
Journal of Cryptology
�9 1990 International Association for
Cryptologic Research

The Cryptanalysis of FEAL-4 with
20 Chosen Plaintexts 1

Sean Murphy
Department of Mathematics, Royal Holloway and Bedford New College,

University of London, Egham, Surrey TW20 0EX, England

Abstract. An algebraic method is given for a chosen plaintext cryptanalysis of the
Nippon Telegraph and Telephone Corporation's FEAL-4 block cipher. The
method given uses 20 chosen plaintexts, but can be adapted to use as few as four
chosen plaintexts.

Key words. Block cipher, FEAL-4, Cryptanalysis, Chosen plaintext attack.

1. The FEAL-4 Ciphering Algorithm

The FEAL-N cryptosystem has been developed by N.T.T. as a highly programming-
efficient block-cipher system, as it does not use look-up tables. It was first presented
in [2]. It is essentially an N-round Feistel block cipher operating on 64-bit blocks
and determined by a 64-bit key. FEAL-8 is the standard block cipher, but N.T.T.
intend that FEAL-4 can be used in cipher block chaining mode when plaintexts are
not revealed, a cryptogram-only environment, or for data integrity usage. The best
published attack on FEAL-4 was given by Den Boer [1], who used 10,000 chosen
plaintexts to recover the key. We give a method that uses at most 20 chosen
plaintexts to recover the key. Whereas it may be possible to ensure the absence of
10,000 chosen plaintexts, ensuring the absence of 20 plaintexts may well be too
restrictive for most uses.

The functions used to construct FEAL-N are, for i = 0, 1, Si: Z2 a x Z2 a ~ Z2 s.
These are defined for x, y ~ Z~ by regarding x, y as binary numbers x, y in the range
0, . . . , 255, so

St(x, y) = Rot2(x + y + i (Mod 256)), (1.1)

where Rot2 is a 2-bit rotation to the left. S O and S t are then used to define
two functions, fK: Z32 x Z232~ Z232, which is used to process the key, and f :
Z~ 2 x Z~ 6 ~ Z2 a2, which is used to encipher the plaintext.

i Date received: January 22, 1990. Date revised: March 29, 1990. This research was supported by
S.E.R.C. Research Grant GR/E 64640.

145

146 S. Murphy

Suppose ai, bi, ci E Zi for i = 0, 1, 2, 3, and a = (a,, a,, LZ~, a3) E Z;‘, etc., then

c = .fda, b) (1.2)

is defined in the following manner:

d, = a, 0 a,,

d, = ~2 0 ~3,

~1 = S,(d,, 4 0 bo),

~2 = So&, ~10 0,

co = So@,, Cl 0 b,),

c3 = &(a,, c2 0 b3).

(1.3)

A schematic representation of SK is given in Fig. 1.
The key is processed by using fK to obtain twelve 6-bit subkeys. This is done by

splitting the 64-bit key K into its left and right halves to give two 32-bit strings K,
and K,. We can define

B-, = 0, B-, = K,, Bo = K,, (1.4)

and,fori= l,..., 6,
Bi = fK(Bi-2, Bi-1 0 Bi-3). (1.5)

The twelve 16-bit subkeys, Ki, i = 0,. . . , 11, used in the enciphering process are then
just the left and right halves of Bi, i = 1, . . . ,6, SO

Kz(i-1) = BiL, K,i_1 = Bi”. (1.6)

fn (a. 8)

Fig. 1. Functionf,. Y= &(X1, X,) = Rot,((X, + X,)mod 256), Y= S,(X,, X,) = Rot,((X, + X, +
1) mod 256), Y: output (8 bits); X,/X, (8 bits): inputs. Rot,(Y): a 2-bit left rotation on 8-bit data Y.

The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts 147

(a, B)
/
x

(32 bits)

1 (

B 1

0

1

a2

/3

(16 bi ts)

(I

(32 b i t s)

a t , ~ 1 :

8 b i t s

a 3 ~ o t e :

Fig. 2. Function f. So~S1 are the same as So~S1 offx.

Now suppose that a~, ci e Z2 s for i = 0, 1, 2, 3, and also that bl, b2 6 Z2 a, with
b = (bl, b2) e Z216 and a = (ao, al, a2, a3), c e Za22, etc., then we can define

c = f(a, b) (1.7)
as follows:

dl = a o ~ a l t~bl ,

d 2 - - a 2 ~) a 3 ~) b 2 ,

Cl = S l (d l ' d2)' (1.8)

C 2 ~-~ S o (d 2 , c 1) ,

Co = So(ao, cl) ,

c3 = Sl(a3, c2).

Figure 2 is a schematic diagram of f.
Suppose we wish to encode the 64-bit plaintext P. Firstly, we split P into its left

and right halves to give 32-bit strings PL and PR- From these we can calcualte L o
and Ro:

Lo = PL ~ (K4, Ks), (1.9)

Ro = PL (~ PR (~ (K4, Ks) (~ (K6, KT).

We then perform four rounds of Feistel cipher defined by f and the keys Ko, K1,
K2, Ks. Thus, for i = 1, 2, 3, 4, we calculate

Li : Ri-~,
(1.10)

R i = Li_ 1 ~) f (R H , Ki-1).

Finally, the enciphered message is C = (C L, CR), where

C L = R4 (~ (Ks, K9),
(1.11)

CR = R4 ~ L4 ~ (Klo, Kll) .

148 S. Murphy

Similarly, if we know the key, we can decode any cryptogram simply by following
the above procedure in reverse.

2. Reformulation of FEAL-4 Algorithm

In order to attack the algorithm, we reformulate it by the method given by Den
Boer [1]. Firstly, we define a function G: Z 3z ~ Z232 that expresses the linear nature
off . Suppose at, ci ~ Z2 a for i = 0, 1, 2, 3, and a = (ao, a~, a2, a3), c ~ 2232, etc., then
we can define

c = G(a) (2.1)

by

so clearly

dx = ao ~) al ,

d2 = a2 ~ a3,

cl =Sl (d l , d2),

c2=So(d2, cO,

Co =So(ao, cl),

C3 = S l (a 3 , r

(2.2)

f (a , h) = G(a o, a 1 ~ b 1, a2 �9 b2, a3). (2.3)

Therefore Fig. 2 is a schematic diagram of G if we take flo = fll = 0. The cryptanaly-
sis of FEAL-4 will depend upon the fast solution of linear equations involving G.
This is considered in the next section.

We finally need to define two further simple functions, 0L, OR: 2232 ~ 2 32, by

OL(ao, al, az, a3) = (0, ao, al , 0),
(2.4)

0~(ao, al , a2, a3) = (0, a2, a3, 0),

where a t e Z2 a, so
0c(Bt) = (0, K2tt_l~, 0),

(2.5)
oR(n,) = (o, K2, -1 , 0).

These two functions can be used to define the following six 32-bit key-dependent
constants:

M 1 = B s ~ 0R(B1),

N1 = 83 ~ B4 ~) 0L(BI),

M 2 = 0L(B1) (~ 0L(B2),
(2.6)

N2 = 0~(B1) ~ 0R(B2),

M3 = B5 ~ B6 O 0R(Bx),

N 3 = B 5 (~ 0L(B1).

Note that the outer 16 bits in both M2 and N2 are zero.

The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts 149

We are now in a position to rewrite the FEAL-4 algorithm in the following
manner:

X0 = PL (~ M1 = Lo • 0R(B1),

Yo = PL ~) PR C~) N 1 = R o ~) 0L(/1) = L 1 0) 0L(B1),

x1 = Xo �9 6(go) = R1 ~ OR(BI) = L2 ~ O~(B1),

Y1 = Yo ~ G(X1) = R2 �9 0L(B1) "~" L3 ~) 0L(B1),
(2.7)

x2 = x1 ~ G(Y~ ~ m2) = R3 D 0R(B~) = L, ~ 0~(n0,

Y2 = rl �9 6(x2 ~ U2) = R4 ~ OL(BO,

CL = Y2~N3,

CR = Xg ~ M3 ~ CL.

Again, we can decode a cryptogram by following the above procedure in reverse.
Thus, if we can caluclate the 160 unknown bits in the constants MI, M2, M3, N~,
N2, N3, we can decipher any cryptogram, and also use the key processing equations
to recover the key.

3. The Fast Solution of Linear Equations Involving G

In order to find the constants Ma, M2, M3, N~, N2, N3 we need to solve equations
involving the function G. The simplest such problems involve solving

G(x ~ a) = b (3.1)

for x, where a and b are known. We can solve this directly, since Si is an invertible
function in the sense that we can solve Si(x, a) = b uniquely for x. We can however
give a general method to solve (3.1), irrespective of whether Si is an invertible
function. There are two reasons for doing this, firstly to show that FEAL-4 is weak
cipher no matter how S~ is defined, and secondly to motivate the solution of linear
equat iom involving G. Thus, suppose G were not invertible, then the most naive
method to solve (3.1) would be to calculate G(x ~9 a) for every x e Z232. However
this would require 232 evaluations of G, that is 234 S~ evaluations. However, suppose
we check whether

S I (Z 1 ~) a o ~ ax, Z 2 (~) a 2 ~) a3) = b 1 (3.2)

for each zl, z 2 e Z~. This will require 216 S 1 evaluations. For most values ofz x and
z 2, (3.2) will be false. For those values for which (3.2) is true, we can check whether

So(ba,z 2 t~ a 2 ~ a3) = b2,

So(b1, Xo @ ao) = bo, (3.3)

Sl(b2,x3 ~) a3) = b 3

for values of Xo, x3 ~ Z2 a, stopping when one of the equalities is false. If all the
equations in (3.2) and (3.3) are true, then we can recover x 1 and x2 by

xx = za 0) Xo, x2 = z2 0) x3 (3.4)

to obtain solutions for x.

150 S. Murphy

Another equation we need to solve is

G(x <~ a) 09 G(x ~) b) = d, (3.5)

where a, b, d are known constants. We can amend (3.2) and (3.3) to give the following
equations to be checked for Zl, z2, x0, x3 e Z28:

sl(Zl ~ ao ~ al, z2 ~) a 2 ~) a3) = Ctt, SI(Z 1 O) bo ~) bl, Z2 (~ b2 ~ b3) = ill,

Gtl 0 ill = dl,

So(0C1, Z 2 I~ a 2 (~ a3) = 5 2 , So(ill, z2 ~ b2 ~) b3) = il2,
(3.6)

52 @ il2 = d2,

So(a1, Xo 0 ao) 0 So(ill, Xo ~ bo) = do,

S1(~2, X3 ~) a3) ~ St(il2, x3 0 b3) = d3.

Equation (3.4) then gives us solutions for x. In this case, we need 217 evaluations of
$1 to check the truth of~l ~) ill = dl for each Zl, z2 e Z2 a.

Solving (3.5) will often give us too many solutions for x than we can efficiently
handle, so instead we often solve simultaneous equations of the form:

G(x �9 a) �9 G(x ~ b) = d,
(3.7)

G(x ~ a) 0 G(x ~ c) = e.

We can do this efficiently by checking whether the analagous pairs of simultaneous
equations to (3.6) hold at every stage. This will require only 2 la evaluations of S~ to
check the first pair of simultaneous equations.

4. Choosing the Plaintexts

Let P~ denote the ith plaintext, i = 0 19, with P~ and P~ being the left and right
halves of P~. Similarly suppose C i denotes the ith coded plaintext havir~g left and
right halves C~L and C~. We can then define

Q' = P~L O) P~ (4.1)
and

D' = C~. �9 C~. (4.2)

The 20 plaintexts are then chosen according to the following rules:

(1) Choose pO, p12, pX4, pl6, p17, plS, e l9 randomly.
(2) Choose PL 5, p6, p7, pL s, pg, pLlO, pd:, pL13, pL15 randomly.
(3) Define

Pd = pO ~ 80800000,

p2 = pL o ~ 00008080,
(4.3)

pea = pO t~ 40400000,

p4 = pL o @ 00004040.

The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts 151

(4) Define
p~=p[,(gQO, i = 1 , . . . , 11,

pal3 = p13 (9 Q12, (4.4)

pd5 = pd5 (9

Thus we have chosen seven plaintexts and nine half-plaintexts at random, that
is 736 random bits out of a total of 1280 bits.

5. Cryptanalysis of FEAL-4

Referring to (2.7), we see that

Y1 = Yo (9 G(Xt) = Yo (9 G(Xo (9 G(Yo)) = Yo (9 G(PL (9 M1 (9 G(Yo))
(5.1)

= Y2(gG(X2(gN2)= CL(gN3(gG(D(gM3(gN2) ,

and hence

CL (9 (Yo (9 N3) (9 G[PL (9 (MI (9 G(Yo))] (9 G[D (9 (M 3 (9 N2)] = 0. (5.2)

Thus, for a particular plaintext pi, i = 0, .. , 19, we can define

v ' = (g N3,

l / = M1 (9 G(~) , (5.3)

W = M3 (g N2,

so (5.2) becomes
CL (9 U' (9 G(P~L (9 V') (9 G(D' (9 W) = 0. (5.4)

However, for i = 0 l l , Yo = Q~ (9 N1 and G(Yo) is constant, and hence U ~ = U ~
and V ~ = V ~ and so we can rewrite (5.4) as

C~ (9 V ~ (9 G(P~, (9 V ~ (9 G(D'(9 W) = 0, i = 0 11. (5.5)

In order to solve (5.5) for U ~ V ~ and W, we can first eliminate U ~ by adding two
copies of (5.5) to obtain

C~ (9 CL (9 G(P ~ (9 V ~ (9 G(P~. (9 V ~ (9 G(D ~ (9 W) (9 G(D' (9 W) = 0. (5.6)

Thus, if we knew the value of G(PL ~ (9 V ~ (9 G(P~ (9 V~ (5.6) would give us an
equation for W alone. Consider G(a) and G(a (9 80800000). It is easy to see that in
both eases, dl and d2 in (2.2) are the same, and hence only co differs, a o and ao (9 80
differ only in the first place, so co differs only in the seventh place. By a similar
reasoning we can evaluate other sums, and so we have

G(a) (9 G(a (9 80800000) = 02000000,

G(a) (9 G(a (9 00008080) = 00000020,
(5.7)

G(a) (9 G(a (9 40400000) = 01000000, 03000000,

G(a) (9 G(a (9 00004040) = 00000001, 00000003.

152 S. Murphy

Hence, from (4.3), we have

G(D ~ ~ W) (~ G(D 1 (~ W) = C ~ ~ C~ ~ 02000000,
(5.8)

G(D ~ (~ W) ~ G(D 2 ~ W) = C ~ ~ C 2 ~ 00000002.

This is an equation of the form of(3.7), so we can solve it efficiently and get solutions
for W. We can eliminate many of these solutions by checking to see whether they
satisfy

G(D ~ ~ W) ~ G(D 3 ~ W) ~ C ~ ~ C3L = 01000000, 03000000,
(5.9)

G(D ~ ~ W) (~ G(D 1 (~ W) (~ C ~ (~ C~ = 00000001, 00000003.

This typically gives us up to ten different values for W. For each value of W, we
can find values of V ~ by solving

G(P~ (~ V ~ ~ G(P~ ~ V ~ = C ~ (~ C~ ~ G(D ~ (~ W) (~ G(D s ~ W),
(5.10)

G(P ~ �9 V ~ ~ G(P~ �9 V ~ = C ~ (~ C~ (~ G(D ~ ~ W) ~ G(D 6 ~ W),

which is again of the form of (3.7). Equation (5.5) then gives us U ~ We can then
check each triplet (W, V ~ U ~ to see if it satifies (5.5) for the other plaintexts with
Q~ = QO, that is to say i = 7, 8, 9, 10, 11. This will usually give us less than 20 triplets
(W, V o, uO).

For each triplet, we can try and solve for the key constants M1, M2, M3, NI, N2,
N 3. Now,

U12 = U13 = U 0(~ QO(~ Ql2,
(5.11)

U14 = U15 = U 0 (~ QO (~ Q14,

and so (5.4) gives us

G(P~ 2 ~ V ~2) = G(D ~2 ~ W) ~ C~ 2 ~ V 12,
(5.12)

G(Pd'* ~ V 14) = G(D ~" (~ W) (~ C~'* (~ U '4.

These are two equations of the form (3.1), so we can solve them for V x2 = V 13 and
V 14 = V ~5. These two values can then be checked with (5.4) for i = 13, 15.

If we obtain solutions for V 12 and V 14, we can attempt to calculate the key
constant N1. Equation (5.3) gives us

G(Q ~ ~ N1) ~ G(Q 12 ~ N1) = V ~ ~ V 12,
(5.13)

G(Q ~ ~ Ni) ~ G(Q 14 0 511) = V ~ ~ V 14,

which is again of the form (3.7), so it can be efficiently solved for N 1. For each
possibility for N1, we can calulate V 16, and see if (5.4) is satisfied. Knowing possible
solutions for N1 immediately gives us corresponding possible solutions for M1 and
N3.

We now proceed by finding M 2. We can do this by calculating the values of X 1
and Y1 in (2.7) for plaintexts po, piT, and p18, and noting that

G(YI @ M2) = X~ ~ X 2 = X 1 ~ O ~ M 3. (5.14)
Hence,

~ (~ ~ Ms) ~ ~(y:7 ~ Ms) = X ~ ~ X~ 7 ~ D O ~ D ' ,
(5.~5)

G(Y~I ~ M2) (~ G(Y~ s ~ Ms) = X ~ (~ X~ s (~ D O ~ D ~s,

The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts 153

which is of the form of (3.7). However, the outer 16 bits of M2 are zero, so we have
to solve (5.15) for M2 allowing for this. For each possible value of M2, we can
calculate X ~ X2 ~7, and X2 is, and hence three values for M3, which should of course
agree. If not, we can reject M2. Finally, we can calculate N2, checking that the outer
16 bits are zero.

Thus, we have calculated M1, M2, M3, 3/1, N2, N3, and we can do a last check
by coding all 20 plaintexts with (2.7), including the previously unused p19.

If we need to recover the key, we can use a method given by Den Boer [1]. The
knowledge of M1, N1, M3, N3 and (2.6) gives us the outer 16 bits of B3, B 4, B 5, n 6.
If we know the outer 16 bits of both the output and the two inputs to fx, we can
determine all the input and output bits offK. We can thus solve the final iteration
of the key scheduling,

B 6 = fK(B,, B 5 ~ B3), (5.16)

to find the values of B4, B6, and B3 @ Bs. We can also now caluclate B ~ ~) B22 and
B~ ~ B23. Therefore, if we knew B 2, we would know all the bits of B2, and hence
B~, . . . , B6. We can thus simply try all 256 possibilities for B 2 in

B s = fK(B3, B, ~ B2). (5.17)

Having solved (5.17), we thus have sufficient information to determine B~, . . . , B 6.
We can now recover the key by first solving B3 = fK(B1, B2 �9 Ks) for K R, and then
solving B 2 = fK(KR, B 1 t~ KL) for K L. The key, K, is then given by K = (KL, KR).

Of course, we do not need all 20 plaintexts to recover the key. We could dispense
with some of the plaintexts that are only used to check possibilities for the various
constants. This would of course mean that we would have to compute more pos-
sibilities for the various constants until later in the algorihm, and consequently
computing time would be increased. For example, we could cut the number of
plaintexts to seven, using pO, p1, p2, pS, p6, p12, p14, and taking p17 = p~2 and
p1 a = p14. If we are prepared to handle equations of the form of (3.5) rather than
(3.7), we could only use four plaintexts, pO, p1, pS, p12, with p17 _- p12.

It may be possible to extend this method of attack to a known plaintext attack.
The idea is to take similar pairs of plaintext P~ and PJ and predict the value of some
of the bits of V i ~ V i with high probability, and hence the value of certain bits
of G(P~L �9 V ~) �9 G(PJL �9 V j) with high probability. We can thus write down an
equation for certain bit positions of the form of (5.8), which we may be able to solve
for some of the bits of W. We could solve many such equations and hence find
W. We then proceed as before, solving equations in certain bit positions as best we
can by using similar pairs of plaintext and predicting the evaluation of the function
G in certain bit positions with high probability.

6. Conclusions

This method of attack, with 20 plaintexts takes up to 4 hours computing on a Sun
3/60 Workstation, not a particularly powerful computer. The length of time depends
on the key, most keys having been found in less than an hour.

However the function G is defined, any four round cipher is vulnerable to the
type of attack based on (5.4) that is outlined above. Obviously, the more easily

154 S. Murphy

equations involving G are solved, the quicker the attack. The problem is not so
much the Si transformation, since the methods of Sections 3 would work for any
function Si with a 16-bit input and 8-bit output, as that the two inner 8-bit blocks
of the output of G, cl and c2 in (2.2), both depend only on the same 16 bits, dl and
d 2. We are therefore easily able to find al and d 2 by exhaustive search, and hence
invert G. G would be much harder to invert if it was redesigned so that every output
block of 8 bits depended on 16 different input bits and an exhaustive search became
infeasible. A further improvement would be to redesign the function f so as to
remove the linear connection between a and b in (1.7). This would make the
definition of a funcion like G impossible and ensure that every output block of 8
bits o f f depended on all 48 input bits.

Whilst FEAL-4 is not intended for use in a chosen plaintext environment, a cipher
that falls so quickly to so few plaintexts must be too weak for most practical
putposes. If the protocol for the use of a cipher system has to be such so as to
preclude any possibiltiy of less than 12 chosen plaintexts, then the advantages of
using a fast ciphering algorithm like FEAL-4 are less important and it would be
better to use a more secure cipher. Such a protocol would seem to be too restrictive
for most data integrity uses. Even if such a protocol could be guaranteed, data
integrity usage would give rise to many pairs of similar plaintexts, so a known
plaintext attack of the type outlined above might well succeed.

References

[1] B. Den Boer, Cryptanalysis of FEAL, Advances in Cryptology--Eurocrypt 88, Lecture Notes in
Computer Science, Vol. 330, Springer-Verlag, Berlin, 1989.

~2] A. Shimizu and S. Miyaguchi, Fast Data Encipherment Algorithm FEAL, Advances in Cryptology--
Eurocrypt 87, Lecture Notes in Computer Science, Vol. 304, Springer-Verlag, Berlin, 1988.

