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Abstract. We present a general model for communication among a "team" of players 
overheard by a passive eavesdropper, Eve, in which all players including Eve are given 
private inputs that may be correlated. We define and explore secret key exchange in 
this model. Our secrecy requirements are information-theoretic and hold even if Eve is 
computationally unlimited. In particular, we consider the situation in which the team 
players are dealt hands of cards of prespecified sizes from a known deck of distinct 
cards. We explore when the team players can use the information contained in their 
hands to determine a value that each team player knows exactly but Eve cannot guess. 

Key words, Multiparty protocols, Correlated random variables, Key exchange, Perfect 

secrecy. 

1. Introduction 

1.I. An Example 

Consider a scenario in which Alice, Bob, and a computationally unlimited eavesdropper, 
Eve, are playing a game of cards with a deck of four cards, J, Q, K, and A. Alice is given 
two cards, Bob is given one card, and the remaining card may or may not be given to Eve. 
Can Alice and Bob communicate publicly to agree on a bit that is secret from Eve? The 
answer to this question depends on what is meant by "secret," whether Eve is allowed to 
look at the remaining card, and whether Alice and Bob are allowed to use randomization. 

If Eve is not allowed to look at the remaining card, the following deterministic protocol 
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achieves perfect secret bit exchange, in which Eve considers both values equally likely 
at the end of  every run of  the protocol. Alice says whichever of  the following statements 
is true: 

�9 "I hold {J, Q} or {K, A}." 
�9 "I hold {J, K} or {Q, A}." 
�9 "I hold {J, A} or {Q, K}." 

From Alice's message and Bob's hand, Bob can determine Alice's hand, so Alice and 
Bob both know the truth value of  the statement "Alice holds J," and can agree on this 
value as their secret bit. On the other hand, Eve considers it equally likely that this 
statement is true or false, so does not learn the secret bit. 

If Eve is allowed to look at the remaining card, the following randomized protocol 
achieves perfect secret bit exchange. First, Alice randomly chooses a card x in her hand 
and a card y not in her hand, and asks Bob "Do you hold one of  the two cards {x, y}?" If 
Bob says yes, then Alice and Bob know which of  them holds x and which holds y, but 
Eve considers both situations equally likely. Hence, Alice and Bob can agree on a secret 
bit, for example, by the truth value of  the statement "Alice holds the smaller valued card 
o f x  and y?' On the other hand, if Bob says no, then Alice and Bob each hold one of  the 
two remaining cards z and q and can determine the truth value of  the statement "Alice 
holds the smaller valued card of  z and q," again obtaining the desired secret bit. 

Finally, if Eve is allowed to look at the remaining card and Alice and Bob are not 
allowed to use randomization, then even weak secret bit exchange, in which we require 
only that Eve consider both values possible at the end of  each run of  the protocol, is not 
possible. Note that if Eve learns either player's hand, then she can learn the secret bit by 
simulating that player. It can be shown that if either player sends a message that depends 
on his or her hand, then it will sometimes be possible for Eve to learn that player's hand. 
Hence, in order to avoid the possibility of  Eve learning the secret bit, neither player can 
ever send a message that depends on his or her hand. It follows that there is only one 
possible sequence of  messages, and hence each player's output is a function only of  his 
or her hand. Thus, for example, if Bob outputs v when he holds J, Alice must output v 
whenever she does not hold J in order to guarantee that their outputs always agree. In 
this case, if Eve holds J, then Eve knows Alice does not hold J and will output v, so she 
has learned the secret bit. A formal proof of  this result involves a detailed case analysis. 

To summarize this example, if Eve does not see the remaining card or if Alice and 
Bob can use randomization, then Alice and Bob can agree on a perfectly secret bit. If 
Eve sees the remaining card or Alice and Bob are required to behave deterministically, 
then Alice and Bob cannot agree even on a weakly secret bit. 

The arguments of  the correctness of  protocols and the nonexistence of protocols 
presented in the above example are informal and rely on intuition. However, intuition 
may be misleading when dealing with issues such as secrecy and shared knowledge, so 
formal definitions of  secret key exchange are needed. To this end, we formalize a model 
for communication among a "team" of  players given possibly correlated inputs that 
are drawn from some known joint distribution. A passive eavesdropper, Eve, hears the 
communication between the players and is also given an input that may be correlated with 
the inputs of  the players. The use of  correlated random variables to solve cryptographic 
and communication problems has been studied in several different contexts (see [ 1 ]-[3], 
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[5], [7]-[10], [13], and [15]). Our model is sufficiently general to capture all of these 
cryptographic and communication problems. 

1.2. Our Work 

We define and explore the problem of multiparty secret key exchange in our model. 
Briefly, the problem of N-valued multiparty secret key exchange is for a team of players 
to choose a value v from a known set of N values. After the players communicate, each 
team player must know v, but v must be unknown to Eve. An adequate notion of secrecy 
must depend not only on the protocol being executed, but on any relevant knowledge Eve 
may have that is external to the protocol. We provide precise mathematical definitions 
of the multiparty secret key exchange problem that take Eve's knowledge into account, 
and allow us to determine whether a given protocol achieves secret key exchange with 
respect to any particular "type of knowledge" for Eve. 

We consider two kinds of secret key exchange, perfect and weak. N-valued perfect 
secret key exchange requires that Eve consider all N possible values for v equally likely, 
while N-valued weak secret key exchange requires only that Eve consider all N values for 
v possible. The work of [2], [3], and [5] can be formalized according to our definition of 
2-valued perfect secret key exchange. Two-valued weak secret key exchange is equivalent 
to the concept of "sharing a secret" used in [ 1 ]. 

We investigate the properties of secret key exchange protocols. It follows easily from 
our definitions that perfect secrecy implies weak secrecy and that giving Eve external 
knowledge can only help her. We explore how the requirements of a secret key exchange 
protocol restrict the inputs and behavior of the players. In particular, we show that secret 
key exchange is not possible if the player's inputs are not correlated. 

Our model is quite general and admits on the extreme ends the case where the player's 
inputs are equal and the case where the players' inputs are independent. In the first 
case the players can use their inputs as a secret key. We show in Section 3 that secret 
key exchange is not possible in the second case. We are interested in the borderline 
between possibility and impossibility of secret key exchange. In order to approach this 
problem, we focus our attention on inputs consisting of hands of prespecified sizes from 
a randomly shuffled deck of cards. 

A random deal of cards is an example of sampling without replacement. By looking at 
her own cards, a player gains some information about the other players' hands. Namely, 
she learns a set of cards that appear in no other player's hand. Winkler developed bidding 
conventions for the game of bridge whereby one player could send her partner secret 
information about her hand that was totally unrelated to the actual bid and completely 
indecipherable to the opponents, even though the protocol was known to them [6], [ 13]- 
[ 15]. Fischer et al. [2] and Beaver et al. [ l ] carded this idea further, using deals of cards 
for secret bit transmission between two players. In this paper we consider the use of 
a random deal of cards for multiparty, multivalued, secret key exchange. A signature 
(sl . . . . .  sk; d) specifies the hand size si for each player and the deck size d. The perfect 
(resp. weak) capacity of a signature is the largest N such that N-valued perfect (resp. 
weak) secret key exchange is possible when the deal is chosen randomly as specified by 
the given signature. We investigate bounds of the capacity of different signatures. 

Note that if N ---- I or if there is only one team team player, N-valued secret key 
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exchange is not of  interest. Beaver et al. [ I ] and Fischer et al. [2] have studied the case 
where N = 2 and there are only two team players. Protocols performing multiparty secret 
key exchange for certain classes of  deals appear in [3], [5], and [ 16]. Most previous work 
in this area focuses on exhibiting secret key exchange protocols along with informal 
arguments establishing their correctness [2], [3], [5]. The previously existing upper 
bound arguments on the capacity of  certain signatures [2], [3] are informal and not 
mathematically rigorous. Our formal model allows for careful analysis of protocols and 
careful proof of  upper bounds. 

We present two bounds on the capacity of signatures. First, we show that the weak 
capacity of  ( 1 . . . . .  1 ; k) is 1 i fk  > 3 by showing that 2-valued weak secret key exchange 
is not possible when k team players each hold one card from a deck of k cards. This is 
the first result showing that even if the team holds all the cards and no player's hand 
is empty, secret key exchange is not always possible. (By way of contrast, 2-valued 
secret key exchange is always possible if each of k players holds two cards from a deck 
of 2k cards [16].) Second, we exhibit an upper bound on the perfect capacity of any 
signature. 

2. Multiparty Protocols and Systems 

We consider a team of players Pl . . . . .  Pk. We denote the number of  team players by k 
throughout the paper, and denote the set {1 . . . . .  k} by K. We frequently use k-tuples to 
describe a collection of items, one for each player. Given any k-tuple x, we denote the 
ith component (Pi's component) o f x  by (x)i. 

We use a synchronous distributed model of computation in which communication 
occurs in rounds. All protocols terminate in a fixed finite number of rounds. Each player 
is given a private input that will generally be chosen at random before the protocol 
begins. In a round, each of the players simultaneously broadcasts a message to all the 
other players. The message sent by Pi at a given round depends on Pi's input and the 
messages sent by the team in previous rounds. On termination, each player Pi produces 
a private output that depends on her own input and the messages sent by the team in all 
rounds. We define protocols formally in Section 2. I. 

We describe how the players'  random inputs are generated in Sections 2.2. The in- 
formation given to Eve is formalized in Section 2.3. Briefly, a global value is chosen 
randomly according to a known, fixed distribution. Each player has a view of the global 
value that constitutes her private input. Eve also gets a view of the global value. In gen- 
eral, the global value and the players' views will be chosen so that the players' inputs 
consist of correlated values (such as the hands of a deal of  cards) as well as independent 
random values that play the role of private coin flips or dice rolls for the individual 
players. 

2.1. Protocols 

Formally, a protocol is a 7-tuple 79 = (k, t, U, V, M, Iz, v): 

�9 k is the number of  players. 
�9 t is the number of rounds. 
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�9 U = U I  x . . .  x Uk is the input set. 
�9 V is the output set. 
�9 M is the set of  messages. 
�9 /t is a k-tuple (/~l . . . . .  #k) of  message functions. 
�9 v is a k-tuple (vl . . . . .  vk) of output functions. 

An element u 6 U is called an input vector or simply an input. The component (U)i is 
the input for  Pi. Ui is the input Pi. 

A k-tuple m ~ M k is called a message vector. It represents the messages sent by all 
team players in a given round; the component (m)i is the message sent by Pi. A sequence 
of  at most t message vectors is called a conversation. A conversation r is complete if 

Irl = t and partial if Irl < t. We let c denote the set of  conversations, cc  denote the 
set of  complete conversations, and pc  denote the set of  partial conversations. Given a 
conversation r ,  we let rj denote the j t h  message vector of r ,  and, for e < Irl, we write 
r[e]  = (rl . . . . .  re) to denote the conversation consisting of  the length ~ prefix of  r .  We 
denote the concatenation of  a partial conversation r and a message vector m by r - m or 

rm,  so r �9 m = rm = (rl . . . . .  rlrl, m). 
The message function/zi :  Ui x pc  ~ M specifies the messages for Pi to send. Let 

ai ~ Ui, g < t, and r ~ pc. The message Idi(ai, r) is the message that Pi sends at 
round g + 1 when Pi has input ai and the conversation through round s is r .  The output 
function vi: Ui x cc  ~ V specifies the output for Pi. Let a i E Ui and a 6 co. The value 
vi (ai, cr) is the output for Pi when Pi has input ai and the complete conversation is cr. 

When the protocol 79 is clear from context, we use the notation k, t, U, Ui, V, M,  lz, 
Izi, v, vi, r co, and pc  as above. Otherwise, we attach 7 9 as a superscript. 

Given an input u ~ U, we say a is a conversation of u if tr is complete and (o 'g ) i  = 

~i((u)i ,  tr[g - 1]) for all i ~ K and 1 < s < t. It is easily seen that, for each input u, or 
is unique. This is because the messages of  the first round of  a are completely determined 
by u, and successive rounds of ~r are determined by u and the previous rounds of  tr. We 
denote this unique conversation cr by conv(u). We denote Pi's output Vi((U)i  , conv(u)) 
by outi(u),  and we denote the vector (outl (u) . . . . .  outk(u)) of  all players '  outputs by 
out(u). 

It is possible to"interpolate" between a number of  input vectors to construct a new input 
vector (the "interpolant") by giving each team player P~ his input from one of  the original 
vectors ui. Let e be the last round where the conversations of  all the original vectors 
are the same. Because the behavior of  the team at each round is completely determined 
by the input vector and the messages received up to that round, the conversation of  
the interpolant agrees with the original conversations up to round s Furthermore, each 
player Pi sends the same message at round e + 1 with the interpolant as input as he did 
with the original vector ui as input. 

We say that two input vectors u and u' touch at coordinate i, or simply touch, if 

(u)i = (u')i. If u and u' touch at coordinate i, we write u = i  u'. Obviously, = i  is an 
equivalence relation. 

Let U'  c_ U. We say that u is an interpolant o f  U' (also u interpolates U'), if, for 
every i E K, there is some u' 6 U'  such that u ----i u'. We call any k-tuple (ul . . . . .  uk) 
a U'-derivation of  u if ui ~ U' and u =i ui for all i 6 K. Note that u interpolates U'  if 
and only if there exists a U'-derivation of  u. 
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L e m m a  2.1 (First Interpolation Lemma). Let 79 be a protocol, let r E c ,  let ~ = [rl, 
and let U' c_ U such that conv(u)[el = r for  all u E U'. Let ~ interpolate U' and let 
(ul . . . . .  uk) be a U'-derivation o f  ~. Then: 

1. conv(t~)[e] = r .  
2. l f  e < t, then conv(t~)e+t = ({conv(ul)e+l)t  . . . . .  (conv(uk)e+t)k). 
3. z f  e = t ,  then out(t~) = (ouh(u l )  . . . . .  outk(uk)). 

Proof.  Suppose the conditions of the lemma. 
1. Since conv(u)[e] = r for all u 6 U',  we have gi((u)i ,  r [ j  - 1]) = (rj)i for all 

u ~ U',  i ~ K,  and 1 < j < e. It follows that conv(fi)[e] = r .  
2. Suppose e < t. Then by part 1, conv(fi)[~] = r .  It follows that conv(fi)e+l = 

(g l ( (U l ) l ,  r )  . . . . .  Idk((Uk)k, r ) )  = ((conv(ul)e+l) l  . . . . .  (conv(uk)e+l)k). 
3. Suppose s = t. Then by part 1, conv(t~)[e] = conv(t~) = r.  Thus out(~) = 

(v l ( (u l ) l ,  r )  . . . . .  Vk((Uk)k, r ) )  = (ouh(u l )  . . . . .  outk(uk)). [] 

2.2. Sources 

A protocol specifies the possible inputs to the players and how the players behave given 
these inputs. We are generally interested in the case that inputs are generated by a 
random source. Before proceeding, we introduce some definitions and notations from 

basic probability theory. 
Given an arbitrary distribution G over an arbitrary finite set F, we write Pr~(g) to 

denote the probability assigned by ~ to get g 6 F. A subset X c F is called an event. 
We write Pr~[X] to denote the probability ~-]g~X Prq(g) assigned to X by ~.  When the 
distribution G is clear from context, we omit the subcscript and write simply Pr(g) and 
Pr[X]. We say an element g is feasible if Pr(g) > 0. We say an event X is feasible if 
Pr[X] > 0 or, equivalently, if X contains a feasible element. We write feas(X) to denote 

the set {g ~ X: g is feasible}. 
A function f over domain F is called a random variable. The event {g ~ F: f ( g )  = x } 

is denoted by f - I ( x ) .  The random variables f l  . . . . .  fk are independent if 
Pr[r"l~=, f~-I(xi)]  = H~=I Pr [ f / - l (  xi)] for all x, . . . . .  xk. The events Xt . . . . .  Xk are 
independent if the random variables f l  . . . . .  fk defined by f i (g )  = 1 if g ~ X and 
f i (g )  = 0 if g r X are independent. We say an event X respects a random variable 

f if f ( g l )  = f (g2 )  implies that gt and g2 are either both elements of  X or both not 
elements of  X. Note that if f l  . . . . .  fk are independent random variables and X~ . . . . .  Xk 
are events such that each Xi respects f,., then X~ . . . . .  Xk are independent. 

Given a set of  distributions ~ on F~, we define the distribution G = ~ x �9 . .  x ~k on 
F i x  - . -  x Fk by Pr~((gl  . . . . .  gk)) = l-I~=l Pr~,(g/). Note that i f G  = ~l x . . .  x ~k 
and f l  . . . . .  fk are random variables over F l x  -- �9 • Fk such that each fi  depends only 
on the ith component of  its argument, then f l  . . . . .  fk are independent. 

A source specifies how the inputs to a protocol are generated. Specifically, the players '  
inputs are chosen randomly according to some fixed distribution described by a source. 
Formally, a source is a quadruple T = (f l ,  f ,  U, 0), where: 

�9 f l  is a finite set. 
�9 5 r specifies a probability distribution on f2. 
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�9 U = U l  x . .  �9 x Uk is a k-tuple of sets. 

�9 0 = (01 . . . . .  0k), where each Oi: ~2 ~ Ui is a view function. 

We sometimes say 7" is a source f o r  U. When a source is clear from context, we use the 
notation ~2, .T', U, Ui, 0, and Oi as specified above. When we wish to make a source 7" 
explicitly clear, we use 7" as a superscript. 

An element w ~ ~ is called a point or a global value. Each view function 0~ is a 
random variable. Given a point w ~ f2, we define the input O(w) = (01 (w) . . . . .  0k(w)), 
and given an input u, we write 0 -1(u)  to denote the event {~o: 0(o)) = u}. A source 7" 
for U can itself be regarded as a distribution on U, where PrT-(u) = Pry[0-1(u) ] .  7" 
also induces a distribution on each player Pi's input set U f .  

A source ,S for U is canonical if f2 = U and Oi(u) = (u)i for all u e U. We allow 
noncanonical sources in order to allow greater flexibility in the information given to Eve. 
(See Section 2.3.) The following proposition states that, for any distribution on U, it is 
always possible to construct a canonical source for U that realizes this distribution. 

P ropos i t ion  2.2. Let U = Ui x . .  �9 • Uk be a set, and let ~ be a distribution over U. 
Then there exists a canonical source S f o r  U such that Prs(u)  = PrT(u) f o r  all u ~ U. 

We say that u spans U' if u touches every u' ~ U'. We say a set U '  c U is coverable 
if there exists a feasible interpolant u of  U '  that spans U'.  We also say u covers U'. 

The special case of  U'  = {u0, ut } arises frequently. The following propositions are 
immediate from the definitions. 

Propos i t ion  2.3. Let 7" be a source, l f  {uo, ul} c feas(U) and uo touches ut,  then 
{u0, Ul} is coverable. 

Propos i t ion  2.4. Let 7" be a source. I f  u ~ feas(U) - {u0, u i } and u interpolates 
{u0, ui }, then {u0, ul} is coverable. 

The distribution that T defines on U 7- can incorporate both correlated and independent 
initial information for the team players. In the study of  randomized algorithms and 
protocols, it is often desirable to consider private independent random information (such 
as coin flips) as being separate from any correlated initial information. To this end, 
we allow any source 7" to be augmented by additional independent randomization. 
Formally, a source S is a randomized extension ofT" if there exist finite sets Ri . . . . .  Rk 
and distributions R l  . . . . .  7~k such that T~i is a distribution o n  Ri for each i and: 

�9 u s = (R~, U ~ )  •  • (Rk, U~) .  

�9 P r s ( ( r l ,  ql)  . . . . .  (rk, qk)) = PrT-(ql . . . . .  qk ) '  l-I~=l PrTcj (ri). 

Here, ri models the independent private random information for player Pi. Let u = 
((r l ,  ql)  . . . . .  (rk, qk)) 6 U s .  We call corr(u) = (ql . . . . .  qk) E U ~r the correlated part 

o f  the input; (corr(u))i = qi is Pi's share ofcorr(u) .  We call (ri . . . . .  rk) the independent 
part  o f  the input, and we denote ri by indi (u). Note that q is feasible as an input of  7" if  
and only if q is the correlated part of  a feasible input in 8.  
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We say two sources S and S '  are team-equivalent if U s = U s' and Prs(u) = 
Prs,(u) for all u ~ U s.  Team-equivalence defines an equivalence relation on sources. 
Proposition 2.5 states that team-equivalence and randomized extensions behave nicely 
together. 

Proposition 2.5. Let S be a randomized extension o f T ,  let S '  be team-equivalent to 
S, and let T '  be team-equivalent to T.  Then $'  is a randomized extension o fT ' .  

2.3. Views for Eve 

Given a source S with global value set f2, a view function for Eve is a function 0e: g2 
Ue, where Ue is an arbitrary set. This formalizes the information that Eve is given about 
the global value. She also hears the conversation of  the team players. Thus, if to is the 
chosen global value, Eve is given the view 0e (to) and hears the conversation conv(0 (to)). 

A view funtion 0 e for Eve is emp~.' if Oe(to) = Oe(to t) for all to, to' E f2. Hence, an 
empty view gives Eve no additional information beyond the conversation. Note that if Eve 
were only given empty views, it would be sufficient to consider only canonical sources. 
However, the more general definition of sources allows consideration of  information for 
Eve such as "Eve sees a random card from Alice's hand." 

2.4. Systems 

Together, a protocol 7 9 and a source T for U p are a called a system, denoted Y'7-. We 
say 797- is N-valued if I VPl = N. Since a source for U 7~ defines a distribution on 
U p = UT-, 797- induces a distribution on conversations and on the players' outputs. We 
extend the term "feasible" to conversations: we say r is feasible if there is a feasible 
input u E UT- such that conv(u)[e] = r. We say a system 79s is a randomized T-system 
if S is a randomized extension of T.  

Lemma 2.6 (Second Interpolation Lemma). Let 79s be a randomized T-system, let U' c 
feas(US), and let fi interpolate U'. Ifcorr(fi) is feasible, then fi is feasible. 

Proof. Suppose the conditions of the lemma and let (ul . . . . .  uk) be a U'-derivation of  
t~. Then Prs(fi) = Pr7-(corr(fi)) �9 I-I~=l Prr~i(indj(u))- Since every u E U'  is feasible, 
then, for i E K, 

k 

Prs(ui)  = PrT-(corr(ui))- l - I  Prra,(indj(ui)) > O. 
j = |  

Thus, in particular, Pr~,(indi(ui)) > 0 for i ~ K. If, in addition, corr(~) is feasible, 

then Pr7-(corr(fi)) > O. Hence, Prs(fi) = Pr7-(corr(fi)) H~=I Prra,(indi(ui)) > O, so ~ 
is feasible. [] 

3. Secret Key Exchange 

"Secret key exchange" is used informally to mean the following. A "key" is a value that is 
chosen randomly from some fixed set of  values. A key is "exchanged" if all the players 
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learn the key. A key is "secret" if a passive computationally unlimited eavesdropper, 
Eve, who may have some information about the players'  inputs, cannot learn the key. We 
formalize each of these notions independently, as uniformity, agreement, and secrecy. 

Uniformity restricts the a priori probability of  an output. Secrecy restricts the relation 
between an output's a priori probability and its a posteriori probability. Hence, together 
uniformity and secrecy restrict the a posteriori probability. Uniformity and secrecy 
are both defined in two strengths: perfect and weak. The perfect uniformity and perfect 
secrecy conditions together imply that Eve has no information about the players'  outputs, 
while the weak uniformity and weak secrecy conditions imply that Eve does not learn 
the players '  outputs with certainty. 

These conditions may also be useful for defining other problems in our model. For 
example, a system could be considered to perform secret message transmission if secrecy 
and agreement are satisfied along with a third condition that the output values must be 
equal to the specified message given to the designated sender as part of his view. 

The remainder of  this section is organized as follows. Section 3. I defines the agree- 
ment, uniformity, and secrecy conditions. Section 3.2 shows two results relating the 
behavior of  individual players and the behavior of  the team as a whole. These results are 
used later in the proof of Theorem 7.2. Finally, Section 3.3 explores how the agreement, 
uniformity, and secrecy conditions restrict the behavior of  the players and shows that se- 
cret key exchange is not possible if the players'  inputs are not correlated (Theorem 3. ! I). 

3.1. Conditions for Secret Key Exchange 

Fix a system Ps  and a view function 0e for Eve, and let i, j ~ K, v ~ V, a E ec, and 
ae 6 U~. We define several events over g2: 

Oi(v) 

C(a) 

E(a~) 

= {o9: outi(O(w)) = O}, 

= {w: conv(0(w)) = tr}, 

= {~o: 0Aa,) = ae}. 

Thus Oi(v) is the event that Pi outputs v, C (a )  is the event that the conversation is or, 
and E(ae) is the event that Eve has view ae. The events Oi (v) and C(a )  depend only on 
7~s, while the event E(a~) depends on 79s and 0~. 

We say 79s satisfies agreement if the following condition holds: 

�9 Agreement :  Pr[Oi(vn) N Oj(v2)] = 0 for all i, j e K and all pairs vl, v2 e V such 
that vt # v2. 

Thus, T 's  satisfies agreement if and only if the outputs of all team players agree at every 
feasible point. 

We define two uniformity conditions to capture two types of distributions on the 
players'  outputs: 

�9 Perfect uniformity: Pr[Oi(vl)] = Pr[Oi(v2)] for all i ~ K and all vl, v2 ~ V. 
�9 Weak uniformity: Pr[Oi(v)] > 0 for all i ~ K and all v ~ V. 
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Thus, 79s satisfies perfect uniformity if each team player's output is uniformly distributed 
over the output set, while 79s satisfies weak uniformity if each team player outputs each 
value with positive probability. 

Analogously, we define two levels of  secrecy that limit the amount of  information 
Eve is given by her view and the conversation. While the agreement and uniformity 
conditions apply to a system, the secrecy conditions apply to a system together with a 
view function for Eve. If the perfect (resp. weak) secrecy condition holds, we say 79s 
satisfies perfect (resp. weak) secrecy against Oe: 

�9 Perfect secrecy: Pr[E(a~) fq C(<r) M O i ( / ) ) ]  = Pr[E(ae) fq C(ff)] .  Pr[Oi(v)] for all 
a~ E U~,~r E CC, i ~ K, and v E V. 

�9 Weak secrecy: If Pr[E(a~) fq C(cr)] > 0 and Pr[Oi (v)] > 0, then Pr[E(a~) M C(e)  N 
Oi(v)l > 0 for all ae E U~,~r E CC, i 6 K, and v 6 V. 

The perfect secrecy condition, formulated as an independence condition, is essentially 
Shannon's formulation of  perfect secrecy [12]. 79s satisfies perfect secrecy against 0e if 
each team player's output is independent of  the information available to Eve, i.e., her 
view and the conversation. Equivalently, perfect secrecy requires that Eve's probability 
of  guessing a player's output correctly be the same whether or not she takes into account 
her view and the conversation. 

Weak secrecy, on the other hand, requires only that an eavesdropper not be able to 
rule out any output for any player. Specifically, weak secrecy requires that Eve consider 
each initially possible output for each team player to still be possible after hearing the 
conversation. Note that the weak secrecy condition could be equivalently formulated 
based on conditional probability to say that if Pr[E(ae) N C(cr)] > 0 and Pr[Oi (v)] > 0, 
then Pr[Oi(v) I E(ae) M C(cr)] > 0. 

Proposition 3.1. Let 79s be a system and let O~ be a view function for Eve. If 79,s 
satisfies perfect uniformity then 79,9 satisfies weak uniformity. If 79s satisfies perfect 
secrecy against Oe, then 79s satisfies weak secrecy, against Oe. 

Proposition 3.2 shows that secrecy against an empty view can be rewritten without 
reference to Eve's view. 

Proposition 3.2. Let 79s be a system and let Oe be an emp~.' view for Eve. 

I. 79s satisfies perfect secrecy against Oe if and only/fPr[C(cr ) fq Oi (v)] -- Pr[C(cr)]. 
Pr[Oi(v)]forall~r E CO, i ~ K, and v E V. 

2. 79s satisfies weak secrecy against Oe if and only/fPr[C(cr)] > 0 and Pr[Oi(v)] > 0 
implyPr[C(~r) M Oi(v)] > Oforallcr E OC, i E K, andv ~ V. 

Let 0e and 0,~ be view functions for Eve. We say 0e is a refinement of 0 e if, for all 
w0, wl E ~ ,  0~(o~0) = 0e(Wn) :=~ O'e(WO) = O~(wl). Proposition 3.3 states that giving 
Eve more information in the form of a refined view can only help her. 

Proposition 3.3. Let Oe be a refinement o f t  e. If 79 s satisfies perfect ( resp. weak) secrecy 
against Oe, then 79s satisfies perfect (resp. weak) secrecy against 0:. 
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Among other things, Proposition 3.3 implies that if secrecy against any view is satis- 
fied, then secrecy against any empty view is satisfied. In particular, since every empty 
view is trivially a refinemeent of every other empty view, Proposition 3.3 implies that 
secrecy against one empty view is satisfied if and only if secrecy againstany other empty 
view is satisfied. We consider the empty view 0~ defined by O*(x) = 0 for all x to be a 
canonical empty view, and we refer to it as the empty view. By the above, a system T's 
satisfies secrecy against 0~ if and only if 79s satisfies secrecy against every empty view. 

We say a property respects team-equivalence if, for every protocol Y ~ and every pair 
of team-equivalent sources $ and $ '  for U 7~, T~s satisfies the property if and only if 79s, 
satisfies the property. Since the team players behave the same, given inputs generated by 
team-equivalent sources, the following proposition holds. 

Proposition 3.4. The following properties respect team-equivalence: agreement, weak 
uniformi~, perfect uniformi~, weak secrecy against the empty view; perfect secrecy 
against the empO' view. 

3.2. Behavior of the Players 

In this section we examine the relation between the behavior of individual players and 
the behavior of the team as a whole. To this end, we define some additional events. For 
i ~ K , v ~  V, a n d a  ~ c c ,  let 

k 

O(v) = (")Oi(v),  
i=1 

CO(~r, v) = C(a)  n O(t,). 

Thus O(v) is the event that v is output by all players and CO(a, u) is the event that the 
conversation is cr and all players output v. 

We are also interested in the behavior of individual players with regard to an arbitrary 
complete conversation tr and output v. We define several events that express whether 
player Pi "would" behave a certain way if given the chance: 

i 
O i ( a .  U) ~-- {CO: 13i (0 i (o9) , r  ) : U}, 

C i ( a )  = {to: ~u/(Oi(o)),  o ' [ e  - I]) = (at)i for 1 < s < t}, 

C O / ( o ' ,  u )  : C i ( a )  [ ' l O i ( a ,  u ) .  

These events are somewhat subtle, in that they are discussing hypothetical situtations. - -  I 
Oi (a, v) is the event that Pi would output v if presented with the conversation tr. Ci (a) is 
the event that Pi would play according to cr if presented with any prefix of a.  COi (tr, v) 
is the event that Pi would play according to a if presented with any prefix of tr and 
would output v if presented with a.  

Lemma 3.5 states the intuitive fact that, for each point w, if each player plays according 
to or when presented with any prefix of a ,  then or is the conversation of 0(w). Lemma 3.6 
states that if each player plays according to a when presented with any prefix of a and 
outputs v when presented with a ,  then all players play according to a and output v. 
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Lemma3.5. N~=, ~,(o)  = c(o) .  

ProoL 

k 

n u i ( o )  
i=1 

= {co: Iai(Oi(co),a[g- 1]) = (~r~)i for 1 < g < t and i  E K} 

= {co: conv(0(co)) = ~1 

= C(a) ,  

as desired. [] 

L e m m a  3.6, n~_-~ ~-0,(~, o) -- CO(a, v). 

Proofi This follows from Lemma 3.5 and the fact that when attention is restricted to 
points where conv(0(co)) = a ,  then Pr[Oi(v)] = Pr[Oi(a. v)]. 

k 

i=1 

k 

C(o-) n n o ~ ( a ,  t,) 
i=1 

= {co: conv(O(co)) = (7 and vi(Oi(co), or) = v for i e K} 

= {co: conv(O(co)) = cr and vi(Oi(~o), conv(O(co))) = v for i E K} 

= {co: conv(O(co))= cr and outi(O(co))= v fo r /  c K} 

= C ( a )  N O(v)  

= CO(a, v). 

as desired. [] 

3.3. Secret key Exchange Systems 

Let 79s be a system and let 0~ be a view function for Eve. P s  performs N-valuedperfect 
(resp. weak) secret key exchange against Oe if T's is N-valued and 7~s satisfies agreement, 
perfect (resp. weak) uniformity, and perfect (resp. weak) secrecy against 0e. We also say 
79s is a system for N-valued perfect (resp. weak) secret key exchange against Oe. It 
follows from Proposition 3. I that any system that performs perfect secret key exchange 
against 0e also performs weak secret key exchange against 0e. 

We say that T's performs, or is for, perfect (resp. weak) secret key exchange if 79s 
performs perfect (resp. weak) secret key exchange against the empty view. In the re- 
mainder of  this paper, we consider only empty views for Eve. (Some results concerning 
nonempty views for Eve appear in [16].) 

In this section we examine how the secret key exchange conditions restrict the inputs, 
conversation, and outputs of  the players. Lemma 3.7 exhibits some consequences of  the 
implication of the agreement condition that, at any feasible point, all players output the 
same value. 



Bounds on Secret Key Exchange Using a Random Deal of Cards 83 

L e m m a  3.7. Let 79s satisfy agreement, let u E U be feasible, let v ~ V, let i, j E K, 
and let cr~  Cc. 

1. outi(u) = outi(u). 
2. feas(Oi(v))  = feas(O(v)).  
3. Pr[C(~r) N Oi(v)] = Pr[CO(a,  v)]. 
4. Pr[C(~r)] = Y~v~v Pr[CO(~r, v)]. 

Proof. Suppose the conditions of the lemma. 
1. By definition, O-I(u) c_ Oi(outi(u)) 00j(outj(u)). Since u is feasible, O-I(u) 

contains a feasible point. Since agreement is satisfied, outi (u) = outj (u). 
2. By definition, O(v) ___ Oi(v).  Therefore, feas(O(v)) _D feas(Oi(v)).  Conversely, 

suppose that to E feas(Oi(v)).  Then to is feasible and v = outi(0(to)). By part 1, 
outi,(0(to)) = v for all i '  E K. It follows that to e O(v). Since to is feasible, to ~ O(v). 

3. Since only feasible points have positive probability, it follows from part 2 that 

Pr[C(~r) M Oi(v)] = Pr[C(~r) M feas(Oi(v))] 

= Pr[C(~r) n feas(O(v))l  

= Pr[C(~r) fq O(v)] = Pr[CO(cr, v)]. 

4. C((r) is the disjoint union over v E V of C(~r) A Oi (v) since for every point to there 
is exactly one v such that to E Oi(v). Hence by part 3, 

Pr[C(~)] = Z Pr[C(~) M Oi(v)] 
l!E V 

= Z Pr[CO(ty, v)]. [] 
t 'E  ~," 

Lemma 3.8 shows that if N-valued perfect secret key exchange is to take place, then, 
for each conversation, each output value must occur with probability I / N .  Similarly, 
Lemma 3.9 shows that if N-valued weak secret key exchange is to take place, then, for 
each feasible conversation, each output value must occur with nonzero probability. 

L e m m a  3.8. Let P s  perform N-valued perfect secret key exchange, let c~ ~ CC, and 
let v c V. Then Pr[CO(~r, v)] = Pr[C(cr)]/N. 

Proof. Let P s  perform N-valued perfect secret key exchange, let cr E CC, let vj, v2 E 
V, and let i 6 K. By Lemma 3.7 (part 3) and Proposition 3.2 (part I), 

Pr[CO(~r, vl)] = Pr[C(~r) A Oi(vl)]  

= Pr[C(cr)]. Pr[Oi(vl)]. 

Similarly, Pr[CO(o, v~)] = Pr[C(~r)] �9 Pr[Oi(v2)]. By perfect uniformity, Pr[Oi (vl)] = 
Pr[Og(v2)]. It follows that Pr[CO(o, vl)] = Pr[CO(~r, v2)]. By Lemma 3.7 (part 4), it 
follows that, for every v ~ V, Pr[COitr, v)] = Pr[C(~r)]/N. [] 



84 M. J. Fischer and R. N. Wright 

L e m m a  3.9. Let 79s perform N-valued weak secret key exchange, let a �9 CC, and let 
v E V. Then Pr[CO(~r, v)] > 0 with equalit3' i fandonly  i fPr[C(a)]  = 0. 

Proof. Suppose the conditions of  the lemma. I fPr [C(a) ]  = 0, then Pr[CO(a, v)] = 0. 
Otherwise, Pr[C(a)] > 0. By weak uniformity, Pr[Oi(v)] > 0. Hence, by Lemma 3.7 
(part 3) and Proposition 3.2 (part 2), Pr[CO(cr, v)] = Pr[C(cr) N Oi (v)] > 0. [] 

If two inputs that give rise to the same conversation have a nontrivial feasible inter- 
polant (i.e., the set of two inputs is coverable), then some team players cannot distinguish 
the first input vector from the interpolant and some team players cannot distinguish the 
second input vector from the interpolant. It follows that all team players must output the 
same value on all three inputs. The following lemma formalizes this argument to show 
that in order for a system to perform secret key exchange, there must be inputs that are 
not coverable. 

L e m m a  3.10. Let 79s be an N-valued system such that N > 2, and suppose that ever3, 
set o f  two feasible inputs is coverable. Then 79,~ does not perform weak (resp. perfect) 
secret key exchange. 

Proof. By Proposition 3.1, it suffices to show that the lemma holds for weak secret key 
exchange. Suppose the conditions of the lemma and suppose by way of contradiction 
that 79,s performs weak secret key exchange. Let ~r be a complete conversation such 
that Pr[C(tr)] > 0. Let w, w' �9 C(cr) be feasible. Let u = O(w) and let u' = O(w'). 
By assumption, there exists ~ that covers {u, u'}. Since ~ spans {u, u'}, there exist 
i, i '  ~ K such that (u)i = (t~)i and (u')i, = (u)i'. Let v = outi(u) and v' = outi,(u'). 
Then w �9 feas(Oi(v)) and w' ~ feas(Oi,(v')). It follows from Lemma 3.7 (part 2) that 
w E O(v) and w' �9 O(v'). Hence to �9 CO(a, v) and to' e CO(a,  v'). By Lemma 2.1 
(parts 1 and 3), conv(t~) = or, outi(h) = v, and outi,(t~) = v'. Since t~ is feasible, it 
follows from Lemma 3.7 (part 1) that v = v', so to' �9 CO(a,  v). 

Since w and w' were chosen arbitrarily, it follows that to ~ CO(a,  v) for all feasible 
w ~ C(~r). Le tx  ~ V - {v}. Then Pr[CO(tr, x)] = 0, a contradiction to Lemma 3.9. We 
conclude 7~s does not perform weak secret key exchange. [] 

A direct consequence of  Lemma 3.10 is the intuitive result that the players' inputs 
must be correlated in order for secret key exchange to be possible. Specifically, if the 
team players can be divided into two sets such that the inputs of  one set are independent 
of  the other, regardless of  the correlations within the sets, then secret key exchange is 
not possible. Given a set K '  c K and an input u �9 U, we define the event IK,(U) = 
{U': (U')i = <U)i for all i E K'} over U. Thus IK,(U) is the event that the team players 
in K '  have inputs as specified by u. In particular, if there are sets K0 and KI such that 
IK,,(U) and IK, (U) are independent events for every input u, then there is no prior shared 
secret information between the team players in K0 and the team players in Ki. 
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Theorem 3.11. Let 79s be an N-valued system such that N > 2, and suppose there is a 
partition o f  K into nonempty sets Ko and K I such that Ix0 (u) and I K ~ ( u ) are independent 
events for  all u E U. Then 79s does not perform weak ( resp. perfect) secret key exchange. 

Proof.  Suppose the conditions of the theorem, and let u and u' be an arbitrary pair 
of distinct feasible inputs. Let ui = u for i e K0, let ui = u' for i ~ Kl, and let 
fi = ((Ul)l . . . . .  (Uk)k). Then fi interpolates {u, u'}. Since K0 and Ki are nonempty, fi 
spans {u, u'}. 

By the independence condition, 

Pr[IK(fi)] = Pr[IK,,(fi) N IK~ (fi)] 

= Pr[IK,,(t~) - Pr[Ir, (fi)]. 

The input u ~ Iro(fi) is feasible, so Pr[Ir0(fi)] > 0. Similarly, Pr[Ir~ (fi)] > 0. It follows 
that Pr[Ix (fi)] > 0. Since by definition IK (fi) = {fi }, it follows that t~ is feasible. Hence 
fi covers {u, u'}. By Lemma 3.10, 79s does not perform weak (resp. perfect) secret key 
exchange. [] 

Theorem 3. ! 1 implies the folklore result that public key cryptography is not possible 
in the presence of a computationally unlimited eavesdropper, since in public key cryp- 
tography the participants are assumed to have no prior shared secret information. The 
first written reference to such results we are aware of is in Rudich's thesis [ 1 1 ], where he 
shows that public key cryptography is not possible against a suitably powerful adversary. 

4. The Capacity of  a Source 

Theorem 3. I 1 shows that independent random inputs alone are not sufficient for secret 
key exchange. However, as seen by the example in the Introduction, there are cases 
where secret key exchange is not possible given correlated inputs alone, but is possible 
given independent random inputs in addition to the correlated inputs. Thus, independent 
random inputs can make the difference beween possibility and impossibility of secret 
key exchange. 

We imagine a scenario in which a protocol designer is given a source 7- of correlated 
inputs. The designer, whose goal is to obtain the largest secret key possible, .is allowed 
to specify independent randomness (as modeled by a randomized extension of 7-) and 
a protocol. We define the capacity of a source 7- to be a measure of the ability any 
randomized extension of 7- has to perform secret key exchange against an empty view 
for Eve. Specifically, for a given source 7., we define the perfect capacity o f  7-, denoted 
pcap(7.) to be the maximum N such that a randomized 7.-system for N-valued perfect 
secret key exchange exists. Since l-valued perfect secret key exchange is trivial, this 
maximum is well defined whenever there is an upper bound on N. If there is no upper 
bound, we take the perfect capacity of T to be infinite. We similarly define the weak 
capacity of 7., denoted wcap(T),  with respect to weak secret key exchange. It follows 
from Proposition 3. ! that I < pcap(7.) < wcap(7.). We will see shortly (Theorem 4.4) 
that the capacity of 7- is always finite. 
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The following proposition, which follows from Propositions 2.5 and 3.4, states that 
team-equivalent sources have the same capacity. 

Proposit ion 4.1. Let 7- and 7" be team-equivalent sources. Then pcap(T) = pcap(T' )  
and wcap(T) = wcap(T') .  

Wright [16] shows that, for every N < pcap(7.) (resp. N < wcap(7.)), there is a 
randomized T-system for N-valued perfect (resp. weak) secret key exchange. Thus, 
the weak and perfect capacities of 7- can be interpreted as measures of  the information 
provided to the players by 7". Theorem 3. I 1 implies that if 7- is a source in which the 
views of  one set of team players are independent from the views of  another set of  team 
players, then wcap(T) = pcap(7.) = I. In the remainder of this paper we investigate 
upper bounds on the weak and perfect capacities of various sources. 

We begin by showing some general properties of  randomized T-systems. Fix a source 
7" with at least two players. Let T~s be a randomized T-system, let q E U 7-, let r ~ c, 
and let e = I rl. We define 

F(q, r)  = {u ~ feas(US): corr(u) = q and conv(u)[s = r}. 

Thus F(q, r)  consists of  the feasible inputs that have correlated part q and give rise to 
the conversation r. We say q is compatible with r (and r is compatible with q) if F(q, r)  
is nonempty. We define compat(r)  = {q: F(q, r)  ~ 0}. Then compat(r)  is the set of  q 
compatible with r. Note that if q is compatible with r, then q and r are both feasible. 

Let q ~ U 7- and tr E oo. If there exists a unique v ~ V such that outi(u) = v for all 
i c K and u c F(q, tr), then we define out(q, or) = o. Hence, if defined, out(q, tr) is 
the value that all team players output given any feasible input in which the correlated 
part is q and the conversation is ~r. 

Le lnma 4.2. Let 79s be a randomized 7"-system satisfying agreement such that k > 2, 
let q E U 7-, and let tr E co. l f  q is compatible with ~, then out(q, or) is defined. 

Proof. Suppose the conditions of  the lemma and suppose that q is compatible with tr. 
Then F(q, tr) is nonempty. Let u, u' ~ F(q, tr) and let i, i '  ~ K. Let v = outi(u) and 
o' = outi,(u'). It sufficies to show that v' = v. 

Since u, u' ~ F(q, cr), it follows that u and u' are feasible and the correlated part 
corr(u) = corr(u') = q is feasible. Let ~ interpolate {u, u'} such that t~ =i  u and 
t~ =i '  u'. Then corr(t~) = q, so corr(~) is feasible. Hence, by Lemma 2.6, ~ is feasi- 
ble. By Lemma 2.1 (part 3), outi(~) = v and outi,(t~) = v'. By Lemma 3.7 (part I), 
Vr ---- V. [] 

Fix a complete conversation a and two correlated parts q, q '  ~ U 7- compatible with 
tr. If Pi holds the same share in both correlated parts, then Pi cannot determine whether 
the correlated part is q or q'. It follows that all the team players must output the same 
value in both situations. 
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Lemma 4,3. Let 79s be a randomized 7"-system satisfying agreement such that k > 2, 
let tr E CC, and let tt, q' E U ~- be compatible with o. l f  q touches q', then out(q, tr) = 

out(q' ,  a ) .  

Proof.  Suppose the conditions of  the lemma and suppose that q =x q '  for some 
x. Since q and q '  are compatible with cr, it follows from Lemma 4.2 that out(q, tr) 
and out(q' ,  or) are defined. Let u c F(q, cr) and let u' e F(q' ,  a ) .  Let fi interpolate 
{u, u'} such that t~ =x u and t~ =i  u' for all i :# x. Then corr(t~) = q' ,  so corr(t~) 
is feasible. By Lemma 2.6, t~ is feasible. By Lemma 2.1 (part 1), conv(~) = tr. It 
follows that t~ e F(q' ,  tr). By Lemma 2.1 (part 3), OUtx(~) = outx(u). It follows that 
out(q, or) = outx(u) = OUtx(t~) = out(q' ,  tr). [] 

Fix a complete conversation tr. It follows from the results of  Section 3.3 that all output 
values must be possible when the conversation is tr. By the above, all players output the 
same value whenever Pi holds a given share. Therefore, the number of  output values of  
a secret key exchange system is at most the number of  feasible shares for any player Pi. 
Formally, we have the following: 

T h e o r e m  4.4. Let 7" be a source. Then wcap(7.) < min i~r l f eas (Uf  )l. 

Proof.  Suppose 79s is a randomized T-sys tem for N-valued weak secret key exchange 
for some N and let i ~ K. We complete the proof by showing that I feas(Uf) l  _> N. Let 
tr ~ cc  be feasible. It follows from Lemma 3.7 (part 4) and Lemma 3.9 that feas(C(a))  
is partitioned into N equivalence classes feas(CO(a,  v)), and hence that feas(0(C(cr))) 
is partitioned into N equivalence classes feas(0(CO(~r, v))). Also, feas(0(C(tr)))  is 
partitioned into I f eas (Uf )  I equivalence classes determined by Pi's share of  the correlated 
part of  the input. The second partition is a refinement of  the first, since by Lemma 4.3, 
if two inputs have the same share for Pi and the same conversation, then they have the 
same output value. It follows that Ifeas(U/7-)l > N. [] 

Lemma 4.5 generalizes Lemma 2.1 (First Interpolation Lemma) to randomized 7,- 
systems. 

Lemma 4.5 (Third Interpolation Lemma).  Let P s  be a randomized 7"-system, let r E c, 
let U' c_ compat( r ) ,  and suppose that ~ is a feasible interpolant o f  U'. Let (ql . . . . .  q~) 
be a U'-derivation o f  ~. Then: 

1. 71 is compatible with r. 
2. / f l r l  < t and m l . . . . .  mk are message vectors such that qi is compatible with Tmi 

for  i E K,  then ~ is compatible with r �9 ((m i) l, (m2)2 . . . . .  (ink)k). 
3. I f  Irl = t, T'S satisfies agreement, and k > 2, then o u t @  r)  = out(qi, r)  for  

i ~ K .  

Proof. Suppose the conditions of  the lemma and let s = ]r I. 
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1. For i ~ K,  qi E compat ( r ) ,  so choose ui ~ F(qi, r ) .  Then fi = ( ( U l ) l  . . . . .  (Uk)k) 
interpolates {Ul . . . . .  uk} and corr(fi) = t~. By Lemma 2.1 (part 1), conv(fi)[e] = r and 
by Lemma 2.6, fi is feasible. Thus, f i ~  F(~, r ) ,  so ~ is compatible with r .  

2. Suppose that s < t and qi is compatible with rmi  for i 6 K. Let ui ~ F(qi, rmi )  
for i c K.  Then t~ = ( (u l ) l  . . . . .  (uk)k) interpolates {ul . . . . .  uk} and corr(fi) = ~. By 
Lemma 2.1 (part 2), conv(fi)[e + 1] = r .  ((m~>~, <m2)z . . . . .  (m~)k) and by Lemma 2.6, 

is feasible. Thus, fi ~ F(~, r �9 ( (ml ) l ,  (m2)2 . . . . .  (mk)D), so ~ is compatible with 

r .  ( (ml ) l ,  (m2)2 . . . . .  (m,)/,). 
3. Suppose e = t, T's satisfies agreement, k _> 2, and i ~ K. Since (ql . . . . .  qk) is a 

U'-derivation o f ~ ,  ~ = i  qi. By Lemma 4.3, out(~, r )  = out(qi, r ) .  [] 

L e m m a  4.6, Let 7~,~ be a randomized 7--system satisfying agreement, let a ~ cC, and 
let U' c_ compat (a )  be coverable. Then out(q, a )  = out(q ' ,  a ) for  all q, q'  ~ U'. 

Proof. Suppose the conditions of  the lemma, let q, q '  6 U',  and let ~ be a covering of  
U'.  Then ~ is a feasible spanning interpolant of  U'. It follows that there is a U'-derivation 
(ql . . . . .  qk) of~  such that q = qi and q '  = qi' for some i, i '  ~ K. By Lemma4.5  (part 3), 

out(q, a )  = out(qi, a )  = out(g, a )  = out(qr ,  a )  = out(q' ,  a ) .  [] 

5. Card Games 

In this section we formalize the use of  deals of  cards as correlated random variables. 
A deck A is a finite set, whose elements we call cards; a hand is subset of A. A deal 
8 = (hi . . . . .  hk) is a sequence of hands, one for each player. (Note that there may be 
cards in the deck that do not appear in any hand.) The deal 8 is legal if hi N hj = 0 for 
i :p j .  A deal that may or may not be legal is called a general deal. In the real world, 
where all hands are typically dealt from a single deck of  cards, all deals are legal. General 
deals are of  interest to us because they can arise when legal deals are interpolated. 

A signature I (sl ,  s2 . . . . .  sk; d),  where sl . . . . .  sk and d are nonnegative integers, de- 
scribes the number k of  players, the size sg of each player 's  hand, and the number d of  
cards in the deck. If  all k team players have the same hand size s in the signature ~, we 
write ~ = (slkJ; d). Let ~ = (sl . . . . .  sk; d)  be a signature. Without loss of  generality, 
we always fix the deck A t = {1 . . . . .  d}. A ~-deal is a deal ~ = (hi . . . . .  hk) such that 
Ihil = s i  for i e K. We define H 7 = {h: h c A e and Ih[ = si}, so H7 is the set of  
possible hands for Pi. We write L t to denote the set of  legal ~-deals and D ~ to denote 
the set of  general ~-deals, so L ~ c D t = H~ x . . .  x H~. 

A source 7- for D e is legal if PrT-(8) = I/IL~I for ~ E L "~, and Pr~r(~) = 0 for 
~ D t - L e. Hence T is a legal source if 7- assigns zero probability to all illegal deals 

and equal probabili ty to all legal deals. We say a system 79s is a card game ~-system if 
S is a randomized extension of some legal source for D e. Since all legal sources for D e 
are team-equivalent, it follows from Proposition 4.1 that they all have the same perfect 
capacity. We denote this capacity by pcap(~ e). Similarly, we denote the weak capacity 
of  all legal sources for D e by wcap(~).  Hence, if N < pcap(~) (resp. if N < wcap(~')), 

i This term is borrowed from algebra, and is not intended to have any connection to digital signatures. 
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then there is a card game F-system P s  for N-valued perfect (resp. weak) secret key 
exchange. 

By Theorem 4.4, pcap(~) < wcap(~) < mini~KIH~l. In Section 6 we obtain an 
improved bound on wcap(1Ck); k) for k > 3 by considering the particular structure of  the 
set of  (l<k); k)-deals. In Section 7 we obtain an improved bound on pcap(~) by taking 
into account the perfect secrecy requirement. 

6. Impossibility of Secret Key Exchange for (lCk); k) 

It follows from the work of Fischer et al. [2] that, for teams of size two, 2-valued perfect 
secret key exchange is always possible when the team holds all the cards, provided 
that each player has at least one card. However, for larger teams, this is not the case. In 
particular, we show that even weak secret key exchange is not possible when each ofk  > 3 
team players holds one card from a k card deck. By Theorem 4.4, wcap(ltk); k) < k. 
By examining the structure of  the set of  legal (1 tk~', k)-deals, it is possible to show that 
wcap(ltk); k) = 1 i fk  > 3. We showed this result in [3] for the case k = 3. The proof 
given here generalizes the proof in [3]. An alternate proof appears in [ 1 ]. 

Let k > 3 and let s e = (!~);  k). Since there are k cards in ~, A ~ = K. Let P s  be a 
card game F-system and let L denote the set of  legal F-deals. Since P s  is a card game 
system, the set of  feasible deals is L. (We assume throughout this section that the set of  
feasible deals is L.) We denote by j the hand containing the single card j .  A legal deal 
can be regarded as a permutation of K (and every permutation of K corresponds to a 
legal deal). Thus, if ~ is legal, then, for every j ~ K, there is a unique i e K such that 
<~>i = j .  

L e m m a  6.1. Suppose {ct, fl } c_ L is not coverable, and let x, j E K. Then ~ E L exists 
such that (~)x = j and, for  all i ~ x, 6 =i a or6  =i ~. 

Proof.  Suppose the conditions of  the lemma. We construct the desired deal 3. Figures 1- 
3 show the result of  steps of  the construction for the example ot = (2, I, 5, 4, 6, 3), 
fl = ( 5 , 3 , 6 , 2 ,  1 , 4 ) , x  = 5, and j = 4 .  

We begin by constructing a directed graph G = (V, E) that represents the deals ot 
and/~, where V = K and E = {(a, b): (ot)~ = (~)b} .  We label the edge (a, b) ~ E by 
s  b) = (a),, = (fl)b. Hence the vertices of  G are coordinates and the edges of  G are 
labeled by cards. (See Fig. 1.) 

Since t~ is a permutation, each vertex i has exactly one incoming edge, labeled (/~)i, 
which we denote by incoming(i).  Symmetrically, since/~ is a permutation, each ver- 
tex i has exactly one outgoing edge, labeled (a)i, which we denote by outgoing(i). 
Hence G is a collection of disjoint cycles. Furthermore, since s  = (a)i 
and ct is a permutation, s  = {(Or)i: i E V }  = K. Symmetrically, 
s  = K. 

We now show that in fact G consists of  exactly one cycle. Suppose not. Then G is the 
union of two disjoint graphs Gi = (Vl, Et)  and G2 = (V2, E2), where GI and G2 are 
nonempty collections of  disjoint cycles. Hence incoming (Vl) = outgoing(Vi) = El 
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Fig. 1. The graph G for ot = (2, I, 5, 4, 6, 3) and fl = (5, 3, 6, 2, 1,4). 

and incoming  (V2) = outgoing(V2) = E2. Cons ider  the deal  y def ined by  

E ( i n c o m i n g ( i ) )  if  i E V1, 

(Y)i = | E ( o u t g o i n g ( i ) )  if  i E V2. 

The deal  y is a permuta t ion  (and hence feasible)  because  {(Y)i: i E K} = s U 

E(E2) = s  = K.  Since s  = (/3)/ and s  = (or)i, y 
interpolates  {~,/3}. Since Vi and V2 are nonempty,  y spans {c~,/3}. It fol lows that y 
covers  {a,/3}, a contradict ion.  We conclude  that G consis ts  of  a single cycle.  

Let  G '  = (V ' ,  E ' )  be the di rected graph obta ined  f rom G by removing  the edge  labeled 
j .  Then G '  consists  of  a single chain.  (See Fig.  2.) 

L e t i ,  i '  E V'. We write i -~+ i '  i f  there is a nonempty  path in G '  f rom i t o i ' .  

We define lef t ( i )  = {i' E V':  i '  --~+ i} and r ight( i )  = {i' E V':  i ~ i '}. Note  that 
V'  = {x} U lef t (x)  U r ight(x)  and E '  = ou tgo ing( le f t (x ) )  U incoming( r igh t (x ) ) .  We 
construct  the des i red  deal  3 as fol lows:  

j if  i = x ,  

(~) i  = E(ou tgo ing ( i ) )  if  i E lef t (x) ,  

[ / ~ ( i n c o m i n g ( i ) )  if i E f ight (x) .  

(See Fig. 3.) Then 6 is a permuta t ion  because  {(8)i: i ~ K } = {j } U s  = K.  Hence  
8 E s  Clearly,  (/~)x = j .  Since E (ou tgo ing ( i ) )  = (a)i and s  = (/3)i, 

6 = i  ct or 6 = i  /3 for  all i ~ x.  [ ]  

@ ' � 9  ' .-,.@ , . .@ 
Fig. 2. The graph G' for x = 5 and j = 4. 
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Fig. 3. Use of G' to define the deal 8 = (5, 1,6, 2, 4, 3). 
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L e m m a  6.2. Let or,/3, ~ E L and x, y E K such that (a)x = I/3)y  and, fo r  every 
i E K - {x, y}, 8 = i  ot or8 =i ~. Then 8 =x ot or8  =y/3. 

Proof .  Suppose  the condi t ions  o f  the l emma  and let j = (Ot)x = (/3)y.  Let  i E 

K - {x, y}. Then j r {(or)i, (/3)i}. Hence  since 8 = i  a or 8 = i  /3, it fo l lows that 
(8)i r j .  Hence  (8) i  ]~ j for  every i c K - {x, y}. Since 8 is a permutat ion,  it fol lows 
that e i ther  (8)x = j o r  (8)y  = j ,  so 8 =x  ot or 8 = y  13. [ ]  

Together,  L e m m a s  6.1, 6.2, and 4.5 yie ld  the fol lowing:  

L e m m a  6.3. Let or, r ,  Y E L such that {a,/3} is not coverable and let x E K.  Then 
there exists a deal 8 for  which the following simultaneously hold: 

1. 8 is a feasible interpolant o f  {ot, /3, Y}, and8 =x Y. 
2. Let r be a partial conversation compatible with or, r ,  and Y. Let m be a message 

vector such that ot and/3  are both compatible with rm. Let m' be a message 
vector such that Y is compatible with rm' .  Let the message vector rh be defined by 
(th)x = (m')x and (rh)i = (m)i for  i ~ x. Then 8 is compatible with rift. 

3. Let y and z be such that (/3)y = (ot)x and (a)z = (/3)x. If  y ~x or, then 8 =y /3. I f  
y ~ / 3 ,  then 8 =z or. 

4. I f  y r  ot and y r  /3, then 8 covers {or,/3, y}, and hence {or,/3, y} is coverable. 

Proof .  Let  or, r ,  y ~ L such that {a, r}  is not  coverable  and let x E K.  App ly ing  
L e m m a  6.1 to or, r ,  x,  and (Y)x, we obtain a legal deal  8 such that  8 =x Y, and, for  all 
i : f i x ,  8 = i  a o r 8  = i  il- 

l .  Immedia t e  by choice  of  8. 

2. Let  r ,  m, m'  satisfy the condi t ions  of  part  2. We define deals  81 . . . . .  8k as fol lows:  
8x = F,  and, for  i ~ x,  8 i = Ot i f  8 = i  a ,  and 8 i = /3 if  8 : i  /3- Then (81 . . . . .  8k) is 
an {a, r ,  ?" }-derivation of  8. We s imi lar ly  define message  vectors m l . . . . .  mk such that 
mx = m' ,  and,  for  i ~ x,  mi = m. This  construct ion ensures that, for  all i ~ K ,  8i is 
compat ib le  with rmi,  and th = ( ( m l ) l ,  (mz)z . . . . .  (ink)k). By L e m m a  4.5 (part  2), 6 is 
compat ib le  with rh. 

3. Let  y and z be such that (fl)y = (a)x and (or) z = (fl)x. (This is poss ib le  since a and 
fl are permutat ions . )  Suppose  y # x  a .  Since 8 =x  Y, we have 8 Cx or. By L e m m a  6.2 
appl ied  to a ,  r ,  8, x ,  and y,  we have 8 = x  ot or  8 = y  /3. Hence,  8 = y  ft. Similar ly ,  
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suppose y :fix /3. Since ~ =x y, we have ~ :/:~ /3. By Lemma 6.2 applied to/3, a,  8, x, 
and z, we have 8 =~ /3 or ~ =z a.  Hence, ~ =z a.  

4. If y ~.~ a and y -~x /3, then by part 3, ~ =y /3 and ~ =z a.  Since 8 =~ y, it 
follows that ~ spans {a,/3, y }. Since 8 is a feasible interpolant of  {a,/3, y }, it follows 
that ~ covers {a,/3, F }, and hence {a,/3, F} is coverable. ~ [] 

By definition, a conversation is feasible if it is compatible with some legal deal. 
Lemma 6.4 shows that in fact each feasible complete conversation must be compatible 
with exactly two legal deals. 

L e m m a  6.4. Let k >_ 3 and N >_ 2. Let 79s be a card game (l~k~; k)-system for  N-  
valued weak secret key exchange and let a E cc  be feasible. Then compat(a)  is not 
coverable and Icompat(a)l = 2. 

Proof. Suppose the conditions of  the lemma. Let v0, vl E V such that v0 # vl and 
let j c {0, 1}. By weak uniformity, Pr[Ol(vj)] > 0. Since a is feasible, Pr[C(a)] > 0. 
Hence by Lemma 3.7 (part 3) and Proposition 3.2 (part 2), Pr[CO(a, vj)] = Pr[C(a) N 
Ol(Vj)] > 0. Thus CO(a,  vj) contains a feasible point wj. Let uj = O(ogj). Then 
conv(uj) = a and outi(uj) = uj for all i E K. Let a = corr(u0), and let /3 = 
corr(ul). Hence u0 E F(a, a )  and u l ~ F(/3, a) .  It follows that compat(a)  _ {a, fl}. By 
Lemma 4.2, out(a, a )  and out(/3, a )  are defined, so out(a, a )  = v0 and out(/3, a )  = vl. 
Since out(a, a )  -7r out(/3, a ) ,  it follows from Lemma 4.6 that Q is not coverable for any 
set Q such that {a, 13} _ Q _ compat(a) .  

We complete the proof by showing that compat(a)  = {a,/3}. Suppose by way of  
contradiction that y ~ compat(a)  - {a,/3}. Since {a,/3} c {a,/3, 7,} _ compat(a) ,  
the set {a,/3, y} is not coverable. The deal }, is feasible since ), ~ compat(a).  By 
Proposition 2.4, there is a coordinate x such that y #x a and ?' -7r /5. By Lemma 6.3 
(part 4), {a,/3, y} is coverable, a contradiction. We conclude that compat(a)  = 
{of,/3}. [] 

Theorem 6.5. Let k > 3. Then wcap(l(k); k) = 1. 

Proof. Let k > 3. Since wcap(~) > 1 for any signature 5, we need only show that 
wcap(ltk~; k) < 2. Suppose by way of  contradiction that 79s is a card game (ltk); k)- 
system for 2-valued weak secret key exchange. We construct a tree whose nodes are the 
feasible conversations of  T's. Two nodes r and a are connected by an edge if r is a prefix 
of  a and I rl + 1 = lal. Thus, the internal nodes are partial conversations and the leaves 
are complete conversations. We often identify a node a with the unique path from the 
root to a .  If r is a prefix of  a ,  we say a passes through r. 

If a deal 8 is compatible with a conversation r,  then ~ is compatible with every prefix of 
r. Also, if r is not complete, then ~ is compatible with at least one extension of  r .  Hence, 

is compatible with the parent of  r (provided r is not empty), and ~ is compatible with 
at least one child of  r (provided r is not complete). It follows that if 8 is compatible with 
a ,  then 8 is compatible with every node on the path to a .  Hence, every node on the path 
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Fig. 4. Tree of feasible conversations. 
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to cr is compatible with every deal 3 = compat(a) .  If a is a leaf, then, by Lemma 6.4, 
compat(tr) is not coverable and I compat(a)l  = 2. 

Every legal deal is compatible with the empty conversation and there are more than 
two legal (11k~; k)-deals. Hence, more than two deals are compatible with the root. Since 
there are exactly two deals compatible with every leaf and the tree is finite, there must be 
some node r compatible with more than two deals, each of  whose children is compatible 
with exactly two deals. 

Since r is compatible with more than two distinct deals and every deal compatible 
with r is compatible with at least one of its children, r must have two children rm 
and rm '  such that compat(rm) :/: compat(rm') .  Let {or,/~} = compat(rm) and let 
{a',/~'} = compat(rm') .  By the above, a ~-/~ and {a,/~} is not coverable. Similarly, 
c~' -~ /~' and {a'./~'} is not coverable. Since {ct,/~} r {or',/~'}, either or' ~ {ct,/~} or 
/~' ~ {or,/~}. We assume without loss of  generality that a '  ~/{a,/~}. (Figure 4 illustrates 
this construction.) 

By Proposition 2.4, there is a coordinate x such that or' :fix ot and or' C x / L  Let y and 
z be such that (/~)y = (a)x and (a)z = {/~),. Let the message vector rh be defined by 
(rh)x = (m'). and ( rn}i  = (m}i for i ~: x. 

By Lemma 6.3 (parts 1-3) applied to a,  fl, a ' ,  and x, there is a deal 8 such that (by 
part 1) & is a feasible interpolant of {or,/L or'}, 

8 = .  a ' ,  (1) 

and (by part 2) 8 is compatible with rift. Since or' 5 .  ot and or' ~x /~, it follows (by 
part 3) that 

8 =y /L (2) 

= :  a. (3) 

Similarly, by Lemma 6.3 (parts 1-3) applied to a,/~,/~',  and x, there is a deal/~ such 
that (by part 1)/~ is a feasible interpolant of {or,/~,/~'}, 

/~ =x/~ ' ,  (4) 

and (by part 2)/~ is compatible with rrh. By Proposition 2.3, since lot, r is not coverable, 
ot and/~ do not touch. In particular, ot Cx ,8- Hence/~ Cx ot or fl r  /~. It follows (by 
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/~ = v/~ or 1~ =z tr. (5) 

Since {c~',/T} is not coverable, it follows from Proposition 2.3 that ct' and/~' do not 
touch. Thus, in p^articular, or' -~x /~'. Hence it follows from (1) and (4) that 5 :/:x /~. 
Therefore fi and/~ are distinct. By (2), (3), and (5), t~ =y ~ or 6~ =z/~- Thus (~ touches 

/~ at y or z. By Proposition 2.3, {5,/~} is coverable. 
Since & and/~ are compatible with rift, it follows that rrh is a feasible conversation and 

{5,/~} _c compat(rrh). Then rrh is a child of r in the tree of feasible conversations, so 
compat(rrh) is not coverable and Icompat(r~)l  = 2. Since {~,/~} ___ compat(rrh) 
and 5 r /~, it follows that compat(rth) = I~,/~}, a contradiction since {t~, 8} is 
coverable. [] 

7. A Bound on the Perfect Capacity of Any Signature 

Fischer et al. [2] show that 2-valued perfect secret key exchange is not possible for 
teams of size two if a random legal deal does not provide sufficient shared information 
for the team. In [3] we generalize their result to arbitrarily large teams. Here, we further 
generalize this result to show an upper bound on the perfect capacity of any signature. 
This bound is an improvement over the bound implied by Theorem 4.4. A further gen- 
eralization of this result yielding an upper bound on the perfect capacity of any source 
appears in [ 16]. 

Fix a signature ~ = (st . . . . .  sk; d). In a card game ~-system, the team players are 
dealt a uniformly distributed random legal Z-deal. We define ap to be the probability 
that a uniformly distributed random general  ~-deal is legal. That is, ~ is the number 
of legal ~-deals divided by the number of general ~-deals. Note that in both a random 
legal deal and in a random general deal, each hand hi is uniformly distributed over H i . 
The difference is that in a random general deal, the hands h l . . . . .  hk are independent, 
whereas in a random legal deal, they are correlated. Hence, only in the random legal 
deal does hi give player Pi any information about the cards in other player's hands. In 
some sense, the larger ~,  the less shared information a random legal deal contains for 
the team players. This is made precise in Theorem 7.2 below. 

We need the following lemma about real numbers. It is proved using the arithmetic 
and geometric means inequality (AGM), which says that if al . . . . .  am are nonnegative, 

then m m ai < (Y-]i~=t a i ) / m .  

Lemma 7.1. Let x{  be nonnegative f o r  1 < i < p and 1 < j < q. Then 

min x < x j 
jE{ l.....q} - -  ~ " 

i=1 j = l  
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Proof.  Let x j be nonnegative for 1 < i < p 

rain x _< 
j e l l , . . . , q l  

a n d l  < j < q .  Then 

q P . 

l--I I- 'I  x /  (6) 
j = [  i=1  

fit q. = F i x /  {7) 
i=1  j = l  

z_,j , (8) . (  

i=1  

1 P , ~  
- -  qp I-I  Z . - ,  X / .  (9) 

i=1  j = l  

Here, (6) holds because the qth root of  the product of  q positive numbers is always at 
least as big as the smallest of  the numbers. (8) is by the AGM. (7) and (9) are direct 
algebraic manipulation. [] 

T h e o r e m  7.2. Let ~ = (sl . . . . .  st; d). Then pcap(~) < L~ptt/{I-~}lJ. 

Proof.  Let ~ = (sl . . . . .  sk; d) and N = pcap(se). We show that N < [~r 
By the definition of perfect capacity, there is a card game f -sys tem 79s for N-valued 

perfect secret key exchange. Since P s  is a card game system, S is a randomized extension 
of a legal source for D t. Let T be a canonical source that is team-equivalent to S (such a 
source exists by Proposition 2.2). It follows from Proposition 2.5 that PT- is a card game 
se-system and it follows from Proposition 3.4 that T'~- performs N-valued perfect secret 
key exchange. Hence U 7 = U "p = (RI • H~) • . - .  • (Rk x H~) for some RI . . . . .  Rk, 
and, for u e U p,  

Pr~r(u) = I l - - ipr~i( indi(u))  if corr(u) E L ~, 
i=1  

otherwise, 

where ~ i  is the distribution T induces on Ri. 
We construct another canonical source T '  for U ;D in which the distribution of the 

independent part is the same as in T ,  but all deals (including the illegal ones) are given 
equal probability. Specifically, we let T '  be a canonical source for U ~' such that, for 
every u ~ U 7~, 

1 k 
PrT-,(u) = I - ~  1--I Pr~, (indi(u)). (10) 

i=1  

(Such a source exists by Proposition 2.2.) Then f2 7- = ~2 ~-' = U 7~. Since lp = I L r I/}D ~ l, 
Pr~r(u) < (1/~0) PrT-, (u). It follows that, for any event X 6 U ~', 

1 
PrT-[X] _< ~- PrT,[X]. (I l) 
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Let 7-/i be the distribution induced on H/~ by T' .  Since D ~ = H~ •  • H i ,  it follows 
from (10) that Pr7% (hi) = I/I H/~ I for every hi ~ H~. Hence, for any h i . . . . .  h 4, 

1 k 

IDa[ = I-I PrT~, (hi). 
i=1 

(12) 

It follows from (10) and (12) that 

Pr~,(u) 
k 

= l--I(PrTz~ (indi (u)) - PrT~, ((corr(u))i)) 
i=1 

k 

---- U Pr{Tz, • 7-t,} ((u)i). 
i=1 

That is, T '  = (Ri x ~1 ) x - . .  x ('Rk • ~k).  Since 0i 7-' (u) = (u)i, each 0/7-' depends only 
on the ith component of its argument. It follows that the random variables 0 f ' ,  . . . .  0~' 
are independent. 

Let cr 6 CC. The event Ci(o') respects the random variable 0 f '  for i 6 K. It follows 
that the events Ci (~r) . . . . .  Ck(a) are independent. Hence, by Lemma 3.5, 

k 

PrT-,[C({~)] = I-I  PrT-, [C i (a ) ] .  
i=l 

(13) 

Similarly, if v ~ V, then the event C0i(a ,  v) respects 0~'. Hence, for any v 6 V, the 
events COl (~r, v) . . . . .  COs(a, v) are independent. By Lemma 3.6, 

k 

PrT-,tCO(a, v)] = U PrT-, [ COi(a, v)]. 
i=1 

(14) 

Therefore, 

P r T [ C ( { I ) ]  = N m i n ( P r T - [ C O ( a ,  v ) ] )  ( 1 5 )  
vEV 

<_ Nmin(-~Pry,[CO(a,v)])t,~v (16) 

(+' ]) = N min 1-I PrT-, [COi (a, v) 
L,{~V i=1 

(17) 

< N--T.~i=l 

1 k 

~o. N,_, 1-I PrT' [C,(~)] 
i=l  

(19) 

I 
PrT-,[C(a)]. (20) 

~0 �9 N k-I  
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Here, (15) follows from Lemma 3.8, (16) follows from (I !), (17) follows from (14), 
(18) follows from Lemma 7. I, (I 9) follows from the fact that Ci (tr) is the disjoint union 
over v e V of COi(t7, v), and (20) follows from (13). 

Summing over all complete conversations yields 

1 i 
1 = 2.., PrT-[C(a)] < 2 - ,  Pr~,tC(cr)]- - -  

,',~cc ,',~cc ~ " N k - '  ~k �9 N k - ' "  

Since N is an integer, it follows immediately that 

as desired. [] 

For the case k -- 2, the bound given by Theorem 7.2 is identical to a bound implied 
by a result of  Maurer [7, Corollary 1]. Maurer 's framework is more general than ours 
for the case k --- 2 but does not seem to generalize to larger k. 

Calculating lp = IL ~ [/I D ~ l, we can apply Theorem 7.2 to obtain an upper bound on 
the perfect capacity of  any signature. Some examples follow. 

Corol la ry  7.3. pcap(2, 1; 4) = 2. 

Proof.  In this case 

o-(4 
Since k = 2, it follows by Theorem 7.2 that pcap(2, 1 ; 4) < 2. As seen in Section I .! ,  
2-valued perfect secret key exchange is possible for (2, I; 4) even if Eve is allowed to 
look at the remaining card, so pcap(2, 1 : 4) _> 2. Hence pcap(2, 1" 4) = 2. [] 

Coro l la ry  7.4. pcap(2, 2, 2; 7) < 3. 

Proof.  In this case k = 3 and 

7 5 3 

so pcap(2, 2, 2; 7) < [(10/147) -I/2j  = 3. 

10 

147' 

[] 

8. C o n c l u d i n g  R e m a r k s  

We have presented a model for multiparty communication among players receiving 
correlated inputs. Our model makes it possible to reason formally about intuitive concepts 
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based on shared knowledge in a multiparty setting. We have defined several variations 
of the secret key exchange problem in this model. We study exact secret key exchange, 
in which every run of a system succeeds in obtaining a secret key. Further extension of 
this work might investigate various approximations of exact secret key exchange. There 
are many possible types of approximations to consider, such as, for example, allowing a 
small probability that the players' outputs do not agree or that Eve learn a player's output, 
or requiring only that the distribution on outputs given Eve's view and the conversation 
is close to the a priori distribution. 

We explored the use of a random deal of cards for secret key exchange and showed 
several bounds on the capacity of such deals. These bounds hold for all view functions 
for Eve. We do not know how to use the additional information given to Eve to improve 
these results for any particular view function. In [4], [5], and [16], we exhibit N-valued 
perfect secret key exchange ~-protocols for certain values of ~ and N. However, except 
in some simple cases of~, there is a gap between the value N such that we can exhibit an 
N-valued secret key exchange ~-protocol and the value N' for which the results in this 
paper show that no N'-valued secret key exchange ~-protocol exists. It remains open to 
improve these bounds and to determine an exact characterization of the weak and perfect 
capacity of an arbitrary signature ~. Wright [ 16] exhibits a source T such that the perfect 
capacity of T is strictly less than the weak capacity of T. It is open whether there exist 
signatures ~ such that the perfect capacity of s e is strictly less than the weak capacity of 
~. We conjecture that such a signature does not exist because of the symmetry inherent 
in the structure of a deal. 
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