
J. Cryptology (1995) 8:101-114 Journal of

CRYPTDLDGY
�9 1995 International Association for
Cryptologic Research

Short RSA Keys and Their Generation

Scott A. Vanstone and Robert J. Zuccherato
Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Ontario, Canada N2L 3G1

Communicated by Johannes Buchmann

Received 22 July 1993 and revised 4 January 1994

Abstract. This paper deals with the problem of generating RSA moduli having
a predetermined set of bits. It would appear to be of practical interest if one
could construct their modulus so that, for example, some of the bits are the
ASCII representation of their identification information (i.e., name, address,
etc.). This could lead to a savings in both bandwidth for data transmission and
storage. A theoretical question which arises in connection with this is to
determine the maximum number of bits which can be specified so that the
modulus can be determined in polynomial time and, of course, security is
maintained.

Key words. RSA, Public-key cryptography, Prime number generation, Integer
factorization, Security.

1. Introduction

The most well known and accepted public-key cryptosystems are those based on
discrete logarithms in finite groups and integer factorization. In particular, the
Diffie-HeUman key exchange [8], the E1 Gamal protocol [9] in 7/~, p a prime,
and the RSA system [27] for modulus n = p �9 q, where p and q are primes, have
been implemented worldwide. One disadvantage of these systems is that p and
n must be relatively large (at least 512 bits) to attain an adequate level of
security. For this reason researchers have looked for public-key schemes which
reduce the size of the public key. An attractive and promising system is the
Diffie-Hellman and El Gamal protocols defined in the group associated with
the points on an elliptic curve over a finite field (see, for example, [1], [10], and
[19]). It appears that a 155-bit elliptic curve scheme gives comparable security to
a 1024-bit RSA modulus. Nevertheless, RSA remains a very viable and practical
encryption and signing process. The purpose of this paper is to describe a

101

102 S.A. Vanstone and R. J. Zuccherato

method for reducing the storage requirement of RSA public moduli without
compromising security.

The problem of interest to us is to determine how many bits of a modulus
of the form n = p . q can be specified. For n a 1024-bit number the follow-
ing argument suggests that most of the bits could be prescribed. The num-
ber of 512-bit prime numbers is about 2512/log(2512) -2511/1og(251~) =
(2502. 510)/(511. log(2)). Thus, the number of 1024-bit numbers of the form
p . q , where p and q are 512-bit primes, is about (25~ Now the
number of 1024-bit numbers is 21~ and so the fraction of 1024-bit numbers of
the form p . q, where p and q are 512-bit primes, is roughly 2-19/1og2(2) = 4 •
10 -6.

These computations suggest that if we leave about 17 bits of freedom, then we
should be able to find a 1024-bit integer n, the product of two primes, with over
1000 of the bits specified. The real question of practical importance then is how
many bits can we specify in a modulus n = p . q so that p and q can be found in
time proportional to a polynomial in log(n)? To this end we propose several
techniques and analyze their security. If the modulus n is an m-bit number we
describe how to specify t bits of the number where t is suitably bounded. If the t
bits can be random bits the situation is somewhat simplified. This scenario may
arise where a group of users use the same t random bits and hence only m - t
bits need be stored for each user and one copy of the t random bits for the
entire group. There may be situations where a user would like the t bits to be a
binary representation of their user ID and other publicly available information.
This situation can also be implemented by adjoining a small number of random
bits after the information. We show that up to m / 2 of the bits can always be
specified, but specifying m / 2 of the bits comes at the expense of longer key
generation (i.e., prime generation). The methods discussed give various degrees
of dependence between the primes p and q.

At present we see no way of specifying up to half of the bits for a public key
used for the Diffie-Hellman and El Gamal protocols. One possibility is to
specify t bits of the public key and then try about 2 t values of a until a a has
the specified bits. This is clearly impractical for t being very large.

The remainder of this paper is organized as follows. In Section 2 we describe
a method for generating the primes after specifying t high-order bits in a
1024-bit RSA modulus. We have chosen 1024 as a reference bit length in order
to make the description of the techniques as concrete as possible. We also give a
generalization to a modulus n of arbitrary length. Section 3 describes a method
which specifies half of the bits in the modulus at the expense of much longer key
generation time. In Section 4 we give a compromise method using ideas from
the previous two sections. Section 5 focuses on various scenarios and complica-
tions of specifying bits in the modulus. Maurer's method for generating primes is
described in Section 6 and applied to our technique. In Section 7 we describe a
method for specifying t low-order bits of the modulus while in Section 8 we
explore the question of how many bits of the modulus can be specified. Section 9
discusses running times and Section 10 describes our implementations. Security
issues are considered in Section 11 and Section 12 is our conclusion.

Short RSA Keys and Their Generation 103

2. Specifying the First t Bits

2.1. For m = 1024

We first describe a method for specifying the first t bits of n = p . q with
specific attention paid to the case where n is 1024 bits. In this scheme p and q
are effectively chosen independently.

Le t / 3 be a fixed number of length t = 2. k bits, and assume that /3 factors as
/3 = f l "f2, where f l and f2 are each of length k bits. We show in Section 5 how
to choose an appropriate/3. We can then let our primes p and q be of the form
p = 2512-k .f~ + a 1 and q = 2512-k "f2 + a2, where a t and a 2 are numbers of
length l bits. When we multiply to get n we get

P "q = 21024-2"k "fl "f2 + 2512-k(fl "a2 + f 2 "al) + al "a2"

It is easy to see that if the last two terms in the sum are less than 1024 -
2 . k bits, then the first 2- k bits are exactly the number/3. To guarantee this we
need 5 1 2 - k + k + l + 2 < 1 0 2 4 - 2 . k o r l + 2 - k < 5 1 0 .

To guarantee security we need to make sure that, given n, f l , and /'2, it is
difficult to determine p and q, or, equivalently, a~ and a 2 . It is thus necessary to
require a~.a 2 to be at least 5 1 2 - k bits. We wish to prevent a brute-force
attack on a I and a 2 . This would involve trying every possible combination of a 1
and a 2 until the corresponding values of p and q multiplied to give n. Thus in
order to prevent this type of attack we require the overlap between al �9 a2 and
the 2512-k(f~ .a 2 + f z . a l) term to be at least 60 bits. We therefore need
2 . 1 > 5 1 2 - k + 6 0 o r 2 . 1 + k > 5 7 2 .

The above two inequalities force a largest possible value for k of 148 and thus
t = 296. This gives a corresponding value of 213 for 1. We can therefore specify
the first 296 bits of n while not compromising the security of our system.

2.2. Producing the Primes

We wish to produce primes of the form p = 25xz-k . f + a where f has a length
of k bits and a is an / -b i t number. To produce such a prime we choose random
/-bit numbers a and test p -- 2512-k - f + a for primality using the Mil ler-Rabin
primality test (see [20] and [25]). If p is not prime, we return to choosing
suitable a's. To avoid a brute-force attack on n we choose l large enough
to guarantee suitable interaction between the terms a t �9 a 2 and 2512-k(f1 �9 a2 +

f2 "ax).

2.3. Keys of Arbitrary Size

If n is required to be a size other than 1024 bits, say m bits, then it is easy
to verify (in the manner of adaove) that the following two inequalities must hold.
If p and q are m / 2 bits long, then 1 + 2 . k < m / 2 - 2 and 2 .1 + k > m / 2 +
e(n) , where e (n) is the number of bits of overlap required to make brute-force
search less effective than other general-purpose factoring algorithms (i.e., we

104 S.A. Vanstone and R. J. Zuccherato

should choose 8(n) so that 2 "tnJ = O(eXh"tn)'lntlnC~))). The largest possible value
of t can then be taken as the maximum number of bits that can be specified.

3. Specifying Half the Bits

This method allows us to specify half of the bits of n but now q is completely
dependent on the choice of p.

3.1. For m = 1024

Let a and /3 be given 256-bit numbers that are public knowledge. Let /3
be such that it factors as /3 = f l "f2 for 128-bit numbers f l and f2. We
then (privately) create primes p and q such that p = 2 384 ")el -4- a 1 and q =
2384 "f2 + a2, where a 1 and a2 are 248-bit numbers with a I �9 a 2 --- a (mod 2256).
Then this gives

n ----- 2768-fl "f2 + 2384(fl "a2 + f2 "a l) + al "42.

It is easily seen that 2384(fl �9 a 2 + f2 "al) + al "a2 is at most 763 bits so there is
no carry into 2 768 " f l " f2 , and the high-order 256 bits of n are the number /3.
Also since a 1 �9 a 2 --- a (mod 2256), the low-order 256 bits are the number a. The
middle 512 bits of n can then be communicated, stored, and the full number can
be retrieved.

To guarantee security we must be sure that given a , n, f l , and f2 finding a~
and a 2 is a difficult problem. Since a I �9 a 2 is a 496-bit number of which 384 bits
are known from the form of n, this leaves 112 bits of flexibility, or 2 H2
possibilities for al �9 a 2 . Exhaustive search techniques would therefore be infeasi-
ble by current technology.

3.2. Produc ing the Primes

To produce the primes p and q of the desired form, 248-bit odd numbers, a l ,
should be randomly chosen until a p is found that is prime. The Extended
Euclidean Algorithm is then used to produce an a2 such that a ~ . a 2 -- a (mod
2256). If a 2 is less than 2248 and q is prime, then the algorithm terminates, if not
then return to choosing random values for a1. There is a problem with this
algorithm; obtaining a value for a 2 that is less than 2 248.

To deal with this problem we change the parameters in the following way. The
numbers f l and f2 are still 128-bit numbers, but now p --- 2 376 " f l --I- a I and
q = 2392 "f2 + a2, where a I is a 240-bit number and a 2 is 256 bits. Then we get

n = 2768 "fl "f2 + 2392 "f2" al + 2376 "fl "a2 + a1" a2-

Now 2 392 " f 2 " a l + 2376 "fl 'a2 + a1"a2 is at most ~763 bits, so there is no carry
over into 2 768 " f l "f2 and a l . a 2 is a 496-bit number with only 376 bits left
unhidden, so there are 212~ possibilities for this value. This actually gives an
improvement of the level of security obtained before. The algorithm can now be

Short RSA Keys and Their Generation 105

changed to choose a 1 to be 240 bits and not to require a 2 to be less than 2 248.
The primes p and q are now 504 and 520 bits, respectively.

3.3. Keys o f Arbitrary Size

In many applications the size of n may be required to be larger or smaller than
1024 bits. To deal with this we present modified parameters that handle the
more general situation. Assume we want our n to be 8 . k bits long, where
k > 8. Then p and q should each be approximately 4 . k bits in length. Let
and /3 be specified numbers as before, of length 2" k. Factor/3 as f~ "f2, where
f~ and f z are k-bit numbers. We then require a 1 to be a (2- k - 8)-bit number
and a 2 to be 2 - k bits, so that p = 2 k, "fl + al and q = 2 k2.f2 + a2, where
k I = 3 - k - 4 a n d k 2 = 3 . k + 4 . C h o o s e a l a n d a 2 as before.

This gives

n = 2 kl+k2 "fl "f2 + 2k2 "f2 "al + 2km "fl "a2 + al "a2,

with /3 being the first 2 . k bits and a being the last 2 . k bits. There is an
overlap of k - 4 bits between the a x . a 2 term and the 2 kl "fl "a2 term, so this
product still remains hidden and hence exhaustive search techniques remain
infeasible for large k.

4. A Compromise

There are certain advantages and disadvantages to both of the schemes de-
scribed thus far. In Section 2 the primes p and q could be chosen indepen-
dently. This resulted in a good running time but at the expense of only being
able to specify about one-quarter of the bits. In Section 3 half the bits could be
specified but the primes were completely dependent on each other resulting in a
very poor running time. In this section we present a compromise scheme which
has some of the advantages of both techniques.

4.1. F o r m = 1024

Let /3 be a 256-bit number such that it factors as /3 = f l "f2 for 128-bit numbers
f l and f2. Let c~ be a u-bit number, where u < 248. Our required primes will
be of the form p = 2 384 "fl + a1 and q = 2 384 "f2 + a2, where a I and a 2 are
248-bit numbers. We require the final u bits of n to be exactly the number ot so
we want a 1 �9 a 2 - o~ (mod 2u). Thus, as before, we get

n = 2768.fl "rE + 2384(fl "82 + f 2 " a l) + al "82.

Again, it is easy to see that the top 256 bits of n are the number /3 and the
bot tom u bits are a .

As was shown in Section 3.1, there is an overlap of 112 bits between the last
two terms of n. Therefore, obtaining the values a~ and a2, and thus obtaining
the primes, is a difficult problem.

106 S.A. Vanstone and R. J. Zuccherato

4.2. Producing the Primes

We produce the desired primes in the following way. As before, randomly
choose 248-bit numbers a 1 and test p = 2 384 " f l + al for primality. If p is
prime, then by using the Extended Euclidean Algorithm we can produce a u-bit
number c such that a I �9 c = a (mod 2"). Random (248 - u)-bit numbers b can
then be chosen to produce a 2 = b �9 2" + c until the corresponding value of q is
prime. Notice that now a~ �9 a 2 = a (mod 2u).

When searching for q, we will be searching a particular residue class modulo
2". The distribution of primes in this class is about the same as for any interval
of about the same size [14]. We must therefore choose the parameter u such
that there are enough possibilities for b to guarantee, with high probability, the
existence of a prime of this particular form. In this interval we would expect
there to be approximately 2~248-U)/ln(2512) primes. It then follows that u should
be chosen to be somewhere between 228 and 218 to give betwee~ about 20 and
30 bits of freedom to find a suitable b.

4.3. Keys of Arbitrary Size

Clearly, the analysis done in Section 3.3 also applies here. The size of o~ must
now be u bits, and this size should be chosen so that a prime is likely to be
found for any value of c.

5. How To Choose B

As we have seen before, /3 is a number of length 2. k bits which factors as f l "f2
for k-bit numbers f l and f2. This is the case when the first t = 2 . k bits of n
are being specified and when half the bits are being specified. Since there are no
conditions on o~, this value can be chosen to be any convenient number of the
appropriate size.

On the other hand, /3 must be chosen so that it factors appropriately. If these
t bits can be random bits there is no problem. Simply choose two numbers f l

and f2 of length k bits and multiply them together to get a (2 . k)-bit number/3.
In this situation a number of people can all use the same /3 (and t~ if needed)
thus reducing the amount of memory needed to store all of their public keys.

In some situations, however, the user may want these t bits to be a binary
representation of their user ID and other publicly available information. This
situation is slightly more complicated because this number may or may not
factor as the product of two numbers of equal size. This problem can be
overcome by leaving some random bits at the low end of /3 to allow more choice
for the factors.

We need /3 to factor into two numbers about the same size as its square root.
To accomplish this, we allow a difference of d bits in the size of the factors f l
and f2- Thus, the parameters k 1 and k 2 will have to be similarly changed to give
two primes p and q of equal size. This can be done easily with no change in
security or prime generation. We need an estimation of r(u), the probability

Short RSA Keys and Their Generation 107

that a random integer, N, has no prime factor greater than N 1/u. We use
r(u) ~- e -#'l" u which is a crude approximation to the value given in [5] (see also
[21]). If every prime factor of /3 has fewer than d bits, then it will factor into
two integers differing in size by d bits. This is not the only way to guarantee that
/3 will factor correctly but it is sufficient. We use it to get an upper bound on the
number of random bits needed. If /3 is 256 bits, as is the case when n is 1024
bits, then this probability is approximately e -(256/d)'ln(256/d). It is then easy to see
that if we allow a difference of 10 bits between the factors of /3 we will only
require about 47 random bits to guarantee with high probability the existence of
factors of the required type. Thus, the first 209 bits of /3 can be the publicly
available information, while the final 47 bits can be varied until /3 factors as
desired. Experimental results confirm that with 47 bits of randomness,/3 should
factor as required with very little difficulty.

It may also be desirable to allow fl and f2 to be the publicly available
information. Only one multiplication would then be required to obtain /3 and
thus the public modulus. This does not compromise security as f l and f2 are
already public.

6. Fast Generation of Primes

In this section we present Maurer's method [18] for fast generation of primes
and describe how it is well suited to generating primes of the form required in
the previous sections.

6.1. Background

In [18] Maurer describes how to generate provable primes in time only about
one-third greater than the expected running time required for generating a
pseudo-prime that passes the Miller-Rabin test for only one base. We briefly
sketch his method here.

The following two lemmas form the basis for the algorithm. Lemma 1 is a
special case of a theorem due to Pocklington [22] (see also [4] or [13]).

Lemma 1. Let n = 2RF + 1, where F has a known prime factorization F =
q~l . q~2 q f ' . I f there is an integer a satisfying

a n - l = 1 (modn)
and

gcd(a (n- ~)/qJ - 1, n) = 1

for j = 1 r, then each prime factor p of n is of the form p = m F + 1 for some
integer rn > 1. Moreover, if F > ~/'n, or i f F > R, then n is prime.

l_emma 2. Let p = 2 R F + I be a prime with F = F l ~ = l qpJ, F > R and
gcd(2R, F) = 1, where ql qr are distinct primes. Then the probability that a
randomly selected base a ~ ~_p is successful in proving the primality of p by Lemma
1 is equal to ~o(F)/F which is at least 1 - ~ = 1 1/qj .

108 S.A. Vanstone and R. J. Zuccherato

The primes are constructed recursively by first constructing small primes
q~ qr and then picking random R until p = 2 RF + 1 can be proved prime
by an appropriate choice of the base a. Lemma 2 shows that if p is indeed
prime, then finding a base a that is successful in proving this fact is easy. Also, if
p is composite and does not contain a small prime factor that will reveal itself in
trial division, then virtually every base a will satisfy a p - 1 ~ 1 (mod p), and will
be a witness for the compositeness of p, unless p is of a very special form (see
[3] and [6]).

By choosing qi of the appropriate size the prime p can be chosen to lie within
a certain interval [P1, P2]- Again the reader is referred to [18] for a detailed
description of the algorithm.

6.2. Using This Method

When we specify only the first t = 2 . k bits of the product n, the choice of p is
independent of the choice of q (actually, the choice of a I is independent of the
choice of a2). To find a prime of the form p = 2 m/z-~ . f + a, where f is k bits
long and a is l bits, simply produce a prime p by the above method in the
interval [2 m / 2 - k . f , 2 m/2-k . f + 2l]. This prime is of the desired form.

In the other schemes the primes p and q are at least partially dependent on
each other and hence the generation of these primes is more complex and time
consuming (see Section 9). The first prime p can be produced as described
above, but then q is at least partially determined. As mentioned in Sections 3
and 4, the Extended Euclidean Algorithm must be used to obtain the appropri-
ate value for a 2 and thus get q. The primality of q can then be checked using
the Mil ler-Rabin test. If q is not prime, either a new p must be chosen or a
new b must be chosen to give a new q.

7. Specifying the Last t Bits

A fourth way to specify some of the bits of an m-bit modulus n involves
specifying the last t bits for some t < m / 2 . Let a be a known t-bit number. If
we then let p and q be primes of size approximately m / 2 bits with p . q - a
(mod 20, then the last t bits of n will be exactly a.

To generate these primes we first choose any random (m/2) -b i t prime p.
Using the Extended Euclidean Algorithm we can then obtain c such that
p . c - a (rood 20. If we then choose a random (m / 2 - t)-bit number b such
that q = 2 t �9 b + c is prime, it is easy to see that p �9 q - a (mod 2 t) and n is the
desired modulus.

As mentioned in Section 4.2 the distribution of primes in any congruence
class is about the same as for any interval of about the same size. Thus we would
expect there to be about 25~2-t/ln(2 st2) primes in the congruence class searched.
It seems reasonable then that if t is chosen to be somewhere between 492 and
482 we would expect to find a prime, q, of the desired form without much
difficulty. If this fails we can then pick a new p and repeat the calculations.

Short RSA Keys and Their Generation 109

8. How Many Bits Can Be Specified?

In this section we explore the question of how many bits of the modulus can be
specified so that p and q can be found in t ime proport ional to a polynomial in
log(n). To do this we look at the problem in its most general form and introduce
a new technique for factoring /3 where f l and f2 are not specified ahead of
time. This new technique does not add anything to any of the other schemes
introduced in this paper, but is simply a generalization of the different methods
presented and is included here as another way of looking at the problem.

Our modulus is, as usual, n = p . q , where p and q are of the form p =
2c "fl + al and q = 2 c "f2 + a2. Here a I and a 2 a re / -b i t numbers while fx and
f2 are each k bits. Again we specify a and /3, which are c- and t-bit
numbers, respectively, ahead of t ime to be public. Now f l and f2 are such that
f l "f2 = 2u"/3 + 8, where 8 is a u-bit number. We determine f l and f2 by
varying 8 and trying to factor 2u-/3 + 8 appropriately. This should be a
relatively simple task as long as u is sufficiently large.

Now

n = p . q = 22"c -fx .f2 + 2c. (f l . a 2 § § 2

= 22"~(/3.2u + 8) + 2 ~ (f l - a 2 + f E ' a l) + a 1 "a 2.

In order that /3 appear as the first t bits we need the following constraints.
If m is the total number of bits in n then:

1. 2 . c + 2 . k = m .

2. c + k + l < m - t to avoid rippling into the high-order t bits.
3. 2 �9 l > c + s to ensure at least s bits of rippling into the middle term.
4. c + l + k > 2 �9 c + s to ensure at least s bits of rippling into the first term.

Simplifying 1 -4 we get:

2'. l + t < m / 2 .
3 ' . 2 . l - c > s .

4 ' . l - 2 . c > s - m / 2 .

In order to determine the maximum number of bits that can be specified
using this scheme we want to maximize the size of a and /3, or, equivalently,
t + c. We require the solution of the following integer linear program. (We
assume that m and s are given and fixed.)

Maximize B = t + c ,

subject to l + t < m/2,
c - 2 . l < - s ,

2 . c - l < m / 2 - s,

and all variables are nonnegative.

As simply a linear program the optimal value is given by t = (m - s) / 3 ,
l = (m + 2 - s) / 6 , c = (m - s) / 3 , and B = t + c = 2(m - s) / 3 . Solving this

110 S.A. Vanstone and R. J. Zuccherato

program for m = 1024 and s =64 , we get t = 3 2 0 , c = 3 2 0 , l = 192, and
k = 192 allowing us to specify 640 bits of a 1024-bit modulus.

How many bits of p or q do we reveal by this method? Suppose, for any
choice of 6, f l and fz both have a fixed number x of high-order bits. Consider
that greater than one in two numbers with 2. k (the number of bits in f t "f2)
bits factors appropriately. We have only 2 z~k-x) numbers.

The only problem with specifying this many bits is in generating the primes.
Notice that a is c = 320 bits long and both a~ and a 2 are l = 192 bits long.
Thus for every al that is chosen to make p prime, after applying the Extended
Euclidean Algorithm to find a 2 , we may get an a 2 of 320 bits. This choice for a 2
will obviously not work, as many different values of a~ must then be tried until
we get an a 2 that fits, and then, with high probability, it will not produce a q
that is prime. To overcome this problem we add the constraint c _< l to our
integer linear program. After solving the revised integer linear program we get
t = 446, c = 65, l = 65, and B = 511. Hence this scheme offers no advantage
over previously described methods that can specify 512 bits.

9. Running Time

In this section we give heuristic running times of the algorithms used to produce
p and q for all three schemes described.

When only the first t bits are being specified, for (m/2)-bi t primes p and q,
the choice of p and q are independent and Maurer's fast prime-generation
technique is used. As was shown in [18], the running time for this generation of
primes is O(m 3 In(In(m))) bit operations.

In the other schemes described for (m/2)-bi t primes p and q the choice of p
and q are not independent and hence the running time is slightly worse. We
produce p using MaUrer's fast prime-generation technique which has running
time O (m 3 In(In(m))) bit operations. We then produce a q and test it for
primality, which must be done approximately In(2") times before a prime q is
found. We thus get the running time of producing appropriate primes p and q
to be O(m 3 In(In(m))In(U")) or O(m 4 In(In(m))) bit operations.

10. Implementation

We present the results of our implementation of the ideas presented here. We
implemented these schemes on a SUN-2 SPARC-station using MAPLE V. A
naive prime-generating algorithm was used in which an odd random number of
the appropriate size was chosen and then increased by two until it passed the
Miller-Rabin primality test with five iterations. The times shown are average
times over a number of different trials. All primes produced are 512-bit
numbers. We include these results to show that the schemes presented in this
paper are feasible.

The average time to produce one prime for a modulus in which the first 296
bits are specified is 205.9 s.

Short RSA Keys and Their Generation 111

The average time to produce both primes when half the bits of the modulus
are specified is 36,866.1 s.

The average time to produce both primes when the first 256 bits and the last
218 bits of the modulus are specified is 437.7 s.

The average time to produce both primes when the last 482 bits of the
modulus are specified is 710.6 s.

Notice that for the three schemes in which the choice of q is not totally
dependent on p, the time to generate both primes is about the same. When half
the bits are specified, and the choice of q is totally dependent on p, the time
increases dramatically.

11. Security Considerations

To compare the security of using our specially constructed primes with that of
using general primes p and q we must consider the difficulty of factoring

n = 2k~+k2 "fl "f2 + 2 k 2 " f E ' a l + 2kl "fl "a2 q- al "a2,

where f l and f2 are k-bit numbers, a I and a 2 are 11 and l 2 bits, respectively,
and everything is known except for a I and a 2 . We also know that n factors as
P ' q = (2kt "fl + al) (2k2 "rE + a2).

To make n resistant to a Pollard-(p - 1) attack [23], (p - 1) and (q - 1)
should each have at least one prime factor of about 15 digits [7]. The probability
that a 512-bit number will have all of its prime factors less than about 15 digits is
about 3 • 10 -11 [12]. Thus, for all practical purposes, n is resistant to this type
of attack. A practical question that arises is how can it be feasibly ensured that
both (p - 1) and (q - 1) are divisible by a large prime, particularly in situations
where the prime q is tightly constrained by the choice of p?

When specifying the last t bits of a 1024-bit modulus n, this problem can be
satisfied as follows. We want p . q - a (mod 2t). Assume p has been con-
structed with a large prime factor. Then let Q be some other large prime (e.g.,
greater than 15 digits). We produce a q of the form q -- Q R + 1 for some
positive integer R. The congruence p (Q R + 1) = ot (mod 2 t) can be solved for
R. We can then search this equivalence class for R's that will give a prime q. For
the other schemes mentioned, we cannot see how to do this feasibly, and leave it
as an open question.

The number field sieve [15] factors numbers of the special form n = r e +__ s
for small integers r and s. We cannot see how this applies to our method as the
product produced here has no higher probability of being of this special form
than a general product of primes.

The quadratic-sieve algorithm [24] is the most efficient general-purpose fac-
toring algorithm known. It cannot, however, factor numbers of 1024 bits, so this
attack also appears to be resisted. The elliptic curve factorization method [16]
only works on integers with "small" prime factors and so does not apply here.

Can we exploit the special structure of the product to factor n? All that is
required is to determine a I and a 2. We know aa .a2 (mod min(2 k~, 2k2)), but

112 S.A. Vanstone and R. J. Zuccherato

little else as the other products are added together. Thus if 11 + 12 > min(k~, k2),

in particular if 2 l'+t2-min(k,'k2) is of the order of e ~/ln(")l"(~"(n)) (the quadratic
sieve running time) no advantage will be gained in trying brute force over the
general factoring algorithms.

We thank one of the referees for pointing out the following two attacks. The
first is as follows. We have n = pq, where n is 6k bits and p is 3k bits. We can
now search a k bit range for p. Let p ' be a guess at p fixed in the centre of the
k-bit range. Now calculate n / p ' including k fraction bits. Let d = p - p ' , then
the fraction n / (p ' + d) can be expanded in a power series as n / p ' - d n / p '2 +
d2n /p '3 - If this is an integer, then it is q. Since Idl < 2 k the term d2n /p '3
is O(2-k), SO we can ignore it. If we calculate 2k fraction bits of n i p '2 we can
use an Extended Euclidean Algorithm to calculate possible d's by equating the
fractional part of n / p ' to that of d(n/p'2). The calculation is about the same
work as expanding 2k bits of the fractional part of n / p 2 as a continued fraction.

In our schemes we have n is 1024 bits and p is 512 bits. We can assume the
opponent knows all but the low-order 240 bits of p (all of the schemes can be
modified so that this is the case). Assume that the opponent guesses the next 70
bits, leaving the low 170 bits to be determined. It would appear that the work to
mount this type of attack is not significantly less than that which would be
required to factor a 1024-bit number using the number field sieve.

For the second attack notice that our product is of the form n =
(2384fl + alX2384f2 + a2) , where f l and f2 are 128 bits and a a and a 2 are at
least 240 bits. We know that f l f 2 = / 3 and is public knowledge. Now, f l f 2 n =
(2384fir2 + alf2X2384ftf2 -F a2 f 1) has two nearly equal factors. One can now
attempt to factor this product as a difference of squares b_b_y__~riting z 2 = y2 _
f~f2 n and scanning through possible y 's starting at ~/flf2 n until a perfect
square is found. This search will take about z 2 / 2 y trials to factor n. Since z =
[(f~a 2 - fza1)/21 is about 368 bits, and y is 640 bits, the scan will take about 2 95
trials, which does not appear to be feasible.

Recently, Kaliski [11] broke Anderson's RSA trapdoor [2]. The proposed
trapdoor is based on a secret value A which is 200 bits long and is used to
produce 256-bit primes p of the form p = r(q, A) A + q. Here q is a prime less
than x/A-, and r is 56 bits long and a function of A and q. Kaliski uses some
"unusually good simultaneous Diophantine approximations" and lattice basis
reduction to break the trapdoor. The approximations rely on the fact that
q < x/-a-, however. Our scheme can be compared to this with r = f l , A =
2 384 , and q = a~. Since we do not have a a < 2192 , this technique cannot be
used.

Both Maurer [17] and Rivest and Shamir [26] described schemes for factoring
n with an oracle. Maurer 's technique does not seem to apply here as his oracle
answers questions regarding the order of elliptic curves modulo p. Rivest and
Shamir, however, describe a method for factoring n if the high-order m / 3 bits
of p are known. In our schemes this number of bits of either factor is never
revealed. We do not see how to generalize their attack and apply it to our
moduli.

Short RSA Keys and Their Generation 113

It would appear that this specially constructed n is no easier to factor than a
general product of two primes and therefore will not compromise security.

12. Conclusion

In this paper we have given various methods for constructing moduli that are
the product of two primes and which have a fixed number of bits predetermined.
From this discussion there has emerged a very interesting question which
requires further research. We conclude by summarizing it.

Open Question. For a fixed positive integer m, what is the largest value of x
such that we can find, in time proportional to a polynomial in m, a modulus
n = p . q of m-bits having x bits predetermined, where p and q are distinct
primes of about the same size?

Acknowledgment

We would like to thank two anonymous referees for their careful reading of this
paper, and for suggesting some useful improvements.

References

[1] G. B. Agnew, R. C. Mullin, and S. A. Vanstone, An implementation of an elliptic curve
cryptosystem over F2t55, IEEE Journal on Selected Areas in Communications, Vol. 6, 1993,
pp. 3-13.

[2] R. Anderson, A practical RSA trapdoor, Electronics Letters, Vol. 29, No. 11, 1993, p. 995.
[3] P. Beauchemin, G. Brassard, C. Cr6peau, C. Goutier, and C. Pomerance, The generation of

random numbers that are probably prime, Journal of Cryptology, Vol. 1, No. 2, 1988, pp. 53-64.
[4] D. M. Bressoud, Factotization and Primality Testing, Berlin: Springer-Verlag, 1989.
[5] E. R. Canfield, P. Erd6s, and C. Pomerance, On a problem of Oppenheim concerning

"Factorisatio Numerorum," Journal of Number Theory, Vol. 17, No. 1, Aug. 1983, pp. 1-28.
[6] R. D. Carmichael, On composite numbers P which satisfy the Fermat congruence a e- 1 =_ 1

(rood P), American Mathematical Monthly, Vol. 19, 1912, pp. 22-27.
[7] H. Cohen, A Course in Computational Algebraic Number Theory, Berlin: Springer-Verlag, 1993.
[8] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Informa-

tion Theory, Vol. 22, No. 6, 1976, pp. 644-654.
[9] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms,

1EEE Transactions on Information Theory, Vol. 31, No. 4, 1985, pp. 469-472.
[10] G. Harper, A. J. Menezes, and S. A. Vanstone, Public key cryptosystems with very small key

size, Advances in Cryptology--EUROCRYPT '92, Lecture Notes in Computer Science, Vol. 658,
Berlin: Springer-Verlag, 1993, pp. 163-173.

[11] B. S. Kaliski, Jr., Anderson's RSA trapdoor can be broken (preprint).
[12] D. E. Knuth and L. T. Pardo, Analysis of a simple factorization algorithm, Theoretical Computer

Science, Vol. 3, 1976, pp. 321-348.
[13] E. Kranakis, Primality and Cryptography, Stuttgart: Teubner; New York: Wiley, 1986.
[14] Ch. J. de la Vali6e Poussin, D6monstration simplifi6e du th6or~me de Dirichlet sur la

progression arithm&ique, Mdmoires Couronnds et autres Mdmoires (8 ~ Ed.), Vol. 53, 1895-96,
No. 3, p. 59.

114 S.A. Vanstone and R. J. Zuccherato

[15] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The number field sieve,
Proceedings of the 22nd ACM Symposium on Theory of Computing, pp. 464-572, 1990.

[16] H. W. Lenstra, Jr., Factoring with elliptic curves, Annals of Mathematics, Vol. 126, 1987,
pp. 649-673.

[17] U. M. Maurer, Factoring with an oracle, Advances in Cryptology--EUROCRYPT '92, Lecture
Notes in Computer Science, Vol. 658, Berlin: Springer-Verlag, pp. 429-436.

[18] U. M. Maurer, Fast generation of prime numbers and secure public-key cryptographic parame-
ters, Journal of Cryptology (to appear).

[19] A. Menezes and S. Vanstone, Elliptic curve cryptosystems and their implementation, Journal of
Cryptology, Vol. 6, No. 4, 1994, pp. 209-224.

[20] G. L. Miller, Riemann's hypothesis and tests for primality, Journal of Computer and System
Sciences, Vol. 13, No. 3, Dec. 1976, pp. 300-317.

[21] P. C. van Oorschot, A comparison of practical public key cryptosystems based on integer
factorization and discrete logarithms, in Contemporary Cryptology--The Science of Information
Integrity, G. J. Simmons, ed., New York: IEEE Press, 1991.

[22] H. C. Pocklington, The determination of the prime or composite nature of large numbers by
Fermat's theorem, Proceeding of the Cambridge Philosophical Society, Vol. 18, 1914-1916,
pp. 29-30.

[23] J. M. Pollard, Theorems on factorization and primality testing, Proceedings of the Cambridge
Philosophical Society, Vol. 76, 1974, pp. 521-528.

[24] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in Computational
Methods in Number Theory, H. W. Lenstra, Jr., and R. Tijdeman, eds., Mathematical Centre
Tracts, Vol. 154, Amsterdam: Mathematisch Centrum, 1982, pp. 89-139.

[25] M. O. Rabin, Probabilistic algorithms for testing primality, Journal of Number Theory, Vol. 12,
1980, pp. 128-138.

[26] R. L. Rivest and A. Shamir, Efficient factoring based on partial information, Advances in
Cryptology--EUROCRYPT '85, Lecture Notes in Computer Science, Vol. 219, Berlin: Springer-
Verlag, 1986, pp. 31-34.

[27] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM, Vol. 21, No. 2, 1978, pp. 120-126.

