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Abstract. This paper deals with the problem of generating RSA moduli having 
a predetermined set of bits. It would appear to be of practical interest if one 
could construct their modulus so that, for example, some of the bits are the 
ASCII representation of their identification information (i.e., name, address, 
etc.). This could lead to a savings in both bandwidth for data transmission and 
storage. A theoretical question which arises in connection with this is to 
determine the maximum number of bits which can be specified so that the 
modulus can be determined in polynomial time and, of course, security is 
maintained. 
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1. Introduction 

The most well known and accepted public-key cryptosystems are those based on 
discrete logarithms in finite groups and integer factorization. In particular, the 
Diffie-HeUman key exchange [8], the E1 Gamal protocol [9] in 7/~, p a prime, 
and the RSA system [27] for modulus n = p �9 q, where p and q are primes, have 
been implemented worldwide. One disadvantage of these systems is that p and 
n must be relatively large (at least 512 bits) to attain an adequate level of 
security. For this reason researchers have looked for public-key schemes which 
reduce the size of the public key. An attractive and promising system is the 
Diffie-Hellman and El Gamal protocols defined in the group associated with 
the points on an elliptic curve over a finite field (see, for example, [1], [10], and 
[19]). It appears that a 155-bit elliptic curve scheme gives comparable security to 
a 1024-bit RSA modulus. Nevertheless, RSA remains a very viable and practical 
encryption and signing process. The purpose of this paper is to describe a 
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method for reducing the storage requirement of RSA public moduli without 
compromising security. 

The problem of interest to us is to determine how many bits of a modulus 
of the form n = p . q  can be specified. For n a 1024-bit number the follow- 
ing argument suggests that most of the bits could be prescribed. The num- 
ber of 512-bit prime numbers is about 2512/log(2512) -2511/1og(251~) = 
(2502. 510)/(511. log(2)). Thus, the number of 1024-bit numbers of the form 
p . q ,  where p and q are 512-bit primes, is about (25~ Now the 
number of 1024-bit numbers is 21~ and so the fraction of 1024-bit numbers of 
the form p .  q, where p and q are 512-bit primes, is roughly 2-19/1og2(2)  = 4 • 
10 -6. 

These computations suggest that if we leave about 17 bits of freedom, then we 
should be able to find a 1024-bit integer n, the product of two primes, with over 
1000 of the bits specified. The real question of practical importance then is how 
many bits can we specify in a modulus n = p .  q so that p and q can be found in 
time proportional to a polynomial in log(n)? To this end we propose several 
techniques and analyze their security. If the modulus n is an m-bit number we 
describe how to specify t bits of the number where t is suitably bounded. If the t 
bits can be random bits the situation is somewhat simplified. This scenario may 
arise where a group of users use the same t random bits and hence only m - t 
bits need be stored for each user and one copy of the t random bits for the 
entire group. There may be situations where a user would like the t bits to be a 
binary representation of their user ID and other publicly available information. 
This situation can also be implemented by adjoining a small number of random 
bits after the information. We show that up to m / 2  of the bits can always be 
specified, but specifying m / 2  of the bits comes at the expense of longer key 
generation (i.e., prime generation). The methods discussed give various degrees 
of dependence between the primes p and q. 

At present we see no way of specifying up to half of the bits for a public key 
used for the Diffie-Hellman and El Gamal protocols. One possibility is to 
specify t bits of the public key and then try about 2 t values of a until a a has 
the specified bits. This is clearly impractical for t being very large. 

The remainder of this paper is organized as follows. In Section 2 we describe 
a method for generating the primes after specifying t high-order bits in a 
1024-bit RSA modulus. We have chosen 1024 as a reference bit length in order 
to make the description of the techniques as concrete as possible. We also give a 
generalization to a modulus n of arbitrary length. Section 3 describes a method 
which specifies half of the bits in the modulus at the expense of much longer key 
generation time. In Section 4 we give a compromise method using ideas from 
the previous two sections. Section 5 focuses on various scenarios and complica- 
tions of specifying bits in the modulus. Maurer's method for generating primes is 
described in Section 6 and applied to our technique. In Section 7 we describe a 
method for specifying t low-order bits of the modulus while in Section 8 we 
explore the question of how many bits of the modulus can be specified. Section 9 
discusses running times and Section 10 describes our implementations. Security 
issues are considered in Section 11 and Section 12 is our conclusion. 
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2. Specifying the First t Bits 

2.1. For m = 1024 

We first describe a method for specifying the first t bits of n = p . q  with 
specific attention paid to the case where n is 1024 bits. In this scheme p and q 
are effectively chosen independently. 

Le t / 3  be a fixed number  of  length t = 2.  k bits, and assume that /3 factors as 
/3 = f l  "f2, where f l  and f2 are each of  length k bits. We show in Section 5 how 
to choose an appropriate/3.  We can then let our primes p and q be of the form 
p = 2512-k .f~ + a 1 and q = 2512-k "f2 + a2, where a t and a 2 are numbers of 
length l bits. When we multiply to get n we get 

P "q = 21024-2"k "fl "f2 + 2512-k(fl "a2 + f 2  "al)  + al "a2" 

It is easy to see that if the last two terms in the sum are less than 1024 - 
2 .  k bits, then the first 2- k bits are exactly the number/3.  To guarantee this we 
need 5 1 2 - k + k + l + 2 < 1 0 2 4 - 2 . k o r l + 2 - k < 5 1 0 .  

To guarantee security we need to make sure that, given n, f l ,  and /'2, it is 
difficult to determine p and q, or, equivalently, a~ and a 2 . It is thus necessary to 
require a~.a  2 to be at least 5 1 2 -  k bits. We wish to prevent a brute-force 
attack on a I and a 2 . This would involve trying every possible combination of a 1 
and a 2 until the corresponding values of p and q multiplied to give n. Thus in 
order  to prevent this type of attack we require the overlap between al �9 a2 and 
the 2512-k(f~ .a 2 + f z . a l )  term to be at least 60 bits. We therefore need 
2 . 1 > 5 1 2 - k + 6 0 o r 2 . 1 + k > 5 7 2 .  

The above two inequalities force a largest possible value for k of  148 and thus 
t = 296. This gives a corresponding value of  213 for 1. We can therefore specify 
the first 296 bits of n while not compromising the security of our system. 

2.2. Producing the Primes 

We wish to produce primes of the form p = 25xz-k . f  + a where f has a length 
of k bits and a is an / -b i t  number. To produce such a prime we choose random 
/-bit numbers a and test p -- 2512-k - f  + a for primality using the Mil ler-Rabin 
primality test (see [20] and [25]). If p is not prime, we return to choosing 
suitable a's. To avoid a brute-force attack on n we choose l large enough 
to guarantee suitable interaction between the terms a t �9 a 2 and 2512-k(f1 �9 a2 + 

f2 "ax). 

2.3. Keys of  Arbitrary Size 

If n is required to be a size other  than 1024 bits, say m bits, then it is easy 
to verify (in the manner  of adaove) that the following two inequalities must hold. 
If p and q are m / 2  bits long, then 1 + 2 . k  < m / 2  - 2 and 2 .1  + k > m / 2  + 
e(n) ,  where e (n )  is the number  of bits of overlap required to make brute-force 
search less effective than other  general-purpose factoring algorithms (i.e., we 
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should choose 8(n) so that 2 "tnJ = O(eXh"tn)'lntlnC~))). The largest possible value 
of t can then be taken as the maximum number of bits that can be specified. 

3. Specifying Half the Bits 

This method allows us to specify half of the bits of n but now q is completely 
dependent  on the choice of p. 

3.1. For  m = 1024 

Let a and /3 be given 256-bit numbers that are public knowledge. Let /3 
be such that it factors as /3 = f l  "f2 for 128-bit numbers f l  and f2. We 
then (privately) create primes p and q such that p = 2 384 ")el -4- a 1 and q = 
2384 "f2 + a2, where a 1 and a2 are 248-bit numbers  with a I �9 a 2 --- a (mod 2256). 
Then this gives 

n ----- 2768-fl "f2 + 2384(fl "a2 + f2 "a l )  + al "42. 

It is easily seen that 2384(fl �9 a 2 + f2 "al)  + al "a2 is at most 763 bits so there is 
no carry into 2 768 " f l  " f2 ,  and the high-order 256 bits of n are the number /3. 
Also since a 1 �9 a 2 --- a (mod 2256), the low-order 256 bits are the number a.  The 
middle 512 bits of n can then be communicated, stored, and the full number can 
be retrieved. 

To guarantee security we must be sure that given a ,  n, f l ,  and f2 finding a~ 
and a 2 is a difficult problem. Since a I �9 a 2 is a 496-bit number of which 384 bits 
are known from the form of n, this leaves 112 bits of flexibility, or 2 H2 
possibilities for al �9 a 2 . Exhaustive search techniques would therefore be infeasi- 
ble by current technology. 

3.2. Produc ing  the Primes  

To produce the primes p and q of the desired form, 248-bit odd numbers, a l ,  
should be randomly chosen until a p is found that is prime. The Extended 
Euclidean Algorithm is then used to produce an a2 such that a ~ . a  2 -- a (mod 
2256). If a 2 is less than 2248 and q is prime, then the algorithm terminates, if not 
then return to choosing random values for a1. There is a problem with this 
algorithm; obtaining a value for a 2 that is less than 2 248. 

To deal with this problem we change the parameters in the following way. The 
numbers f l  and f2 are still 128-bit numbers, but now p --- 2 376 " f l  --I- a I and 
q = 2392 "f2 + a2, where a I is a 240-bit number and a 2 is 256 bits. Then we get 

n = 2768 "fl "f2 + 2392 "f2" al + 2376 "fl "a2 + a1" a2- 

Now 2 392 " f 2 " a l  + 2376 "fl 'a2 + a1"a2  is at most ~763 bits, so there is no carry 
over into 2 768 " f l  "f2 and a l . a  2 is a 496-bit number with only 376 bits left 
unhidden, so there are 212~ possibilities for this value. This actually gives an 
improvement of the level of security obtained before. The algorithm can now be 
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changed to choose a 1 to be 240 bits and not to require a 2 to be less than 2 248. 
The primes p and q are now 504 and 520 bits, respectively. 

3.3. Keys o f  Arbitrary Size 

In many applications the size of n may be required to be larger or smaller than 
1024 bits. To deal with this we present modified parameters that handle the 
more general situation. Assume we want our n to be 8 .  k bits long, where 
k > 8. Then p and q should each be approximately 4 .  k bits in length. Let  
and /3 be specified numbers as before, of length 2" k. Factor/3 as f~ "f2, where 
f~ and f z  are k-bit numbers. We then require a 1 to be a (2- k - 8)-bit number 
and a 2 to be 2 - k  bits, so that p = 2 k, "fl + al and q = 2 k2.f2 + a2,  where 
k I = 3 - k - 4 a n d  k 2 = 3 . k + 4 . C h o o s e a  l a n d  a 2 as before. 

This gives 

n = 2 kl+k2 "fl  "f2 + 2k2 "f2 "al + 2km "fl "a2 + al  "a2,  

with /3 being the first 2 .  k bits and a being the last 2 .  k bits. There is an 
overlap of  k - 4 bits between the a x . a  2 term and the 2 kl "fl "a2 term, so this 
product still remains hidden and hence exhaustive search techniques remain 
infeasible for large k. 

4. A Compromise 

There  are certain advantages and disadvantages to both of the schemes de- 
scribed thus far. In Section 2 the primes p and q could be chosen indepen- 
dently. This resulted in a good running time but at the expense of only being 
able to specify about one-quarter  of the bits. In Section 3 half the bits could be 
specified but the primes were completely dependent  on each other resulting in a 
very poor  running time. In this section we present a compromise scheme which 
has some of the advantages of both techniques. 

4.1. F o r m  = 1024 

Let /3  be a 256-bit number  such that it factors as /3  = f l  "f2 for 128-bit numbers 
f l  and f2. Let c~ be a u-bit number, where u < 248. Our required primes will 
be of the form p = 2 384 "fl + a1 and q = 2 384 "f2 + a2, where a I and a 2 are 
248-bit numbers. We require the final u bits of n to be exactly the number ot so 
we want a 1 �9 a 2 - o~ (mod 2u). Thus, as before, we get 

n = 2768.fl "rE + 2384(fl "82 + f 2 " a l )  + al "82. 

Again, it is easy to see that the top 256 bits of n are the number /3 and the 
bot tom u bits are a .  

As was shown in Section 3.1, there is an overlap of 112 bits between the last 
two terms of n. Therefore,  obtaining the values a~ and a2, and thus obtaining 
the primes, is a difficult problem. 
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4.2. Producing the Primes 

We produce the desired primes in the following way. As before, randomly 
choose 248-bit numbers a 1 and test p = 2 384 " f l  + al for primality. If p is 
prime, then by using the Extended Euclidean Algorithm we can produce a u-bit 
number c such that a I �9 c = a (mod 2"). Random (248 - u)-bit numbers b can 
then be chosen to produce a 2 = b �9 2" + c until the corresponding value of q is 
prime. Notice that now a~ �9 a 2 = a (mod 2u). 

When searching for q, we will be searching a particular residue class modulo 
2". The distribution of primes in this class is about the same as for any interval 
of about the same size [14]. We must therefore choose the parameter  u such 
that there are enough possibilities for b to guarantee, with high probability, the 
existence of a prime of this particular form. In this interval we would expect 
there to be approximately 2~248-U)/ln(2512) primes. It then follows that u should 
be chosen to be somewhere between 228 and 218 to give betwee~ about 20 and 
30 bits of freedom to find a suitable b. 

4.3. Keys of Arbitrary Size 

Clearly, the analysis done in Section 3.3 also applies here. The size of o~ must 
now be u bits, and this size should be chosen so that a prime is likely to be 
found for any value of c. 

5. How To Choose B 

As we have seen before, /3  is a number of length 2.  k bits which factors as f l  "f2 
for k-bit numbers f l  and f2. This is the case when the first t = 2 .  k bits of n 
are being specified and when half the bits are being specified. Since there are no 
conditions on o~, this value can be chosen to be any convenient number of the 
appropriate size. 

On the other hand, /3 must be chosen so that it factors appropriately. If these 
t bits can be random bits there is no problem. Simply choose two numbers f l  

and f2 of length k bits and multiply them together to get a (2 .  k)-bit number/3.  
In this situation a number of people can all use the same /3 (and t~ if needed) 
thus reducing the amount of memory needed to store all of their public keys. 

In some situations, however, the user may want these t bits to be a binary 
representation of their user ID and other  publicly available information. This 
situation is slightly more complicated because this number may or may not 
factor as the product of two numbers of equal size. This problem can be 
overcome by leaving some random bits at the low end of /3  to allow more choice 
for the factors. 

We need /3  to factor into two numbers about the same size as its square root. 
To accomplish this, we allow a difference of d bits in the size of the factors f l  
and f2- Thus, the parameters k 1 and k 2 will have to be similarly changed to give 
two primes p and q of equal size. This can be done easily with no change in 
security or prime generation. We need an estimation of r(u), the probability 
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that a random integer, N, has no prime factor greater than N 1/u. We use 
r(u) ~- e -#'l" u which is a crude approximation to the value given in [5] (see also 
[21]). If every prime factor of /3 has fewer than d bits, then it will factor into 
two integers differing in size by d bits. This is not the only way to guarantee that 
/3 will factor correctly but it is sufficient. We use it to get an upper bound on the 
number of random bits needed. If /3 is 256 bits, as is the case when n is 1024 
bits, then this probability is approximately e -(256/d)'ln(256/d). It is then easy to see 
that if we allow a difference of 10 bits between the factors of /3 we will only 
require about 47 random bits to guarantee with high probability the existence of 
factors of the required type. Thus, the first 209 bits of /3 can be the publicly 
available information, while the final 47 bits can be varied until /3 factors as 
desired. Experimental results confirm that with 47 bits of randomness,/3 should 
factor as required with very little difficulty. 

It may also be desirable to allow fl and f2 to be the publicly available 
information. Only one multiplication would then be required to obtain /3 and 
thus the public modulus. This does not compromise security as f l  and f2 are 
already public. 

6. Fast Generation of Primes 

In this section we present Maurer's method [18] for fast generation of primes 
and describe how it is well suited to generating primes of the form required in 
the previous sections. 

6.1. Background 

In [18] Maurer describes how to generate provable primes in time only about 
one-third greater than the expected running time required for generating a 
pseudo-prime that passes the Miller-Rabin test for only one base. We briefly 
sketch his method here. 

The following two lemmas form the basis for the algorithm. Lemma 1 is a 
special case of a theorem due to Pocklington [22] (see also [4] or [13]). 

Lemma 1. Let n = 2RF + 1, where F has a known prime factorization F = 
q~l . q~2 . . . . .  q f ' .  I f  there is an integer a satisfying 

a n - l =  1 (modn)  
and 

gcd(a (n- ~)/qJ - 1, n) = 1 

for j = 1 . . . . .  r, then each prime factor p of  n is of  the form p = m F  + 1 for some 
integer rn > 1. Moreover, if  F > ~/'n, or i f  F > R, then n is prime. 

l_emma 2. Let p = 2 R F  + I be a prime with F = F l ~ = l  qpJ, F > R and 
gcd(2R, F)  = 1, where ql . . . . .  qr are distinct primes. Then the probability that a 
randomly selected base a ~ ~_p is successful in proving the primality of  p by Lemma 
1 is equal to ~o(F)/F which is at least 1 - ~ =  1 1/qj .  
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The primes are constructed recursively by first constructing small primes 
q~ . . . . .  qr and then picking random R until p = 2 RF  + 1 can be proved prime 
by an appropriate choice of the base a. Lemma 2 shows that if p is indeed 
prime, then finding a base a that is successful in proving this fact is easy. Also, if 
p is composite and does not contain a small prime factor that will reveal itself in 
trial division, then virtually every base a will satisfy a p -  1 ~ 1 (mod p), and will 
be a witness for the compositeness of p, unless p is of a very special form (see 
[3] and [6]). 

By choosing qi of the appropriate size the prime p can be chosen to lie within 
a certain interval [P1, P2]- Again the reader is referred to [18] for a detailed 
description of the algorithm. 

6.2. Using This Method  

When we specify only the first t = 2 .  k bits of the product n, the choice of p is 
independent of the choice of q (actually, the choice of a I is independent of the 
choice of a2). To find a prime of the form p = 2 m/z-~ . f  + a, where f is k bits 
long and a is l bits, simply produce a prime p by the above method in the 
interval [2 m / 2 - k  . f ,  2 m/2-k  . f  + 2l]. This prime is of the desired form. 

In the other schemes the primes p and q are at least partially dependent  on 
each other and hence the generation of these primes is more complex and time 
consuming (see Section 9). The first prime p can be produced as described 
above, but then q is at least partially determined. As mentioned in Sections 3 
and 4, the Extended Euclidean Algorithm must be used to obtain the appropri- 
ate value for a 2 and thus get q. The primality of q can then be checked using 
the Mil ler-Rabin test. If q is not prime, either a new p must be chosen or a 
new b must be chosen to give a new q. 

7. Specifying the Last t Bits 

A fourth way to specify some of the bits of an m-bit modulus n involves 
specifying the last t bits for some t < m / 2 .  Let a be a known t-bit number. If 
we then let p and q be primes of size approximately m / 2  bits with p . q  - a 
(mod 20, then the last t bits of n will be exactly a.  

To generate these primes we first choose any random (m/2) -b i t  prime p. 
Using the Extended Euclidean Algorithm we can then obtain c such that 
p .  c - a (rood 20. If we then choose a random ( m / 2  - t)-bit number b such 
that q = 2 t �9 b + c is prime, it is easy to see that p �9 q - a (mod 2 t) and n is the 
desired modulus. 

As mentioned in Section 4.2 the distribution of primes in any congruence 
class is about the same as for any interval of about the same size. Thus we would 
expect there to be about 25~2-t/ln(2 st2) primes in the congruence class searched. 
It seems reasonable then that if t is chosen to be somewhere between 492 and 
482 we would expect to find a prime, q, of the desired form without much 
difficulty. If this fails we can then pick a new p and repeat the calculations. 
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8. How Many Bits Can Be Specified? 

In this section we explore the question of how many bits of  the modulus can be 
specified so that p and q can be found in t ime proport ional  to a polynomial in 
log(n). To do this we look at the problem in its most  general form and introduce 
a new technique for factoring /3 where f l  and f2 are not specified ahead of 
time. This new technique does not add anything to any of the other schemes 
introduced in this paper,  but is simply a generalization of the different methods 
presented and is included here as another  way of  looking at the problem. 

Our  modulus is, as usual, n = p . q ,  where p and q are of  the form p = 
2c "fl + al and q = 2 c "f2 + a2. Here  a I and a 2 a re / -b i t  numbers  while fx and 
f2 are each k bits. Again we specify a and /3, which are c- and t-bit 
numbers,  respectively, ahead of t ime to be public. Now f l  and f2 are such that 
f l  "f2 = 2u"/3 + 8, where 8 is a u-bit number.  We determine f l  and f2 by 
varying 8 and trying to factor 2u-/3 + 8 appropriately. This should be a 
relatively simple task as long as u is sufficiently large. 

Now 

n = p . q  = 22"c -fx .f2 + 2c.  ( f l  . a  2 §  §  2 

= 22"~(/3.2u + 8)  + 2 ~ ( f l - a  2 + f E ' a l )  + a 1 "a 2. 

In order  that /3 appear  as the first t bits we need the following constraints. 
If  m is the total number  of  bits in n then: 

1. 2 . c  + 2 . k = m .  

2. c + k + l < m - t to avoid rippling into the high-order t bits. 
3. 2 �9 l > c + s to ensure at least s bits of  rippling into the middle term. 
4. c + l + k > 2 �9 c + s to ensure at least s bits of  rippling into the first term. 

Simplifying 1 -4  we get: 

2'. l + t  < m / 2 .  
3 ' .  2 . l - c > s .  

4 ' .  l - 2 . c > s - m / 2 .  

In order  to determine the maximum number  of bits that can be specified 
using this scheme we want to maximize the size of  a and /3, or, equivalently, 
t + c. We require the solution of the following integer linear program. (We 
assume that m and s are given and fixed.) 

Maximize B = t + c ,  

subject to l + t < m/2, 
c - 2 .  l < - s ,  

2 . c  - l < m / 2  - s,  

and all variables are nonnegative.  

As simply a linear program the optimal value is given by t = (m - s ) / 3 ,  
l = (m + 2 - s ) / 6 ,  c = ( m  - s ) / 3 ,  and B = t + c = 2(m - s ) / 3 .  Solving this 
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program for m =  1024 and s =64 ,  we get t = 3 2 0 ,  c = 3 2 0 ,  l =  192, and 
k = 192 allowing us to specify 640 bits of a 1024-bit modulus. 

How many bits of p or q do we reveal by this method? Suppose, for any 
choice of 6, f l  and fz both have a fixed number x of high-order bits. Consider 
that greater than one in two numbers with 2.  k (the number of bits in f t  "f2) 
bits factors appropriately. We have only 2 z~k-x) numbers. 

The only problem with specifying this many bits is in generating the primes. 
Notice that a is c = 320 bits long and both a~ and a 2 are l = 192 bits long. 
Thus for every al that is chosen to make p prime, after applying the Extended 
Euclidean Algorithm to find a 2 , we may get an a 2 of 320 bits. This choice for a 2 
will obviously not work, as many different values of a~ must then be tried until 
we get an a 2 that fits, and then, with high probability, it will not produce a q 
that is prime. To overcome this problem we add the constraint c _< l to our 
integer linear program. After solving the revised integer linear program we get 
t = 446, c = 65, l = 65, and B = 511. Hence this scheme offers no advantage 
over previously described methods that can specify 512 bits. 

9. Running Time 

In this section we give heuristic running times of the algorithms used to produce 
p and q for all three schemes described. 

When only the first t bits are being specified, for (m/2)-bi t  primes p and q, 
the choice of p and q are independent and Maurer's fast prime-generation 
technique is used. As was shown in [18], the running time for this generation of 
primes is O(m 3 In(In(m))) bit operations. 

In the other schemes described for (m/2)-bi t  primes p and q the choice of p 
and q are not independent and hence the running time is slightly worse. We 
produce p using MaUrer's fast prime-generation technique which has running 
time O ( m  3 In(In(m))) bit operations. We then produce a q and test it for 
primality, which must be done approximately In(2") times before a prime q is 
found. We thus get the running time of producing appropriate primes p and q 
to be O(m 3 In(In(m))In(U")) or O(m 4 In(In(m))) bit operations. 

10. Implementation 

We present the results of our implementation of the ideas presented here. We 
implemented these schemes on a SUN-2 SPARC-station using MAPLE V. A 
naive prime-generating algorithm was used in which an odd random number of 
the appropriate size was chosen and then increased by two until it passed the 
Miller-Rabin primality test with five iterations. The times shown are average 
times over a number of different trials. All primes produced are 512-bit 
numbers. We include these results to show that the schemes presented in this 
paper are feasible. 

The average time to produce one prime for a modulus in which the first 296 
bits are specified is 205.9 s. 
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The average time to produce both primes when half the bits of the modulus 
are specified is 36,866.1 s. 

The average time to produce both primes when the first 256 bits and the last 
218 bits of the modulus are specified is 437.7 s. 

The average time to produce both primes when the last 482 bits of the 
modulus are specified is 710.6 s. 

Notice that for the three schemes in which the choice of q is not totally 
dependent on p, the time to generate both primes is about the same. When half 
the bits are specified, and the choice of q is totally dependent on p, the time 
increases dramatically. 

11. Security Considerations 

To compare the security of using our specially constructed primes with that of 
using general primes p and q we must consider the difficulty of factoring 

n = 2k~+k2 "fl "f2 + 2 k 2 " f E ' a l  + 2kl "fl "a2 q- al "a2, 

where f l  and f2 are k-bit numbers, a I and a 2 are 11 and l 2 bits, respectively, 
and everything is known except for a I and a 2 . We also know that n factors as 
P ' q  = ( 2kt "fl  + al)  (2k2 "rE + a2). 

To make n resistant to a Pollard-(p - 1) attack [23], (p  - 1) and (q - 1) 
should each have at least one prime factor of about 15 digits [7]. The probability 
that a 512-bit number will have all of its prime factors less than about 15 digits is 
about 3 • 10 -11 [12]. Thus, for all practical purposes, n is resistant to this type 
of attack. A practical question that arises is how can it be feasibly ensured that 
both ( p  - 1) and (q - 1) are divisible by a large prime, particularly in situations 
where the prime q is tightly constrained by the choice of p? 

When specifying the last t bits of a 1024-bit modulus n, this problem can be 
satisfied as follows. We want p . q  - a (mod 2t). Assume p has been con- 
structed with a large prime factor. Then let Q be some other large prime (e.g., 
greater than 15 digits). We produce a q of the form q -- Q R  + 1 for some 
positive integer R. The congruence p ( Q R  + 1) = ot (mod 2 t) can be solved for 
R. We can then search this equivalence class for R's that will give a prime q. For 
the other schemes mentioned, we cannot see how to do this feasibly, and leave it 
as an open question. 

The number field sieve [15] factors numbers of the special form n = r e +__ s 
for small integers r and s. We cannot see how this applies to our method as the 
product produced here has no higher probability of being of this special form 
than a general product of primes. 

The quadratic-sieve algorithm [24] is the most efficient general-purpose fac- 
toring algorithm known. It cannot, however, factor numbers of 1024 bits, so this 
attack also appears to be resisted. The elliptic curve factorization method [16] 
only works on integers with "small" prime factors and so does not apply here. 

Can we exploit the special structure of the product to factor n? All that is 
required is to determine a I and a 2. We know aa .a2  (mod min(2 k~, 2k2)), but 
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little else as the other  products are added together. Thus if 11 + 12 > min(k~, k2), 

in particular if 2 l'+t2-min(k,'k2) is of the order  of e ~/ln(")l"(~"(n)) (the quadratic 
sieve running time) no advantage will be gained in trying brute force over the 
general factoring algorithms. 

We thank one of the referees for pointing out the following two attacks. The 
first is as follows. We have n = pq, where n is 6k bits and p is 3k bits. We can 
now search a k bit range for p. Let p '  be a guess at p fixed in the centre of the 
k-bit range. Now calculate n / p '  including k fraction bits. Let d = p - p ' ,  then 
the fraction n / ( p '  + d) can be expanded in a power series as n / p '  - d n / p  '2 + 
d2n /p  '3 - . . . .  If this is an integer, then it is q. Since Idl < 2 k the term d2n /p  '3 
is O(2-k),  SO we can ignore it. If we calculate 2k fraction bits of  n i p  '2 we can 
use an Extended Euclidean Algorithm to calculate possible d's by equating the 
fractional part of n / p '  to that of d(n/p'2).  The calculation is about the same 
work as expanding 2k bits of the fractional part of n / p  2 as a continued fraction. 

In our schemes we have n is 1024 bits and p is 512 bits. We can assume the 
opponent  knows all but the low-order 240 bits of  p (all of  the schemes can be 
modified so that this is the case). Assume that the opponent  guesses the next 70 
bits, leaving the low 170 bits to be determined. It would appear that the work to 
mount this type of attack is not significantly less than that which would be 
required to factor a 1024-bit number using the number field sieve. 

For the second attack notice that our product is of the form n = 
(2384fl + alX2384f2 + a2)  , where f l  and f2 are 128 bits and a a and a 2 are at 
least 240 bits. We know that f l f 2  = / 3  and is public knowledge. Now, f l f 2  n = 
(2384fir2 + alf2X2384ftf2 -F a2 f  1) has two nearly equal factors. One can now 
attempt to factor this product as a difference of squares b_b_y__~riting z 2 = y2 _ 
f~f2 n and scanning through possible y 's  starting at ~/flf2 n until a perfect 
square is found. This search will take about z 2 / 2 y  trials to factor n. Since z = 
[(f~a 2 - fza1)/21 is about 368 bits, and y is 640 bits, the scan will take about 2 95 
trials, which does not appear to be feasible. 

Recently, Kaliski [11] broke Anderson's RSA trapdoor [2]. The proposed 
trapdoor is based on a secret value A which is 200 bits long and is used to 
produce 256-bit primes p of the form p = r(q, A ) A  + q. Here  q is a prime less 
than x/A-, and r is 56 bits long and a function of A and q. Kaliski uses some 
"unusually good simultaneous Diophantine approximations" and lattice basis 
reduction to break the trapdoor. The approximations rely on the fact that 
q < x/-a-, however. Our scheme can be compared to this with r = f l ,  A = 
2 384 , and q = a~. Since we do not have a a < 2192 , this technique cannot be 
used. 

Both Maurer [17] and Rivest and Shamir [26] described schemes for factoring 
n with an oracle. Maurer 's technique does not seem to apply here as his oracle 
answers questions regarding the order of elliptic curves modulo p. Rivest and 
Shamir, however, describe a method for factoring n if the high-order m / 3  bits 
of p are known. In our  schemes this number of bits of either factor is never 
revealed. We do not see how to generalize their attack and apply it to our 
moduli. 
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It would appear that this specially constructed n is no easier to factor than a 
general product of two primes and therefore will not compromise security. 

12. Conclusion 

In this paper we have given various methods for constructing moduli that are 
the product of two primes and which have a fixed number of bits predetermined. 
From this discussion there has emerged a very interesting question which 
requires further research. We conclude by summarizing it. 

Open Question. For a fixed positive integer m, what is the largest value of x 
such that we can find, in time proportional to a polynomial in m, a modulus 
n = p . q  of m-bits having x bits predetermined, where p and q are distinct 
primes of about the same size? 
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