .  ,2m]. At 
this time we are not able to determine the exact distribution of the entries 
within this interval, but we are able to show that most XOR table entries are in 
fact zero. We prove (Corollary 2.2) that the expected fraction of the XOR table 
for nonzero characteristics that is zero approaches e -1/2 = 0.60653. In another 
way, approximately 60% of the entries for nonzero characteristics will be zero 
for a permutation selected uniformly. It follows that impossible characteristics 
can then be used to discard a high percentage of wrong pairs X, X '  which give 
no probabilistic information about the actual key. 

The sections of this paper are arranged as follows. In Section 1.2 some 
relevant notation is defined. In Section 2 we present the Pairing Theorem which 
is the counting result that is used to prove the major results concerning the 
distribution of characteristics in XOR tables. Later in Section 2 we determine 
the expected fraction of the XOR table that is zero, and use these calculations 
in Section 3 to prove our results concerning the largest entry of the XOR table. 
In Sections 3.1 and 3.2 we use our previous results to bound the probability of 
characteristics in two common product ciphers. 

1.2. Notation 

Throughout the paper we let [.] denote a boolean predicate which evaluates to 
zero or one. For example, the sum Y'.~'= l[n is prime] computes It(n), the number 
of primes less than or equal to n, while ~p(n)= Y'-~'=x[gcd(i, n ) - -1 ] .  This 
notation should not be confused with E[ ot ] which is the expected value of the 
random variable a.  

We now formalize some of the notation given in the introduction. For a given 
/7" • S2,n , define A~(AX, AY) as 

A=(AX, AY) = ]~ [~r(X) + r r (X ' )  = AY]. (2) 
x , x ' ~ z ~  
A X = X + X '  

Then 2 -m �9 A,~(AX, AY) is a random variable giving the probability that the 
difference in the output of the mapping ~r is AY when the difference of the 
input pair X, X '  is AX. For all ~r ~ S2m, observe that when AX = 0 or AY = 0 
it follows that A~(AX, AY) = 0, unless AX = AY = 0 whereupon 
A,~(AX, A Y ) =  2 m. The distribution of A,~(AX, AY) taken over all possible 
AX, AY ~ Z~ is known as the pairs XOR distribution table for ~r, or simply the 
XOR table for ~r. A characteristic is a sequence of differences. Unless otherwise 
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stated, when we speak of a characteristic AX, AY for a product cipher we refer 
to a nonzero single-round characteristic. 

E x a m p l e  1.1. For  an m-bit permutation 7r, let XOR,~ be the 2 m )< 2 m matrix 
where XOR,~(i, j )  = A,~(i, j) ,  0 < i, j < 2 m - -  1 ,  where i, j are treated as 3-bit 
binary vectors. Observe that XOR,~(0, 0) = 8, and all other  entries in the first 
row or column of XOR(Tr) are zero. For  ,r = (7, 2, 4, 1, 5, 6, 3, 0), where zr(0) = 7, 
lr(1) = 2, and so on, the corresponding X O R  table 

- 8  0 

0 0 
0 0 
0 0 

XOR~ = 0 2 

0 2 
0 2 
0 2 

Notice that if each entry in the XOR 
matrix will be doubly stochastic. 

0 0 0 0 
0 4 0 4 
0 4 0 0 
0 0 0 4 
2 0 2 0 
2 0 2 0 
2 0 2 0 
2 0 2 0 

table 

is given by 

0 0 
0 0 
4 0 
4 0 
0 2 
0 2 
0 2 
0 2 

(3) 

is divided by 2 m, then the resulting 

The XOR  table for an m-bit permutation ,r has the following general form: 

2 m 0 0 ... 0 

0 al, 1 al, 2 "" a l , 2 .  1 

X O R , =  0 a2,1 a2,2 "-- a2,2,~ 1 [2m 0 ]  (4) 
�9 : �9 . . .  �9 = A ,  r �9 

0 a2=_l, 1 a2,~_ 1, 2 ... a2=_l,2m_l 

We are interested in the properties of the (2 m - 1) • (2 m - 1) submatrix 
A~, = [ai, j], 1 < i , j  < 2 m - 1, which corresponds to that portion of the X O R 
table entries attributed to nonzero characteristics. In this paper we show that, 
for large m, approximately 60% of the entries in A~, are zero and the largest 
entry in A,~ is expected to be bounded by 2m. 

It is evident that all the entries of  an XOR table are even, since summation in 
(2) is taken over all unordered pairs. However, for clarity in the counting to 
follow we consider the pairs to be ordered. To this end, define A'~,(AX, AY) as 

A~(AX,  A y )  
A ' . (AX,  AY) = 2 (5) 

2 .  T h e  P a i r i n g  T h e o r e m  

Observe that a characteristic AX, A y  corresponds to a pairing of  the inputs and 
outputs of a permutat ion rr (namely, the pairs X, X '  and Y, Y' where A X  = 
X + X '  and AY = Y + Y'). For  9: A ~ B, let H A and II B be pairings on the 
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sets A and B, respectively. Theorem 2.1 determines the number of functions ~p 
which take no pair of H a to a pair in He ,  and is referred to as the Pairing 
Theorem. All our results concerning the distribution of characteristics in bijec- 
tive mappings are derived from the Pairing Theorem. 

T h e o r e m  2.1 (The Pairing Theorem). Let  A = {a l , a  2 . . . .  , a2d}  and B - -  
{b 1 , b 2 . . . . .  b2d} be sets o f  distinct elements. Let  l ia  c_ A x A and 1-I n c_ B • B 
be unordered pairs, such that ai(b i) occurs in one pair o f  Ha(1-I n) for  1 <_ i <_ 2d. 
Then the number ~ ( d )  o f  bijective functions ~p: A ~ B such that, for all (ai,  aj) 
E l'I A ,(tP(ai), ~p(aj)) ~ IIB is 

�9 (d)  = ~ ( - -1)  k" " 2 k ' k ! ' ( E d  - 2k)!.  (6) 
k=0  

Proof. Order the elements of H B as (b~, btd+i ), 1 <_ i <_ d. For 1 _< i _< d define 
P( i )  as 

P ( i )  - {~pl(~p(a), ~(a ' ) )  = (b~, b'd+i), (a,  a')  ~ liA} 

which is the number of functions ~ that map some pair of H A to the pair 
(b~, b'd+i) ~ liB. It follows that 

(:I)(d)=(2d)!- I U e(J)l =(2d)!+ ~ (-1) Isl" iqe(j) (7) 
l<j<d S__{I,2 . . . . .  d} j e S  

s ,  {0) 

using the inclusion-exclusion principle [13]. For 1 < k _< d define the integers 

P(i ' l ,  i'2 . . . . .  i'k) = I P(i ) (8) 
l<j<k 

t def 
and by symmetry P(1,2 . . . . .  k ) - - -P( i '  1 , i' 2 . . . . .  i k) = P(d,k). From (7) it then 
follows that 

k ( d ) . p ( d , k ) "  (9) ~ ( d )  = ( 2 d ) ! +  ~ ( - 1 )  k" k 
k = l  

It remains to determine P(d,  k )  for 1 _< k < d. To this end, order the pairs 
within H A as (a'i, a'a+ i) for 1 < k < d. Then P(d,  k)  is the number of functions 

�9 h " ' ' ' " ' ' ~p for whlc there are k pairs (d~, d'd+i) such that {~p(d~), ~P(ad+i)} = {(bi, bd+i)}, 

l < i _ < k .  T h e r e a r e  : ' ,  ,Idlk ways to choose the k pairs (a'~, a'~+i) from HA, k! 

ways of assigning the (d~,a"d+ i) to the b~,b'd+i), and 2 k ways of assigning 
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(a'[, ~ + i )  to a particular pair in lIB. It then follows that 

e ( d , k )  = (d )  . 2 * . k ! . ( 2 d -  2d)!, (10) 

where ( 2 d -  2k)! is the number of ways to assign the elements in A -  
{a'[, a'~+ill < i < k}. We then have that 

( l ) ( d ) = ( 2 d ) ! +  ~ ( - 1 )  k- . P ( d , k )  
k=l 

]~ ( - 1 )  k" . 
k=O 

2 k. kb(2d - 2k)!, 

which completes the proof of the theorem. [] 

Observe that ~ ( 2 " -  1) will give the number of permutations rr for which the 
entry in the XOR table for AX, AY is zero; also, since ~o is bijective we are able 
to determine the probability that exactly k pairs of difference AX lead to 
difference Ay. We have defined differences using the " + "  operator but we 
observe that the Pairing Theorem will apply to any notion of difference that 
pairs input and output differences uniquely, i.e., given AX and X there is only 
one X' such that AX = X + X'. Using the Pairing Theorem we now derive the 
distribution of the random variable ~,~(AX, AY) as defined in (5). 

Corollary 2.1. For any fired nonzero AX,  A y  ~ Z~ ,  assuming rr is chosen 
uniformly from the set SEre and 0 _< k _< 2 " -  1, 

2'n-1( k )2 k [ . 2  k E[X,~(AX, A Y ) ] =  ~ 2 -1 . k "  . ~ ( 2 " - 1 - k )  
k=0 2"! (11) 

Proof. From the Pairing Theorem the number of 7r ~ S2" . for which 
A~(AX, Ay) -- 0 is ~o(2 =- 1). By definition P(d, k) is the number of mappings 
which take any k pairs from II a to the fixed k pairs (b~, b~+ d) ~ II B where 
1 < i < k. Then from (10) it follows that 

P(d,  k ) .  ~ ( d  - k) 

(2d - 2k)! 
(12) 

is the number of mappings which take exactly k pairs from H A to (b~, b~+k). 
Then the number of m-bit permutations for which k pairs of difference AX can 
be mapped into k fixed pairs of difference AY is 

,.., P ( 2 " -  1, k ) -  ~ ( 2 " -  1 _ k) [ 
2., (2" - 2k)! sc_[2=- l] 

ISl=k 

2 " -  1 ] P (2" -* ,  k)" ~ ( 2 " -  1 _ k) 

k ) " ( 2 " ~  2--~. v 
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It follows from (10) that 

(2"-1)  p ( 2 m - l , k ) ' d ~ ( 2 m - l - k )  
I{'n':N,~(AX, AY) = k } [  = k " (2"  ~-- 2--~. w 

= . k ! .  2 k .  0 ( 2  " - 1  - k )  
k 

= 2m! �9 P r ( N ~ ( A X ,  AY) = k) .  

The theorem follows f rom the definition of expectation. 

(13) 
[] 

Now consider any row of the X O R  table corresponding to an input difference 
AX. Since there are 2 "  pairs of difference AX, each of the 2 m column entries 
in the row is expected to be 1. We prove this formally in the next theorem by 

1 determining that E[A'~(AX), A y ]  tends to the constant 5. The proof  also 
contains the information required to show that approximately 60% of the X O R  
table is expected to be zero. 

Remark. The proof  of  the next theorem is based on approximating a summa- 
tion F. k T k by its first te rm as Ek Tl"lIlsj<k(T]+l/Tj). I f  the T k are exponen- 
tially decreasing then this method is very accurate, which is the case for 
E[N~(AX,  AY)]. 

Theorem 2.2. For any fixed nonzero AX, A y ~ Z~ and assuming ~r is chosen 
uniformly from the set S2m, 

r 1 lim E[N,~(AX, AY)] = 5. (14) 
/ ,n ---~ Oo 

Proof. Consider estimating ~ ( d )  f rom (6) when d = 2 " - 1 .  The  expression 
for ~ ( 2  m- 1) is an alternating summation with 2 " - 1  + 1 terms T,(m, k) for 
0 < k < 2 " - 1  where 

�9 �9 2 k .  k ! - ( 2 "  - 2 k ) ! .  ( 1 5 )  T~(m, k) = ( - 1) k k 

Then for k, 0 ___ k < 2 m- 1, the ratio of successive terms is 

T,p(m,k+ 1) (2 " - 1  - k )  2 2 k + l ' ( k +  1)[ (2 m - 2 k - 2 ) !  

T~(m,k) (k + 1) 2 2 k .k[  (2"  - 2k) !  

_ 2 ( 2 " - 1  _ k)  2 

(k  + 1)(2"  - 2 k ) ( 2 "  - 2k - 1) 

- 2 ( 2 " -  1 _ k) 2 

4(k  + 1)(2 m- 1 _ k)  2 _ (k  -I- 1)(2"  - 2k)  

= - 2 ( k + l ) .  1 2 " - 2 k  ( 1 6 )  
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I t  then  follows that,  for  1 < k < 2 m- 1, 

T, (m,k )  k - l [  ( 
T~(m,O) ( -  1)*-  j=0I-I 2 ( j  + 1 ) .  1 

1 ] - l  
( - 1)k �9 kl- ~ 1 2 m -- 2 j  
~-F.,  j=o 

1)]_1 
2 m 2 j  

( - 1 )  k 1 

~u  . e x p  - In 1 2 m -  2 j  

75 

f rom which it follows tha t  ( 1 )  
l n ( s  k) < - + O + O - 

j=0 2k  ( 2  m - 1  -- k )  2 = 2k  (2 . , -1  _ k )  2 " 

T h e n  e k ---> 1 as m ~ ~ when  k = o(2 m- 1). O n  the o the r  hand,  when  k = 2 m- 1 
we have  tha t  

( 1) 
1n(r = 5" J + O ~ + O 2 2 m -  1 

j= 

since 57 j - 2  < 1 + fl t j - 2  = 2 -- 1/t. H e r e  H n is the n th  ha rmon ic  n u m b e r  j = l  
and it is known tha t  Hn = In n + O(1) [12]. Thus  In (e2 . -  0 = O(m) + O(1), and  

def ( - 1) k 
~ -  - -  �9 2k .k  ! e k . (17) 

Obse rve  tha t  the  express ion in (17) is equal  to the k t h  coefficient  of  the Taylor  
series expans ion  for  

( - - 1 )  k 

e-1/2= ~" -~:-~.w. if 6k = 1. 
k>0  

For  this reason,  the  e k m a y  be  cons idered  as e r ror  t e rms  represen t ing  the 
devia t ion f rom the k th  coefficient  for  e -1/2. W e  now consider  obta ining 
asymptot ic  es t imates  of  these  e r ro r  terms.  W e  have tha t  

6 k = exp - In 1 2 m -  2j  

1 ( 1 ) ]  
= e x p  - 2 " -  2 j  + 0  - j=O ( 2  m 2 j )  2 

[ 
exp L,_o 2" - 2j . f  (2  m - 1 _ j 
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e2,-1 = O(2=). If we observe that gl ( g2 ( 
m ~ oo when k ~ 0(2 =-  1). 

If E0d-----efl we may then write ~(2  m-l )  as 

"'" < 82m-, , then e k = 0 (2  m) as 

�9 (2 = - ' )  = T~(m,O). [k=O ~ (--1)k'sk'2"ff: k"! -{- k=m+12ra-'~ 0(2=)2*.k1 

0)" [ ~_, (-1)k" ek T (m, [ k=O 2k'k! 

( ( 2  ' ' - l - t n - 1 ) ' 2 m ) ]  

+ 0 2m-'( '~ + 1)! 

k=0 2-s + O (m + 1)! " 

Then for large m we have that 

o,2.- , ,  
T~(m,O) e - ' / 2  = k=O ~i_~.t + 0 (m + 1)! 2 m -m! 

< - ( ) ( - 1 ) * .  (e~ = - 2k))  - 1) 2 m 

2 k .k !  + 0  ( r e + l ) !  kffil 

O(k/(2 m - 2k))  
= 2 k- k! + o(1) 

k = l  

m 0 ( 1 )  

< ~ 2 k" (k  - 1)! '(2 m - 2k)  + o(1) 
k = l  

< O(~-~-~ ) + o ( 1 ) < 6  

for any r > 0 and sufficiently large m. Then by definition 

~ ( 2  = -  1) 
lim m-+oo T,(m, o) 

e - 1 / 2  

and 

�9 (2 m- l )  ~ e -1/2- T,(m,o) ~ e -1/2.  2m!. (18) 

A similar method can be used to determine an asymptotic estimate of 
E[N,~(AX, Ay)]. To this end, define 2 m- 1 terms TA(m, k) for 1 < k < 2 =-  1 as ( )2 

T^(m,k)= 2k-1 .k .k! .2k.  Cp(2m-l-k) (19) 
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and E[/V,~(AX, AY)] = El<k<z.- ,TA(m,k) /2ml .  Then for large m and 1 < 
k < 2 m- 1 _ 1 the ratio of successive terms is 

[ / 1)]1 
TA(m,k ) = 2k .  1 + 2 m -  2----~ (20) 

As in the first part of  the proof, it can be shown that TA(m, 1) is the dominant 
term amongst the TA(m, k). For large m it then follows that 

E[32~.(AX, AY)] 

2"[" TA(m, 1) 

(1) 
- -  e 1/2 < O + o(1) < 8 

for any e > 0 and sufficiently large m. Then by definition 

and 

E[3~,,(AX, AY)] 
lim = e 1/2 

m-,oo 2"!" TA(m,1) 

E[A'~(AX, AY)] ~ 
e 1/2. TA(m, 1) 

2m! 

The theorem now follows since 

TA(m, 1) = 2 "  ( 2 m - 1 )  2" CI~(2 m - l )  

~ 2" 22m-2 .e  -1/2.  T.(m,O) 

~ 22m- 1. e -  1/2. (2"  - 2) ! 

and 

e 1 /2"  TA(m, 1) 2 2 m - 1 "  ( 2  m --  2)! 2 2 m - 1  1 

lim 2 ml = lim = lim 22 m 2 m ~. [] 
m ~ m  . m --, ao 2 m l  m--, |  - -  

As noted in the introduction, the presence of  impossible characteristics assists 
in discarding certain plaintext pairs which cannot give any probabilistic informa- 
tion concerning the actual key. It has been observed that 20%-30% of the 
characteristics in the S-boxes of DES are impossible. Let  A,,,0 be the expected 
number of nonzero characteristics AX, AY which have zero entries in the X O R 
table of a uniformly selected m-bit permutation. We are able to compute A",0 
as a direct application of the Pairing Theorem and the previous theorem. 

Corollary 2.2. For any fixed nonzero AX,  A Y  ~ Z~ and assuming ~r is chosen 
uniformly from the set S~m, 

(2 m - 1) 2 
lim Am, o el/2 (21) 

m - c o o  
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Proof. By the definition of A' ,0 and (18) it follows that 

1 
A',0 = 2m! E E 

AX, AY~Z~ zr~Szm 
w(AX),w(AY)>O 

[A',~(AX, AY) = 0)1 

1 
2"! E "-1) 

AX, AY~Z~' 
w(AX),w(AY)>O 

(2"  -- 1) 2 
�9 ~ ( 2  m- 1) 

2m! 

(2"  - 1) 2 

el/2 (22) 

This completes the proof  of the theorem. [] 

It now follows that approximately 60% of  the entries of  the A ,  submatrix 
defined in (4) are zero since e-~/2 = 0.6065. Then, from (4), the total fraction of 
an XOR table that is expected to be zero is 

(2"  - 1) 2 2 "+1 - 2 
+ 

e l / 2 . 2 2 "  22m 

3. The Largest Entry in the XOR Table 

For a random m-bit permutation zr let 3.* be defined as follows 

def 
A* = max N,r(AX,  AY) .  

AX, AY~Z~' 
w(AX),w(AY)>O 

(23) 

Thus twice ~ *  is the size of the largest XOR entry for the mapping ~r, and will 
bound the probability of  the most likely difference passing through ~r. Using the 
Pairing Theorem we are able to bound the expected value of A*. 

Theorem 3.1. Assuming the uniform distribution on the set S2m, 

E[A ] 
lim - -  < 1. (24) 

m - ~  m 

Proof. For  1 < k < 2 " -  l, let N ' , k  be the expected number of nonzero char- 
acteristics AX, A y  for which N,~(AX, A y )  = k. Further, let Pr(N,~ = k) be the 
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probability that an m-bit permutation has a nonzero characteristic AX, AY for 
which 3/,~(AX, AY) --- k. The proof rests on the following inequalities: 

Pr(A* = k) < Pr(3~,~ = k)  </Vm, k. 

The left inequality follows from definitions and the right inequality follows from 
expanding the expectation: 

2m-I 

l~m,k  = E i" Pr(i characteristics of size k)  
i=0 

> Pr(1 characteristic of size k).  

F~,> m k ' X m ,  k = o ( 1 ) f r o m  which the theorem follows. For 

= o ( 1 ) .  

= o ( 1 ) -  

(2  m -- 2m - 2)  1/2.  2 m-m~2,  e 2m+3/2 

(2 m-1 - - m  -- 1)" (m + 1) 2m-3 

2m-m~2.  g2m +3/2 

(2  m - I  -- m - 1) 1/2. (m + I )  2m+3" 

We prove that 
0 _< k _< 2 =-  1 we have by definition that 

1 
l~m, k = 2m [ ~., ~ [N,~(AX,  A Y ) =  k)]. 

*r~Sam AX, AY~Z~ 
w(AX),w(AY)> O 

Then using the Pairing Theorem it follows that 

1 
X m ' k  = 2"!  ~ ~.  [ X . ( A X ,  A Y ) =  k)] 

6X, AYEZ~ 'rr~S2m 
w(AX),w(AY)>O 

= 2"'---(. ax,  ar~z~' " (2"  ---- 
w(AX),w(AY)>O 

__ 1 ( 2 m - 1 )  2 
~_, . 2 k . k [ ' f P ( 2  m-I  - k)!  

2m! ax,  ar~z~  k 
w(AX),w(AY)>O 

( 2 m - - 1 )  2 ( 2 m - l )  2 
= �9 �9 2 k" k l -  @(2 m-1 - k)l.  (25) 

2m[ k 

If the sequence in (25) is plotted for increasing k, then when k > m the terms 
become negligible in size. Consider obtaining asymptotic estimates of (25) for 
k = m + 1, which is achieved in two steps. Using (18) from the proof of 
Theorem 2.2 and asymptotic estimates of the factorial function [14, p. 221], the 
three largest terms of (25) can be estimated as 

m + l  .~0(2 m - l _ ( m +  1)) m +  1] " ( 2 m - 2 m - 2 ) [  

2 m ! el/2 �9 2 m ! 
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Then estimating the remaining terms of (25) in a similar way, which are 2 "+ 1, 
(2"  - 1) 2, and (m + 1)!, we have that 

24m-"/2-1 . em+ 1 / 2  

l~ra,"+ 1 = O(1)"  (2 " - 1  _ m -- 1) 1/2. (m + 1) "+2 (26) 

from which it follows that l im" _, =(m + 1). N", ,I  +1 = 0. Observe that, for large 
m,  Nm, k defined in (25) and T ~ ( m , k )  as defined in (15) only differ by the 
multiplicative factor 

( -  1) k. (2"  - 1) 2 

2 "  !. e 1/2 

It then follows from (16) that, for large m, and 1 _< k _< 2 " -  1 _ 1, 

[ ( 1 ) ]  
N " ' k + l  - 2(k + 1).  1 2 "  - 2k (27) 

N m , k  

We then have 

2 m - 1  2 m - 1  

lim Y'. k .  Nm, k < l im Y'. k" N, . ,m + 1 
m ~ a o  k = m + l  m ~ o o  k = m + l  

2 m - i  

= l im l ~ m , m +  1 " E k 
m - - ,  oo k = m + l  

= lim N,,, , ,+ 1 . 0 ( 2 2 " )  
m ...~ oo 

2 6 " - " / 2  - 1 . era+ 1 / 2  

= l im O ( 1 ) .  
m--,oo (2 " - 1  - m  -- 1) 1/2- (m + 1) "+2 

= 0  
2 m - I  

and thus Y'-k = m + 1 k"  Nm, k = O(1). Finally observe that, for large m, 

2 m _ i  

E[A*]  = k .  Pr (A* = k) + ~ k .  Pr(A*m = k) 
k = l  k = " +  1 

m 2 m - I  

k .  P r (A*  = k )  + ~_, O ( k "  A'm, k) 
k = l  k = m + l  

_<m- [1 - -  k~>mO(lV-"'k)] + 0 ( 1 )  

= m .  (1 + o ( 1 ) )  + o ( 1 ) .  

This completes the proof of the theorem. [] 
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Table 1. The distribution of characteristics. 
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t 2 m - I  
m (m + 1)" /~m,m+ 1 E k = m + l k .  Nm,k E[A*] Min Max 

4 0.76863 0.87258 3.114 2 6 
5 0.25793 0.28436 3.839 3 6 
6 0.80244 • 10-1 0.86489 • 10- t 4.495 3 7 
7 0.22027 • 10 -1 0.23498 • 10-1 5.126 4 8 
8 0.53856 • 10 -2 0.57019 • 10 -2 5.606 5 8 
9 0.11818 • 10 -2 0.12438 x 10 -2 6.190 6 8 
10 0.23470 • 10 -3 0.24584 • 10 -3 6.700 6 9 

Let E[A*] be an empirical estimate of E[A*] based on a sample of 10,000 
random permutations. Further, let min (max) be the smallest (largest) maximum 
XOR entry found across the 10,000 permutations. Table 1 lists these quantities 
for m = 4 , 5  . . . . .  10. We see that, for m > 6 ,  ( m +  1)'Am, m§ 1 is a good 
approximation to the tail of the summation for E[A*] beginning k = m + 1. 
The reader is reminded that the results of Table 1 have been derived using 
N,~(AX, AY) where N~r(AX, AY) = A,~(AX, AY)/2. 

Recall that pn was defined in the introduction as the probability of the most 
likely single-round characteristic for an iterated mapping. The main use of 
Theorem 3.1 is its application in constructing classes of product ciphers for 
which pn is bounded. If a product cipher uses s S-boxes, and each S-box has 
A* _< m, then pn _< A , / 2  m- 1 _~_ m / 2  m-  1. The probability of this being the 
case is less than (1 - ~"k > m l~m, K )s,  which from Theorem 3.1 will approach one 
when m is large and s = o(mm). More practically, in Table 1 it was easy to find 
10,000 8-bit permutations for which A'~ _< 8, which could be used to construct a 
suitable product cipher with a known bound on pa. In the ext two sections we 
describe two such product ciphers, assuming that 8-bit permutations with 
A~ _< 8 can be found directly by random selection. 

3.1. Characteristics in SP-Networks 

In this section we derive bounds on the expected value of pn assuming that the 
round mapping F is based on random m-bit permutations selected uniformly 
from $2 m. Consider the network shown in Fig. 1. Let F consist of s S-boxes 
implementing m-bit permutations zrl, zr 2 . . . . .  ~r s such that F: Z~ 's ~ Z~ '~ 

Fig. 1. The general SP-network product cipher. 
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where ~1 operates on the first block of s bits, 7/ 2 operates on the second block 
of s bits, and so on. Then if we redefine A* as 

2 m - 1  . pn  < A,m def = max N,~(AX, AY) 
rrE {,tr t, "/r2,..., "trs} 

AX, AY~Z~ 
w(AX),w(AY)>O 

it follows that A'm~2 m- 1 is the probability of the most likely characteristic 
across all s permutations in F. Then for any r-round characteristic D r contain- 
ing no zero differences it also follows that 

pn,  [ A* lr 
~ 2 m -  1 ) " (28) 

In general the bound in (28) is not expected to be equality when r > 1. This 
discrepancy is accounted for by observing that the most likely characteristics 
have a zero input difference to a subset of the S-boxes, which means that these 
differences cause the expected output difference with probability 1. However, 
the avalanche effect diffuses the nonzero output difference of an S-box at round 
i to the inputs of several S-boxes at round i + 1, making it likely that more 
S-boxes at round i + i will have nonzero input difference than at round i, thus 
decreasing the probability of the characteristic predicting the difference from 
one round to the next. Thus characteristics are chosen not only because they are 
probable, but also because they may limit the influence of the avalanche effect 
on causing nonzero input differences to S-boxes. 

Consider a 16-round 64-bit product cipher E for which the round mapping 
consists of 8 • 8-bit permutations followed by a transposition of the 64 cipher- 
text bits, which is an example of an SP-network. Then to predict the input 
difference to round 16 requires a 15-round characteristic t~15 where the input 
difference to each of the first 15 rounds is nonzero. Let us assume that the 
permutations are selected uniformly from $2 s and that at each round there is 
only one S-box which has a nonzero input difference. It then follows that 

/ 8 t 1 5  
pn~ _< ( p n )  ~s _< [ ~ ]  = 0.86736 • 10 -18. (29) 

On the other hand, if f115 has nonzero input differences to two S-boxes at 7 out 
of the 15 rounds, then 

pn~5 < t~.7] " ~7 = 0.32311 x 10 -26. (30) 

3.2. Characteristics in DES-Like Networks 

DES-like networks are symmetric ciphers whose round function is of the form 
shown in Fig. 2. The ciphertext is divided into halves, the left half L r and the 
right half R,. The round function F acts on R r under the action of K r, the 
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& R, 

Lr4-1 ~+1 

Fig. 2. The  round function of a DES-like cipher. 

K~ 

subkey round r. For  the SP-networks displayed in Fig. 1, if at any point a 
characteristic 1~ r predicts a zero difference, then all subsequent differences will 
be zero since the round mapping is bijective. However, in the case of a DES-like 
mapping, the round function F need not be bijective and nonzero input 
differences to F can be used to produce zero output differences. 

For a = a l a  2 E Z zm where a i ~ Z ~ ,  let r ( a )  = a 2 a  t. A l l  r-round characteris- 
tic for a DES-like mapping f~r = (AX, AY1,... , AYe) is said to be i terat ive  if 
AX = r(AY~). Taking into account the swapping operation at each round, an 
iterative characteristic essentially maps plaintexts of difference A X  to cipher- 
texts of difference A X in r rounds. We observe that k r-round iterative 
characteristics can be concatenated to form a (kr)-round characteristic, k > 0. 
The best-known characteristic that has been used against DES is a 2-round 
iterative characteristic found by Biham and Shamir [5] that is concatenated 61 
times to break 16-round DES. 

Let F be defined as in the previous section to consist of s S-boxes implement- 
ing m-bit permutations rrl, 7r 2 . . . .  , ~'s such that F: Z~"s ~ Z~ '~ where 7r 1 
operates on the first block of s bits, 7r 2 operates on the second block of s bits, 
and so on. Also let the output of these substitutions be acted on by an (ms)-bit 
permutation P. With respect to DES, consider removing the E expansion and 
creating four new S-boxes that are 8-bit permutations; the P permutation is 
retained. A new key schedule yielding 32-bits for Kr would need to be devised. 

Let  a r be the left-half difference at round r, fl~ the right-half difference at 
round r, and yr the output difference of F at round r. Then these differences 
are listed in Table 2 for rounds 1-4. It is straightforward to argue that no 
2-round iterative characteristics will exist when the F function is bijective, 
unless a 1 =/31 = 0. On the other hand, we prove that 3-round characteristics 

Table 2. Round  differences. 

t~ r /3 r Round  r 

a 1 /31 1 
/31 Ctl + Yt 2 

at  + Yl fit + Yz 3 
[31 + Y2 Ot l+ YI + "}t3 4 
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are possible. We call a a fixed point [15] of F if inputs of difference a to F can 
lead to an output difference of a in F (that is, A t ( a ,  a )  > 0). 

Lemma 3.1. Let a be a fixed point of  F. Then ~'~3 is a 3-round nonzero iterative 
characteristic if  

AX ~ { a 0 , 0 a ,  aa} .  (31) 

Proof. If 1~ 3 is a 3-round iterative characteristic, then from Table 2 we must 
have that t~ 1 = B 1 + Y2 and fll --'~ O~1 q'- Yl -'[- 73 which implies that 71 -~- Y2 --l- 
Y3 ----- 0. There  are three cases to consider corresponding to the three possible 
values of AX in (31). We prove the case where A X  = or0 explicitly, and the 
other cases are similar. If AX = a0 ,  then Yl = 0, and ")12 = O~ = t~ 1 since a is a 
fixed point of F. However, then /31 + T2 = ot and 3'3 = a from which we have 
that a 4 = o~ 1 = o~ and /34 = al  + 0 + a 1 = 0. [] 

For each difference a such that AF(Ot, o r ) >  0, three 3-round iterative 
characteristics of the form in (31) exist. Each of these three characteristics has a 
round difference of the form a 0  which will go to the difference 0 a  with 
probability 1. Then once in every three rounds differences are predicted with 
certainty implying that 

pnr < (pn)2.[r/31+ [ ( r  m o d 3 ) / 2 1 .  (32) 

Consider a Feistel-cipher similar to DES obtained by removing the E expansion 
and replacing the S-boxes by four 8-bit bijective mappings followed by a 32-bit 
permutation. Then the probability of a 15-round characteristic 1)15 is bound as 

/ 8 110 
pa~s < ( p n )  1~ = ~ ]  = 0.90949 • 10 -12 (33) 

The bound is lowered further if we assume that more than one S-box has a 
nonzero input difference at a round which has a nonzero input difference. 

4. Conclusion and Remarks 

The method of differential cryptanalysis is based on the distribution of multi- 
round characteristics l~r(AX, AY1, AY 2 . . . . .  AYe). The probability of f ir  cor- 
rectly predicting ciphertext differences at each round in turn depends on the 
distribution of single-round characteristics AY/, AY/+ 1 for the round mapping F. 
When F consists of S-boxes implementing m-bit permutations, we have shown 
that the probability of the most likely single-round characteristic is expected to 
be less than m / 2  m- 1. It may well be the case that Theorem 3.1 can be improved 
to show that limm _, ~ E[A* ] /m = 0. Further research may attempt to prove that 
E[A*] = O(log m) for example. 

Our results then show that a relatively simple design can produce product 
ciphers for which all characteristics f tr  are expected to (correctly) predict 
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differences with low probability. We further note that random m-bit permuta- 
tions can be generated efficiently [24], and that the fraction of permutations that 
are linear [11] or degenerate [22] in any output bit is tending to zero rapidly as a 
function of m. On the other hand, Biham and Shamir [5] found that replacing 
the S-boxes of DES by random 4-bit permutations yielded systems that were far 
weaker than the original DES. The weakness of these S-boxes appears to be due 
to the dimension of the permutation rather than the use of permutations per  se. 
The XOR properties of S-boxes that are constructed from several permutations, 
as in the case of DES, is considered by O'Connor [23]. 

An apparent defense against differential cryptanalysis would be to design a 
round mapping F for which the corresponding XOR table contains uniform or 
nearly uniform entries. It has been shown by Nyberg [19], and independently by 
Adams [1], that it is possible to construct mappings 7r: Z~ 'L ~ Z~ 2 for which 
each entry of XOR~ is 2 m1-'2 when the input difference is nonzero. For the 
construction to be possible it must be the case that m~ > 2m 2 which implies 
that the mapping cannot be bijective. Detombe and Tavares [9] have shown that 
for bijective mappings 7r: Z~ --, Z~' the most balanced XOR tables are those 
for which each row has 2 m- 1 entries that are two, with the remaining XOR 
entries being zero. In both cases the mappings are constructed from boolean 
functions that are either bent or almost bent. More recently, several other such 
constructions have been found [2], [20]. 

We have concentrated on characteristics I~ r but more important to the 
system designer are differentials. A differential is similar to a characteristic 
except that only an input difference AX and output difference AY~ = Ay are 
specified while the intermediate differences AY l, AY 2 . . . . .  AYe_ 1 are unspecified 
and may assume any values which lead to AY at the rth round. The notion of a 
differential follows from modeling differences using Markov chains, as suggested 
by Lai [16]. It may be the case that all characteristics are unlikely but high 
probability differentials exist. A deeper analysis using Markov chains will be 
required to bound the probability of the most likely differential in a cipher. 
Notwithstanding, Nyberg and Knudsen [21] have shown that the probability of 
any differential is bounded from above by 2. (pt~)2, regardless of the number of 
rounds. 
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