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Abstract. Bellare and Goldwasser showed that if the modulus N is guaranteed to 
be the product of O(Iog log IN I) distinct odd primes, then quadratic residuosity has a 
competitive interactive proof system (with reasonably large communication complex- 
ity). In this paper we show that if the modulus N is guaranteed to be the product of 
O (log IN I) distinct odd primes, then quadratic residuosity has a competitive interactive 
proof system with low communication complexity. 
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1. Introduction 

1.1. Background and Motivation 

Is proving membership harder than deciding membership? This is a basic question in 
theoretical computer science. It is known that if a language L is A/P-complete,  then 
computing a witness w for x 6 L is polynomially equivalent to deciding x E L. How 
about the languages that are not known to be A/P-complete? In general, it is believed 
that this is not the case. Recently, Bellare and Goldwasser [BG] showed that a language 
L 6 A/'79 - 7 9 exists for which computing a witness w for x 6 L is harder than deciding 
x 6 L if deterministic double exponential time is not equal to nondeterministic double 
exponential time. The language found in [BG] is "uniformly log-sparse" and thus it is 
somewhat unnatural. On the other hand, several natural languages L E ./V'79 exist for 
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which computing a witness u, for x ~ L may be harder than deciding x E L, e.g., 
quadratic residuosity (QR), quadratic nonresiduosity (QNR), etc. 

What will happen when interaction and randomization are allowed in the process of 
proving membership? This way of proving membership is formalized by Goldwasser 
etal. [GMR] in the notion of an interactive proof system and independently by Babai [B], 
who called it an Arthur-Merlin game. Then the following problem comes to mind: Does 
a prover P in an interactive proof system (P, V) for a language L need more power than 
that needed to decide membership in L? This has been studied in several contexts, e.g., 
(zero-knowledge) arguments [BCC], the complexity of (multiprover) interactive proof 
systems [LFKN], [S], [BFL], and program checking [BK], [BF]. Bellare and Goldwasser 
[BG] regarded the problem as the (natural) extension of whether computing a witness 
w f o r x  ~ L is harder than decidingx ~ L for a language L ~ AfT ~ and defined 
"competitive" interactive proof systems, i.e., an interactive proof in which the honest 
prover must be computable by a probabilistic polynomial-time Turing machine with 
oracle access to L. 

When considering interactive proofs, asking if proving membership is harder than 
deciding membership is equivalent to asking if the existence of an interactive proof of 
membership for a language implies the existence of a competitive interactive proof system 
for that language. In some cases interaction and randomization alleviate the proving task, 
but in other cases they may not. To see this more precisely, we first consider quadratic 
nonresiduosity QNR = {(x, N) I x E Z~v is not a square modulo N}. It is not known 
whether or not computing a witness u, for x 6 QNR is polynomially equivalent to 
deciding x ~ QNR. Indeed it is believed that computing a witness w for x ~ QNR 
may be harder than deciding x 6 QNR. However, the interactive proof system for QNR 
[GMR] is competitive, i.e., the (honest) prover P needs only the computational ability 

�9 of deciding x E QNR in order to prove membership of x 6 QNR in an interactive and a 
randomized manner. Next we consider quadratic residuosity QR = {(x, N) [ x ~ Z*~ is 
a square modulo N}. It is also believed that computing a witness w for x E QR may be 
harder than deciding x E QR. Contrary to QNR, in all known interactive proof systems 
(P, V) for QR (see, e.g., [GMRI, [FS], [TW], and [FFS]), the (honest) prover P needs 
at least the computational ability to compute square roots modulo a composite number 
N (equivalently the computational ability to factor a composite number N). 

Beigel and Feigenbaum [BF] were the first to obtain a negative result about the power 
of the prover in an interactive proof system for an ,AfT 9 language. Specifically, they 
showedthatanincoherentlanguageL ~ .N'79 existsifnondeterministic triple exponential 
time is not included in bounded probabilistic triple exponential time. This implies that 
interaction and randomization do not necessarily alleviate the proving task, because an 
incoherent language does not possess a competitive interactive proof system (see [Y], 
[BK], and [BG]). Subsequently, Bellare and Goldwasser [BG] showed that a coherent 
language L 6 .N'79 exists that does not have a competitive interactive proof system if 
nondeterministic double exponential time is not included in bounded probabilistic double 
exponential time. These results only guarantee the existence of a language that does not 
have a competitive interactive proof system under the given complexity assumptions, 
but do not imply that QR does not have a competitive interactive proof system. Thus is 
it possible to construct a competitive interactive proof system for QR? 

This has not been solved yet. As a start toward solving this open problem affirmatively, 
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Bellare and Goldwasser [BG] investigated QR in a promised form. In this setting, Bellare 
and Goldwasser introduced a notion of representative of Z~v [BG, Definition 6.4] and 
showed that a competitive interactive proof system for promised QR exists, i.e., the QR 
problem when the modulus N is guaranteed to be the product of k = O(log log INI) 
distinct odd primes. The basic idea behind the result above is to use the fact that there 
are 2 k = O(log INI) distinct residue classes under a relation appropriately defined on 
Z~v and to reduce a quadratic residuosity test to a collection of quadratic nonresiduosity 
tests. Then the protocol following this idea requires about 22k quadratic nonresiduosity 
tests and thus the communication complexity of the resulting protocol is comparatively 
large (but still polynomial)--in the protocol, the prover P sends the verifier V about 
2k(INI + 2 k) bits and the verifier V sends the prover P about 22glNI bits. 

1.2. Results 

In this paper we consider how to reduce the communication complexity of a competitive 
interactive proof system for promised QR and how to relax the constraint on k from 
O (log log I N 1) to O (log I N I). For this purpose, we first introduce the notion of dominant 
of Z~v, which plays a role very similar to a basis in a linear space over GF(2) .  Then 
we investigate several properties of a dominant vector of Z~v and show that promised 
QR with the constraint that k = O(log IN I) has a competitive interactive proof system 
in which the prover P sends the verifier V about klNI bits and the verifier V sends the 
prover P about 41NI bits. The basic idea behind the result here is to use the fact that if 
the modulus N is guaranteed to be the product of k = O(Iog INI) distinct odd primes, 
then there are sufficiently many (samplable) vectors y = (Yl, Y2 . . . . .  yk) over Z~v to 
specify 2 k residue classes uniquely under a relation appropriately defined on Z~v. The 
idea here is inspired by the one due to Bellare and Goldwasser [BG], but its use enables 
us to avoid 22k invocations of quadratic nonresiduosity tests. Thus the resulting protocol 
based on this idea considerably reduces the communication complexity. 

2. Preliminaries 

See [GMR] for definitions of interactive protocols and interactive proof systems. The 
definition of interactive proof systems in this paper is slightly different from that of 
[GMR], but it is known that both are equivalent. 

Definition 2.1 [BG]. An interactive proof system (P, V) for a language L is said to 
be competitive if the honest prover P is a probabilistic polynomial-time oracle Turing 
machine such that, for any x ~ L, Prob{(P L. V) accepts x} > 2/3. 

It is known that competitive interactive proof systems exist for the languages "quadratic 
nonresiduosity [GMR]," "graph nonisomorphism [GMW]," and "graph isomorphism," 
however, the language "quadratic residuosity" is believed not to have a competitive 
interactive proof system. 

The following definition of a promise problem is equivalent to the ones in [ESY] and 
[GSI. 
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Definition 2.2 [BG]. A promise problem is a pair of  disjoint sets (A, B). A promise 

oracle for a promise problem (A, B) is an oracle that given a query q E A U B, returns 
l i f q  ~ A a n d r e t u r n s 0 i f q ~  B. 

Definition 2.3 [BG]. An interactive protocol (P, V) is said to be a competitive inter- 
active proof system for the promise problem (A, B) if 

�9 completeness: for any x ~ A and any promise oracle O for (A, B), 

Prob{(P ~ V) accepts x} > 2/3, 

where P is a probabilistic polynomial-time oracle Turing machine; 
�9 soundness: for any x ~ B and any powerful dishonest prover P*, 

Prob{(P*, V) accepts x} < 1/3, 

where the probabilities are taken over all of the possible coin tosses of  both P and V. 

The problem that we are interested in is when the modulus N is guaranteed to be the 
product of  k > 1 distinct odd primes. 

Definition 2.4 [BG]. Promised Qlqk is the pair of disjoint sets (QR k, QNRk), 
where QR, = {(x, N) 6 QR I N is the product of k distinct odd primes}, QNRk = 
{(x, N) ~ QNR I N is the product o fk  distinct odd primes}, and k > 1. 

3. Main Results 

We begin by showing several technical lemmas. 

3.1. Technical Lemmas 

Let N = Pl P2 �9 �9 �9 Pk, where Pl, P2 . . . . .  p, are distinct odd primes. For any x ~ Z~v, let 
Q s ( x )  = 0 i fx is a square modulo N and let Q s ( x )  = I otherwise. For any x, y ~ Z~,  

define a binary relation "- on Z~v by x _~ y if and only if Qp, (x) = Qp, (y) for each i 
( 1 < i < k). It is easy to see that the relation _ on Z~v is an equivalence relation on Z~. 
The equivalence class R s ( x )  o f x  ~ Z~, under the relation _ is 

R s ( x )  = {y E Z N Ix  ~_ y} 

�9 k and is called the residue class ofx  e Z~v. Note that Z N can be partitioned into 2 (disjoint) 
residue classes, each of  which is of  the same size. It is well known that Qp, (xy) - 
Qn, (x) + Qp, (y) (mod 2). It is also well known that xy is a square modulo N if and only 
i fx  m y .  

Definition 3.1. Let N be the product of  k distinct odd primes, where N = Pl P2 ' �9 " Pk 
and pl < P2 < "'" < Pk. The vector CN (x) = (Qn, (x), Qn'- (x) . . . . .  Qm (x)) is called 
the vector associated with x E Z* N . 
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It is obvious that, for any x ~ Z~,  x 6 QR k if and only if CN(x) = 0. Let v + w be 

componentwise addition modulo 2 and, for an integer e > 0 and v = (vt, v2 . . . . .  vk), 
define ev = (evl, ev2 . . . . .  evk), where evi is the modulo 2 sum o f e  copies of  vi (i.e., vi 
if e is odd and 0 if e is even). The following lemmas show basic properties of  the vector 

CN(X) associated with x E Z~v. 

L e m m a  3.2. Let N be the product ofk distinct odd primes. Then CN (xy) =-- CN (x) + 
CN(y) (mod2) for all x, y ~ Z~. 

Proof.  Assume that N = Pl P2 �9 - - Pk, where Pi ,  P2 . . . . .  Pk are distinct odd primes. 
The proof follows from the fact that Qp, (xy) =-- Qpi (x) + Qp, (y) (rood 2) (1 < i < k). 

[] 

L e m m a  3.3. Let N be the product of k distinct odd primes. Then CN(x e) ~- eCN(x)  
(mod2) for an), integer e > O. 

Proof.  Follows from Lemma 3.2. [] 

The following notion of "dominant" is one of the most important ones in our main 
result. It corresponds to the notion of  representative [BG, Definition 6.4] and plays a role 
similar to a basis in a linear space over G F ( 2 ) .  

Definit ion 3.4. Let N be the product of  k distinct odd primes. A vector y = 

(y i, Y2 . . . . .  yk) over Z~v is said to be dominant of Z~, if CN (Y I), CN (3'2) . . . . .  CN (Yk) 
{0, 1} k are linearly independent over G F ( 2 ) .  

Let y = (Yl, y2 . . . . .  Yk) be a vector over Z~v and let e = (el,  e2 . . . . .  ek) be a vector 
over G F ( 2 ) .  For simplicity here, we use y 1' e to denote y~,y~2.., y~, (mod N). 

L e r a m a  3.5. Let N be the product of k distinct odd primes. A vector y is dominant of 
Z* N if and only if y t e is not a square modulo N for every, nonzero vector e E {0, !} k. 

Proof.  (r We show this by contradiction. We assume that the vector y = 

(yl ,  Y2 . . . . .  yk) is not dominant of Z~v. Then a nonzero vector e = (el, e2 . . . . .  ek) 
{0, I} k exists such that e iCN(y l )  + e2CN(y2) + . - .  + ekCN(yk) ------ 0 (mod2)  and this 
implies that y 1" e is a square modulo N. 

(=r Assume that y = (Yl, Y2 . . . . .  Yk) is dominant of  Z~v, i.e., CN(yl) ,  CN(y2) . . . . .  
CN(yk) are linearly independent over G F ( 2 ) .  Then, for any e = (el,  e2 . . . . .  ek) c 
{0, 1 }k, el C N (Yl) + e2 CN (Y2) + " "  + ek CN (Yk) --  0 (mod 2) if and only if e = 0. Thus 
Y 1" e is not a square modulo N for every nonzero vector e ~ {0, 1 }k. [] 

In the following lemma we show that i fk  = O(iog [NI), then a dominant vector y of  
Z~v can be efficiently sampled by a probabilistic polynomial- t ime oracle Turing machine 
with access to the promise oracle for (QRk, QNRk). 
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L e m m a  3.6. l f  k = O(log Igl) ,  then there is a probabilistic polynomial-time oracle 
Turing machine D with access to the promise oracle for  (QR k, QNRk) that on input 
(x, N) E QR k tA QNRk outputs either a dominant vector y o f  Z* N with probabili~ at 
least 3/4 or _1_ with probability at most I/4.  

Proof. From the assumption that k = O (log IN I), it follows that 2 k < IN I " for some in- 
teger c > 0. The machine D randomly chooses h = 21N I c vectors yj = (y[, v~ . . . . .  y~) 
overZ~v (1 < j < h ). For each yj (1 < j < h ) a n d e a c h e  6 {0, 1} k -{0k} , themachine  
D computes q7 --- YJ I e (rood N), and queries the promise oracle for {QR k, QNRk) with 
q7 to get the answer a~ 6 {0, I}. If an index j (1 < j < h) exists such that a~ = 0 for 

every e 6 {0, 1 }k _ {O h }, then D outputs y = yj as a dominant vector of  Z~v; otherwise 
D outputs _1_. It is obvious from Lemma 3.5 that if a vector y is sampled by D, then it is 
always dominant of  Z~v. 

Let y = (Yl, Y2 . . . . .  Yk) be a randomly chosen vector over Z~, and let Ym = 
( Y l ,  Y2 . . . . .  y,,) foreachm (1 < m _< k -  l ) .ThenyisdominantofZ~v i fandonly i fy i  
QNRk and, for each m (1 _< m _< k - 1), Ym+l ;~ Ym 1" em for every em ~ {0, 1}". 
Recall that Z~v can be partitioned into 2 k (disjoint) residue classes of the same size. 
Then the probability Pdom that a randomly chosen vector y over Z~, is dominant of Z~v is 
given by 

P d o r n  - -  - -  
I ~ (I[Z,NII _ 2J . IIZ,NII) k 1 

iiZ~,vllk 2 k = 1-1 ( 1 -  2 - i)  > (l)k > _ _  
j = 0  i=1 - - I g l ~ '  

where II A II denotes the cardinality of a (finite) set A. Thus the probability esamp that the 
machine D samples a dominant vector y of Z~v is bounded by 

1 ~21NI' 3 
Psamp = 1 - -  (1 - Pdom) h > 1 - -  1 -- I - -~ , /  > 1 -- e -2 > ~, 

because (1 - x - I )  x _< e-I  for any x _> 1. Since D queries the promise oracle for 
(QRk, QNRk) at most h2 k = 2[NI 2c times, it runs in probabilistic polynomial (in INI) 

time. [] 

The lemma below is used to reduce the communication complexity of a competitive 
interactive proof system for (QRk, QNRk). 

L e m m a  3.7. Let N be the product o fk  distinct oddprimes and let y = (Y I, )'2 . . . . .  Yk) 
be dominant o f  Z* N. Then,for any x c Z* u, there is a unique vector e = (el, e2 . . . . .  ek) 
over GF(2)  such that x ~- y ~ e. 

Proof. Since y is dominant of Z~v, Cu(yl ) ,  C N ( Y 2 )  . . . . .  CN(Yk) are linearly inde- 
pendent over GF(2) .  This implies that, for any x ~ Z~v, there is a unique vector e = 
(el, e2 . . . . .  ek) over GF(2)  such that CN(x) = elCN(yl ) +e2Cu(y2)  +" �9 �9 +ekCu(yk )  
(mod2). By Lemmas 3.2 and 3.3, we then have that CN(x) : C N ( y  1" e ) .  Thus from 
the definition of  the equivalence relation --~ on Z~v, it follows that x --~ y 1" e. [] 



A Low Communication Competitive Interactive Proof System 107 

The following lemma shows that if k = O(log INI), then for a dominant vector y of  
Z~v and z �9 Z~v it is easy to find the (unique) vector f �9 {0, 1 }k such that z --~ y 1" f- 

L e m m a  3,8. Let N be the product o f  k distinct odd primes. Let y be dominant o f  Z~ and 
let z �9 Z~. l f  k = O(log INI), then there is a deterministic polynomial-time algorithm 
FIND with access to a promise oracle for  (QRk, QNRk) that on input (y, z, N) always 
outputs the (unique) vector f E {0, 1 }k such that z ~-- y t f. 

Proof.  The algorithm is the following: 

Algorithm FIND 

Input: (Y, z, N),  where y is dominant of  Z~v and z e Z~v. 
Output: f �9 {0, 1 }k such that z --~ y 1' f. 

Step i : Compute qe ~ (Y 1" e) • z (mod N) for each e �9 {0, 1 }k. 
Step 2: Query qe to the promise oracle for (QR k, QNRk) to get the 

a n s w e r  ae E {0, 1 } for each e E {0, 1 }k. 
Step 3: I fae  = 1 for some e E {0, 1} k, then output f = e; otherwise 

output _1_. 

The correctness of the algorithm above follows from previous lemmas. [] 

3.2. A Low Communication Competitive Interactive Proof for  Promised QR 

We now describe the protocol for a competitive interactive proof system for (QR k, QNR k ) 
with low communication complexity. 

Protocol  P Q R  (A Competitive Interactive Proof System for Promised QR) 

common input: (x, N) 6 QRk t3 QNRk, where k = O(log INI). 

PI" 

P --+ V: 
VI- I "  

VI-2:  

V - + P :  
P2: 

P - +  V: 
V2-1: 

V2-2: 

V---~ P: 
P3: 

P runs the machine D to obtain either a dominant vector y = (yl, y2 . . . . .  
y~) of  Z~v or _1_. 
The vector y obtained in step PI.  
If V receives _1_ from P, then V halts and rejects (x, N); otherwise V 
continues. 
V chooses aj �9 {0, 1} k and rj �9 Z*N and computes zj =- (y 1' a j )  • r f  
( m o d N )  for each j (0 < j < 1). 
z0, z~ �9 z~v. 
P computes otj �9 {0, 1 }k such that zj "~ y t c~j for each j (0 < j < 1). 
a0 ,  c~l �9 {0, 1} k. 
If either o~0 ~- a0 or oq # al ,  then V halts and rejects (x, N); otherwise V 
continues. 
V chooses ej �9 {0, 1}, hj �9 {0, l}k, and sj �9 Z~ and computes wj -- 
x e, x (y t hj) x sj 2 ( m o d N )  for each j (0 < j < 1). 
wo, wl  e Z*N. 
P computes flj �9 {0, I }~" such that wj ~ y ~ flj for each j (0 < j < 1 ). 
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P ~  V: /3 o ,/31 ~{0 ,1}  k. 
V3: If either/30 5 ~ b0 or/31 :/: bl,  then V halts and rejects (x, N); otherwise V 

halts and accepts (x, N). 

Correctness  of  PQR. We show that when k = O(iog IN I), Protocol PQR is a com- 
petitive interactive proof system for (QRk, QNRk). 

(Completeness) Assume that (x, N) c QR~. It follows from Lemma 3.6 that, in 
step V I - I ,  V receives a dominant vector y = (Yl, Y2 . . . . .  Yk) of Z~, from P with 
probability at least 3/4. 

Assume that y is dominant of  Z~v. Then P can execute step P2 by running FIND and 
this implies that V never rejects (x, N) in step V2-1. In addtion, P can also execute 
step P3 by running FIND and thus V will not reject (x, N) in step V3, because x being 
a square modulo N implies CN(x) = 0. It follows from Lemmas 3.6 and 3.8 that P runs 
in probabilistic polynomial (in INI) time. 

(Soundness) Assume that (x, N) c QNRk. If V receives _1_ from P in step V l - l ,  then 
V always halts and rejects (x, N) e QNRk. Then we consider the case that a dishonest 
prover P* sends V a vector y = (Yl, Y2 . . . . .  yD over Z~,. 

Assume that the vector y is not dominant of  Z~v. For each zj E Z~ (0 < j < 1) 
in step VI-2,  there are 2 t possible t~j c {0, 1} g for some t (1 < t < k) such that 
zj ~-- y 1  ̀a j .  This implies that if y is not dominant of  Z~v, then, with probability at most 
2 -2t  < 1/4, any all powerful P* can find a vector ctj ~ {0, I} k such that a j  = c~j for 
each j (0 < j < 1 ) in step P2. Thus i fy  is not dominant of  Z~v, then V halts and rejects 
(x, N) ~ QNRk in step V2- ! with probability at least 3/4. 

Assume that y is dominant of  Z~v. Since (x, N) ~ QNRk, a unique nonzero vector 
e ~ {0, 1 }k exists such that x _~ y 1" e. For each j (0 < j < 1),/~1 ~ ~ ~ {0, ! }k exist 

such that wj --~ y 1" /30 and wj _ x x (y 1" /3)). Indeed, for each i, j (0 < i, j < !), 

[3~ =_ bj + {(ej + i) x e} (mod2).  This implies that any dishonest prover P* cannot 
guess better than at random the value of ej E {0, 1} for each j (0 < j < 1) even if 
it is infinitely powerful. Thus if y is dominant of  Z~,  then, with probability at most 
I /4 ,  any all powerful P* can find a vector/3j ~ {0, 1 }k such that flj = bj for each j 
(0 < j < 1) in step P3. This implies that V halts and rejects (x, N) ~ QNRk in step V3 
with probability at least 3/4. 

Thus for any (x, N) ~ QNR~, any all powerful dishonest prover P* can cause the 
honest verifier V to accept (x, N) E QNR k with probability at most 1/4. [] 

Recently, Goldreich (private communication, 1993) observed that the algorithm given 
in Proposition 6.6 of  [BG] to find a representative vector can be modified to yield an 
algorithm that works also for k = O(log INI). Thus using this in the protocol [BG], a 
competitive interactive proof system is obtained for (QRk, QNRk) that works for k = 
O(log bNI), but its communication complexity is still large. 

4. Concluding Remarks 

On common input (x, N) c QRk u QNR k to our protocol, the prover sends the verifier 
about k l N I bits and the verifier sends the prover about 41NI bits, where k = O (log I NIL 
The constraint on k seems to be indispensable in the protocol by Bellare and Goldwasser 
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[BG] and in the one presented here, but can it be further relaxed? It is obvious that, for 
any composite number N, k = O(INI). So one might ask: 

�9 If k = O(INI), then does a competitive interactive proof system for promised 
QNRk (QRk, QNRk) exist? 

In our protocol presented here, the constraint that k = O (log IN[) seems to be essential 
especially in the proof of completeness. Thus to solve the problem above affirmatively, 
we may need to use completely different approaches. 

The promise requirement on QR plays an essential role in the protocol by Bellare and 
Goldwasser [BG] and in the one presented here. Thus it is still open whether QR (not 
promised QR) has a competitive interactive proof system. 
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