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Abstract. We consider the following problem. A signature authority issues RSA- 
signatures of certain types to an individual, and the individual tries, by using the 
signatures he received, to compute an RSA-signature of a type not issued by the 
authority. Is the individual able to do this? The RSA-signatures are products 
of rational powers of residue classes modulo the composite number N of the 
underlying RSA-system, and the residue classes are chosen at random by the 
signature authority. The rational exponents in the product determine the type of 
the signature. 

We prove that computing an RSA-signature of a particular type, from given 
RSA-signatures of other types, is polynomial time reducible to computing RSA- 
roots x TM (mod N) for random x and some positive integer d. This extends results 
of Akl and Taylor [1] and Shamir [11] from one variable to arbitrarily many 
variables. As an application of this, under the assumption that for the individual 
it is infeasible to compute RSA-roots, we give necessary and sufficient conditions 
describing whether it is feasible for that individual to compute RSA-signatures of 
a prescribed type from signatures of other types that he received before from the 
authority. 
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1. Introduction 

Several  m o r e  co mp l i c a t ed  c r y p t o g r a p h i c  p ro toco l s  use as a b u i l d i n g  b lock  s imple  

signature protocols in  which  o n l y  o n e  par ty ,  cal led the  signature authority, can  create  
s igna tu res  a n d  issues t h e m  to the o t h e r  part ies ,  cal led the individuals. Such p ro toco l s  
are used,  for ins tance ,  in  c reden t i a l  sys tems (e.g., [3 ] )  a n d  p a y m e n t  sys tems (e.g., 
[2]) ,  in  wh ich  a s i gna tu re  represen ts  a c reden t ia l  o r  money .  In  fact, in  such  c reden t ia l  

1 Date received: September 5, 1990. Date revised: April 20, 1991. A preliminary version of this paper 
was presented at Eurocrypt '90, May 21-24, .~rhus, Denmark, and has appeared in the proceedings, 
pp. 83-97. The research of Jan-Hendrik Evertse has been made possible by a fellowship of the Royal 
Netherlands Academy of Arts and Sciences (K.N.A.W.) 
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Signature authority ~r 

chooses x (mod N) randomly, 

computes S =- x e'/e2 (mod N) 

x,S 

Individual d 

verifies that 
) 

S e2 ~ x e' (mod N) 

Fig. 1. A signature issuing protocol in which the signature authority ~ issues a signature to indivi- 
dual d.  

systems or payment systems, the signature authority issues different types of signa- 
tures, corresponding to different credentials or different values of money. The 
security of these systems depends on whether an individual (or a group of conspiring 
individuals) is not able to compute a signature of a type not issued by the signature 
authority, by using the signatures which were issued before by the authority. 

In Fig. 1, we give an example of a signature protocol, based on the RSA-system 
[9], in which the signature authority ~ issues a signature to an individual ~r 
Initially, ~( chooses two large primes P, Q and computes their product N. Further, 

chooses two integers el, e2 with e2 coprime to q~(N) = (P - 1)(Q - 1). ~e makes 
N, el, e2 public, and keeps P and Q secret. 

In general, for every integer b coprime to tp(N), the congruence yb = x (mod N) 
has a unique solution (mod N) which we denote by x ~/b (mod N). If b > 1, we call 
x lib (mod N) an RSA-root mod N. For a ~ 7/we put x "/b = (xl/b) a (mod N)..~ can 
easily compute the RSA-root x ~/b (mod N) by computing first an integer b' with 
b b '  --- 1 (mod tp(N)), and then x b' (rood N). We assume that for individuals it is 
infeasible to compute RSA-roots (mod N). 

We consider a generalization of this protocol: Y' chooses at random several 
residue classes (mod N), computes a number of RSA-signatures which are products 
of rational powers of these residue classes modulo N, and issues these signatures to 
~r together with the residue classes. The exponents in the product determine the 
type of signature. It will appear to be useful to consider also the variation in which 

sends only the signatures but not the residue classes to d (so that ~r cannot 
verify the signatures), d might also have received the signatures without the residue 
classes by eavesdropping. It is conceivable that an individual learns several RSA- 
signatures issued by ~ (by participating in a signature issuing protocol or by 
eavesdropping) and that he uses these to compute useful signatures not issued by Lr. 

We give an example of the kind of problems we are faced with. Suppose that an 
individual d received two randomly chosen residue classes x 1, x 2 (mod N) and a 
signature S - x z /3 .  x~/9 (mod N), and that he wants to compute S '  - x~/9 (mod N). 
d can easily compute x~/3 (mod N), since x~/3 =_ x ~ 2 S  3 (mod N). But then ~r has 
still to compute some cube RSA-root. From our Theorem 1, stated in Section 
2, it follows that computing x~2/9 from {x~, x2, S} is just as difficult as computing 
x ~/3 (mod N) for each residue class x (mod N). So if ~ '  cannot compute RSA-roots, 
then he cannot compute x 1/9 from {xl, X2, S}. 

Akl and Taylor [1] and Shamir [11] considered related problems. Shamir showed, 
roughly speaking, that for pairwise coprime integers k~ . . . . .  k, computing x~/k l  from 
{ x ,  x x/k2 . . . .  , x 1/kt } is just as difficult as computing u 1/kl from u alone, for random u. 
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Akl and Taylor proved, that if k, kl . . . . .  k, are integers with gcd(kl . . . . .  kt) /  
gcd(k, k~ . . . . .  kt) = r, then computing x k from {x  k~ . . . .  , x k*} (with x unknown) is at 
least as difficult as computing u 1/" from u for random u. We generalize these results 
to arbitrarily many variables as in the example above. Our main result is stated 
in Section 2, independently of the context of protocols mentioned above. Let 
S 1 =-1- Ix~  '.j . . . .  , S~ = I - I x ]  ".~, s ' =  I-I x~J (mod N), where the x,  are uniformly 
chosen residue classes (mod N) and the a~.j, bj are rational numbers (we are not 
precise here). Then computing S' from $1 . . . . .  Ss is polynomial time reducible to 
computing a certain RSA-root on random residue classes (mod N) and vice versa. 

This paper is organized as follows. In Section 2 we state our results and prove 
these in Section 3. In Section 4 we discuss the consequences of our results for 
protocols as mentioned above; in particular, we consider two payment systems. 

2. Statements of  the Theorems 

We first introduce some notation and terminology. 

S k the set of vectors (al  . . . . .  ak) with al  . . . . .  a k ~ S, for any set S; we 
use boldface characters to denote vectors. 

a = b (mod m) m-l(h - a) e 7/k; this is defined for a, h E Qk, m, k ~ ~. 
Z{al . . . . .  as} {~]=~ ~iail~l . . . . .  ~, ~ 7/}: the abelian group generated by al . . . . .  

as ~ Qk. 

Q{al . . . .  , as} {E~'=x ~,a,l~a, . . . ,  Cs E Q}: the vector space generated by aa . . . .  , 
as ~ ~k. 

( a , b )  a l b l - k  ""q-akbk: the scalar product of a = ( a  1 . . . .  ,ak) and 
h = ( b l  . . . .  ;b~). 

N a composite, odd number; so N = p~ . . . .  p~' with Pl . . . . .  Pt distinct 
odd primes and k l ,  . . . ,  k t ~ ~ .  

7/* the set {a la  ~ [~, 1 < a < N ,  gcd(a, N) = 1}. 
a -1 (mod N) the number b s Z* with ab = 1 (mod N); for a s Z*. 
cp(N) Euler's Totient function: cp(N) = 17/*1 = lra'l~=~ p i k ' - ~ e - ~  - 1). 
0N the ring {a /d la ,  d ~ 7/, d > 0, gcd(d, cp(N)) = 1}. 
2(N) Carmichael's function: 2(N) = lcm(p~:-l(p~ - 1) . . . .  , p~ , - l (p ,  _ 1)). 
x TM the dth R S A - r o o t  of x (mod N): the unique solution S ~ Z* to 

S d =- x (mod N) for x e Z~ and d E 7/with gcd(d, ~p(N)) = 1. 
x ' ( m o d N )  the number SET/* with S = x ~ ' x ~ . . . x T , ~  (modN),  for x =  

(Xl . . . .  , Xk) ~ (Z*)  k and a = (al . . . . .  ak) ~ (QN) k. 

In this paper we use notions like de termin i s t i c  and probabi l i s t ic  a lgor i thms  which 
can be given a precise mathematical meaning, for instance, using deterministic 
and probabilistic Turing machines, see I-4]. The only nondeterministic operations 
allowed in a probabilistic algorithm are unbiased coin tosses. In the algorithms we 
consider, the inputs  are tuples of integers and rationals, and the l ength  of such an 
input is the sum of the lengths of the binary representations of the integers and the 
numerators and denominators of the rational numbers in the input. In general, both 
the output and the running time of a probabilistic algorithm are stochastic variables 
depending on the input and the random coin tosses. However, in this paper 
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we consider only probabil is t ic  a lgor i thms whose running time is determined by only 
the input. Thus,  if a probabil is t ic  a lgor i thm is used to solve a part icular  problem,  
then it m a y  ou tpu t  a solution not  with certainty but  only with some probabi l i ty  of  
success. General ly,  the underlying probabi l i ty  space consists of the strings of  bits, 
chosen during the execution of the algori thm, with uniform distribution, and a set 
J of possible inputs, f rom which input  I is chosen with probabi l i ty  p~. Thus,  if some 
a lgor i thm solves a p rob lem with condit ional  probabi l i ty  of  success st given input 
I, then its uncondi t ional  probabi l i ty  of  success is ~ j  p~s~. By a polynomial time 
algorithm we mean  a determinist ic a lgor i thm whose running time depends polyno-  
mially on the length of the input. 

Let a~ . . . . .  as, b ~ (~N) k. We consider the p rob lem of comput ing  x b for r a n d o m  
x e (7/~'v)k, if {X"I . . . . .  X " } (but not  necessarily x) are given as inputs. We distinguish 
two cases, to each of which a theorem is devoted. 

In Theorem 1 below, a l  . . . . .  as, b are vectors in (QN) k, satisfying 

b ~ Q{a~ . . . . .  as}; length(N, a l  . . . .  , a s, b) = L; ] 

gcd(d, ~0(N)) = 1, where d = min{x  e ~ l x b  e 7/{a~ . . . . .  as}}.J" (1) 

Theorem 1. 

(i) 

(ii) 

Let al, . . . ,  as, b satisfy (1). 

For every probabilistic algorithm AL that with input {N, a l ,  . . . ,  as, b, x "1, . . . .  
x",} computes x b in time < TAL with probability of success >eAL for r a n d o m  
x ~ (7/.)k, there exists a probabilistic algorithm AL that for arbi t rary  u ~ 7/* 
computes u TM in time <_ TAL + L ~ with probability of  success -->�89 
For every probabilistic algorithm AL that with input {N, u} computes u TM in 
time < TAL with probability of  success > eAL for r a n d o m  u ~ 7/*, there exists 
a probabilistic algorithm AL  that for arbi t rary  x ~ (7/.)k computes x b from 
{N, a I . . . . .  a s, b, x "1, . . . .  x "s } in time < TAL + L ~ with probability of success 

-> �89 

R e m a r k  1. Theo rem 1 can be generalized to the case that  gcd(d, tp(N)) > 1. Let 
Ga be the largest subgroup  of Z* whose order  is copr ime to d. Then for every u ~ Ga, 
there is a unique x e Gd with x a = u (mod N) and we denote  this x by u TM. We can 
prove  that  for every probabil is t ic  a lgor i thm AL as in Theorem 1 there is a p rob-  
abilistic a lgor i thm AL that  for arbi t rary  u ~ Gd computes  u TM in t ime < TAL + L ~162 
with probabi l i ty  of  success >�89 AS the p roof  of  this generalization is precisely 
the same as that  of  Theorem 1, we do not  work  it out. 

R e m a r k  2. Theorem 1 deals with the si tuat ion that  x b has to be computed  f rom 
x "I, . . . .  x "s while x itself is not  known.  We can treat  the case that  x b has to 
be compu ted  f rom x "1, . . . .  x "~ and x, by applying Theorem 1 with ax, . . . ,  as, 
el = (1, 0 . . . . .  0), e2 = (0, 1 . . . . .  0) . . . . .  ek = (0 . . . . .  0, 1), instead of a l ,  . . . ,  a s. Note  
that  h e Q{a l  . . . . .  as, e l , . . . ,  ek} for all a 1 . . . . .  as, b e (QN) k. Further ,  if d is the 
smallest posit ive integer x with xb ~ 7/{a 1 . . . .  , as, el . . . . .  ek}, then d is the gcd of all 
these integers x. Hence  if b ~ (QN) k, then gcd(d, ~o(N)) = 1. 

bs has to be computed  f rom xT 1, . . . .  We can also treat  the case in which x~ . . . .  x~ 
x~ "s for certain b~ . . . . .  b~ e (QN) k, where x I . . . . .  Xs are distinct vectors from (7/~v)k: 
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namely,  put  x, := (xl ,  . . . ,  xs), a~ := (al ,  0 . . . . .  0), a~ := (0, a2, 0 , . . . ,  0), . . . ,  a's := 
(0 . . . . .  0, as), b' := (bl . . . . .  b~), and  apply  Theorem 1 with x', a'l . . . .  , a'~, b'. 

In Theorem 2 below, a~, . . . ,  as, b are vectors in (~N) k, satisfying 

h ~ ~{al  . . . . .  a~}; length(N, a x . . . . .  a s, b) = L; t 
d = min{x  ~ t~13~ 1 . . . .  , ~ �9 7/: xh = ~ = 1  ~iai (mod 2(N))).~ (2) 

Note  that  d is the gcd of all the integers x as in (2). Hence  d divides 2(N). We 
have: 

Theorem 2. Let  a 1 . . . . .  as, b satisfy (2). 

(i) There exists a polynomial (in L) time algorithm that computes a nonzero multiple 

o f  2(N)/d f rom a~ . . . . .  as, b. 
(ii) For every x �9 (7/~) k, the cardinality o f  the set {z �9 7/~,13y �9 (Z~v)k: y~ -- Z 

(mod N), ya, = x "  (mod N) for  i = 1 , . . . ,  s} is equal to the number o f  solutions 
z �9 7/~ o f  z a ~ 1 (mod N). 

Fo r  instance, if d = 1 then f rom a~ . . . . .  as, b we can compute  in polynomia l  (in 
L) t ime a mult iple of  2(N) and f rom that  we can compute  in probabil is t ic  po lynomia l  
(in length (N)) t ime the factorizat ion of N [7]. In the other  extreme si tuat ion that  
d = 2(N), if x "1, . . . ,  x as are given but x is unknown,  then every n u m b e r  in 7/* is 
possible for x b. 

3. Proofs 

We need some lemmas  to prove  Theorems  1 and 2. 

L e m m a  1. There is a polynomial time algorithm that computes for  every al  . . . . .  
as �9 C~ k a basis {e~, . . . ,  ek} of  Z k and d~ . . . . .  dt �9 Q>o such that {d , e~ , . . . ,  dtet} 
is a basis o f  7/{al . . . . .  as}. 

Proof.  Fo r  a l  . . . .  , a s �9 7~k this follows f rom the result of  K a n n a n  and Bachem [6] 
that  we can compu te  in po lynomia l  t ime the Smith normal  form of an integral 
matrix.  Fo r  al  . . . . .  as �9 •k, one m a y  first compute  d �9 @ such that  da , ,  . . . ,  da s �9 Z k 
and then apply  the result of  K a n n a n  and Bachem. [ ]  

L e m m a  2. For a, b �9 Z, a, b r 0, let (a\b)  denote the largest positive divisor o f  a 
which is not divisible by any prime number dividing b. There is a polynomial time 
algorithm that computes (a\b)  f rom a, b �9 7/, a, b ~ O. 

Proof.  Consider  the sequence of  integers Co = lal, c, = co/gcd(c o, b), c 2 ~---Cl/ 
gcd(cl ,  b) . . . . .  There  is an i such that  gcd(ci, b) = 1; let i o be the smallest  such i. 
Since c, < Co/2, c 2 < cx/2 . . . . .  Cio < Cio-1/2, Cio+l = Clo, we have i o < logla/ / log 2. 
Hence  it takes po lynomia l  t ime to compute  Cio. For  each pr ime n u m b e r  p and each 
a e 2z, a # 0, let ordp(a) be the integer such that  a" p-Or%(a) is an integer not  divisible 
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by p. Obviously,  ordp(c~o ) = 0 for each pr ime p dividing b. Further ,  if p is a pr ime 
dividing a but  not  b, then ordp(a) = ordp(co) = ordp(cl) . . . .  --- ordv(Cio ). I t  follows 
that  C~o = (a\b). [] 

L e m m a  3. Let a ~ , . . . ,  a~ �9 Qk, b �9 Q{ax,  . . . ,  a~}, and let d be the smallest positive 
integer such that db �9 2~{aa, . . . ,  a~}. Then there is a vector r �9 Qk such that the 
denominators of the coordinates of r are composed of prime numbers dividing d and 
such that 

1 
<a~, r> �9 7/ for i = 1 . . . . .  t, <b, r )  - 3 �9 7/. (3) 

Further, there is a polynomial time algorithm that computes d and such a vector r from 
a 1 , . . . ,  as, b. 

Proof.  C o m p u t e  a basis {e: . . . . .  ek} of 7/k and dl , . . . ,  dr �9 Q > o as in L e m m a  1 f rom 
a l , . . . ,  as. Further ,  compute  r . . . .  , r �9 Q with h = ~ = 1  ~idiei, e.g., by Gauss  
elimination. Then  d is the smallest  posit ive integer such that  d~, ,  . . . ,  d~, �9 7 / and  
so it can be compu ted  in po lynomia l  time. Let  ul . . . . .  ut be the numera to r s  of  d, ,  
. . . ,  d,, respectively. C o m p u t e  (u l \d)  . . . . .  (u, kd). Note  that  gcd(d, ~xd(ulkd) . . . . .  
~td(u~kd)) = 1. N o w  compute  s 1 . . . . .  s, �9 7/satisfying 

! 

~., r = 1 (rood d), (4) 
i= l  

with Euclid's a lgori thm. Finally, compute  r �9 Qk, e.g., by Gauss  elimination, with 

s,(ui~d) for i = 1 , . . . ,  t. 

(ei, r ) =  I ;  di (5) 
fori= t + l,...,k. 

Note that the denominators of si(ui\d)/d i are composed of primes dividing d for 
i = i .... , t. Since {el, ..., ek} is a basis of 7/k, this implies that the denominators of 
the coordinates of r are also composed of primes dividing d. Further, from (5) and 
ai �9 7/{d,el  . . . . .  d,e,} it follows tha t  <ai, r )  �9 77 for i = 1 , . . . ,  t. Finally, f rom (4), (5), 
and b = ~ = ,  ~id,.e~, it follows that  <b, r> - 1/d �9 2~. I t  is easy to verify that  all the 
computa t ions  ment ioned  above  cost po lynomia l  time. This proves  L e m m a  3. [ ]  

P r o o f  o f  T h e o r e m  2. We assume that  a t  . . . . .  as, b �9 Z k which is no restriction. 
Indeed, if a , ,  . . . ,  as, b �9 (~N) k, then we can compute  in polynomia l  (in L) t ime m �9 N 
with gcd(m, 2(N)) = 1 such that  a'i := mai (i = 1 . . . . .  s), b' := mb �9 27k, and we can 
proceed further with a '  1 . . . . .  a'~, h'. The  integer d is also the smallest posit ive integer 
x for which xb'  = ~ = t  ~ia'i (mod 2(N)) is solvable in ~1 . . . . .  ~t �9 7/and x ~-, x "  is 1-1 
on 7/~. Hence {z �9 7/*13y �9 (7/.)k: yb' = Z, y'~ -- X'~ (mod N) for i = 1 . . . .  , s} has the 
same cardinali ty as {z �9 Z*13y �9 (7/.)k: yb _: Z, y "  -- X" (rood N) for i = 1 . . . . .  s}. 

(i) C o m p u t e  a basis {e 1 . . . . .  ek} of Z k and d 1 . . . .  , d r (which are now positive 
integers) such that  {die ,  . . . .  , d,e,} is a basis of  7 / { a l , . . . ,  as}. Further ,  compute  
integers fll . . . . .  flk such that  b = ~ = 1  fllei. Since b r Q{a :  . . . .  , as}, at least one of 
the integers fit+l . . . . .  ilk, flt+: say, is nonzero.  There  are integers '71 . . . . .  ~/t such that  
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db -'- ~.~=1 rhdtei (mod 2(N)). This implies that  dflt+l = 0 (mod 2(N)). Hence flt+t is 
a nonzero  mult iple of  2 (N) /d .  All opera t ions  ment ioned  above  can be done  in 
po lynomia l  (in L) t ime and so fl,+x can be compu ted  in po lynomia l  (in L) time. This 
proves  (i). 

(ii) Let S t = {z �9 7/*13y �9 (7/~/)k. yb = z, y*' = 1 (mod N) for i = 1 . . . .  , s). Then 
{z e Z~vl qy �9 (z*)k: y~ = Z, y "  = X" (mod N) for i = 1 . . . . .  s} = {z. xblz �9 S 1 }. Hence 
it suffices to show, that  St is equal  to $2 := {z �9 7/~vlz d - 1 (mod N)}. 

First take z �9 $1. There  are r . . . . .  (t �9 7 / such  that  db = ~ : t  ~iai (mod 2(N)). 
Together  with the fact tha t  a ~tN) = 1 (mod N) for every a ~ Z*, this implies that  for 
some y �9 (Z*)k: z d = ydb = I-Is=x (y,,)r _ 1 (rood N). Hence  z �9 $2. It  follows that  
S 1 c ~ S  2 . 

N o w  take z �9 S 2. We can factor  N as N = p~ . . . .  pk, where p~ . . . .  , p~ are odd pr imes 
and  kt . . . . .  k, �9 ~ .  Put  6i = gcd(d, ~(p~')) for i = 1 . . . . .  t. Then 6~ is the smallest  
posit ive integer x such that  x b -  ~ = t  ~ia~ (mod ~oi) has a solution in ~: . . . .  , 
~ �9 2e, where ~0i = p k ' - l ( p i  - -  1), 
xb �9 7/{at . . . . .  a,, ~0ie 1 . . . . .  ~oiek}, 
3, there is a vector  r, With 

(aj ,  r )  �9 7/ 

( ~oiej, r )  �9 Z 

1 
(b,r)  - ~ � 9  7/. 

Put  v := tplr. Then v = (vt . . . . .  Vk) �9 2ek and 

(aj ,  v)  = 0 (mod q~i) 

(b,  v)  -= ~ (mod ~oi). 
ol 

i.e., the smallest positive integer x for which 
where {el, . . . ,  ek} is any basis of  7/k. By L e m m a  

for j = 1 , . . . ,  s, 

for j - - 1  . . . . .  k, 

for 
J =  1, . . . ,  s, t 

(6) 

Since z �9 $2, we have z ~' - 1 (mod pk,). Further ,  the group  of residue classes m o d  pk, 
copr ime to Pi is cyclic of  order  ~0i. Hence  there is a residue class wi (mod pk,)  with 
w~ ''/~' = z (mod pk,). Put  yi = (wr 1, . . . .  wF~). Then  (6) implies that  y~ = w/<'J' '> = 1 
(mod pk,) for j = 1, . . . ,  s and  y~ - wi <b' *> = w~ '/~' = z (mod pk,). By the Chinese 
remainder  theorem,  there is a y �9 (Z~v) k with y = y~ (mod pk,) for i = 1, . . . ,  t. This 
y satisfies y'J _= 1 (mod N) for j = 1 . . . .  , s, and yb = Z (mod N). Hence z �9 St. We 
conclude that  also $2 - $1. Therefore  $2 = St and par t  (ii) of  Theorem 2 has been 
proved.  [ ]  

Proof of Theorem 1. Assume we are given N and a 1 . . . . .  a~, b ~ (QN) k satisfying (1). 
(i) Assume there is a probabil is t ic  a lgor i thm AL which f rom x "1, . . . .  x "- computes  

x ~ in t ime < TAL(L) with probabi l i ty  of  success >eAL(L) for r andomly  chosen 
x e (Z*) k. Fix u e 7/*. We describe a probabil is t ic  a lgor i thm ~ to compute  u TM. 
The idea is to apply  AL to the vector  u = (u tl, . . . .  u tk) for an appropr ia te  vector  
t e QN. However ,  this u is not  a r a n d o m  vector  in (7/*) k, all its coordinates  being a 
power  of  the same residue class, and  so we do not  know anything abou t  the 
probabi l i ty  of  success when AL is applied to u. We use the wel l -known trick 
of applying AL instead to a vector  of  the form x = (ut~r~ ' . . . . .  utkr~'), where 
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r = (rl . . . . .  rk) is r andomly  chosen f rom (Z , )  k and m is such that  ma 1 . . . . .  ma=, 
mb ~ (7;*) k. Since 7/* is a multiplicative group  and  the mapp ing  x ~ x m on 7:* is 1-1 
in view of gcd(m, ~p(N)) = 1, this vector  x is uniformly distr ibuted on (?7.)k. 

Below we describe the a lgor i thm AL (all congruences are m o d  N): 

Step 1. C o m p u t e  t = (tl . . . . .  tk) e Qk and al  . . . . .  ~k, f l~  Z such that  (at ,  t )  = ~ for 
i = 1 . . . . .  s, (b,  t )  + fl = 1/d and the denomina to r s  of tl . . . . .  tk are com- 
posed of pr imes dividing d. Since gcd(d, tp(N)) = 1, we have t e (Qs)k. Com-  
pute m such that  mat (i = 1 . . . . .  s), mb E 7/k. 

Step 2. Choose  r = (rl, . . . ,  rk) f rom (7/.)k. 
Step3.  C o m p u t e  u~'r m'' = u ( ' " t ) ' r  ra'' -- x "  for i = 1 . . . . .  s, where x = (u'~r~ . . . . .  

utkr~'). This compu ta t i on  is easy since ~ e 7;, mat e ?Tk for i = 1 . . . .  , s. We 
remark  that  it need not  be feasible to compute  x. 

Step 4. Apply AL to x "1, . . . .  x I'. 
Step 5. If  AL outputs  x b, then compute  xbr-mbu # = u <b't>+# --= u TM. This is possible 

since f l e  7 / and  mb ~ Z k. 

We did not  yet specify the way r is chosen f rom (7/,)k in Step 2. There  is no known  
polynomia l  t ime me thod  to simulate a perfect uniform choice from 7/, with a 
probabil is t ic  a lgor i thm whose only possible nondeterminis t ic  opera t ions  are coin 
tosses. But we can proceed as follows. C o m p u t e  the integer K with N < 2 ~ < 2N. 
Choose r at r andom from { 1, . . . ,  2 r} by doing K coin tosses. Check ifr  E { 1 . . . . .  N - 1 } 
and gcd(r, N) = 1. If  so, take the residue class r (mod N). Thus,  we get an element 
of ?7* with probabi l i ty  of success tp(N)/2K > 1/(12 log log N), in view of the 
inequali ty t p ( N ) >  N/(6  log log N) for N > 3 [10]. There  is a constant  c > 0 
with 1 - (1 - 1/(12 log log N))  cl~176176 ~_~ (1)l/k. Hence, after at mos t  ck log k" 
K log log N coin tosses we find a vector  r E (7/*) k with probabi l i ty  of  success >�89 
Moreover ,  the condit ional  probabi l i ty  distr ibution of r given success is uniform on 
(?7,)k. 

Steps 1, 2, 3, and 5 of  a lgor i thm AL described above  have running time L ~ 
Further ,  Step 4 has running t ime T^L. Hence  the running t ime of AL is 
< TAL + L ~  Step 2 has probabi l i ty  of  success >_21-. Given success in Step 2, the 
condi t ional  probabi l i ty  distr ibution of x is uniform on (?7~'v) k and hence the 
condit ional  probabi l i ty  of success in Step 4 is >CAL. Therefore,  the uncon-  
dit ional probabi l i ty  of  success of  AL is >_ �89 This proves  (i). 

(ii) Assume we are given a probabil is t ic  a lgor i thm AL which f rom randomly  
chosen u r ?7* computes  u TM in t ime < TAL and probabi l i ty  of success >/~AL(L). We 
construct  the following a lgor i thm AL (the congruences are m o d  N): 

Step 1. C o m p u t e  ~1 . . . . .  ~= ~ Z such tha t  db = ~ r 
Step 2. Choose  r ~ 7/,. 
Step 3. C o m p u t e  u - r d. FL(x, , )  ~,. 
Step 4. Apply AL to u. 
Step 5. If  AL outputs  u TM, then compute  r-~u TM = ]-I~(x") r = (xa~) TM = x b. 

If we choose r in Step 2 as described above,  then with essentially the same a rgument  
as above,  it follows that  AL has running t ime < TAL + L ~ and probabi l i ty  of 
success ~>�89 for a rb i t ra ry  x ~ (7/])k. This proves  (ii). [ ]  
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4. S o m e  Practical  Applications 

We go back to the protocols of Section 1. Let N be a composite modulus and let 
al  . . . . .  as, b e (QN) k. Signature authority .~ chooses at random x e (7/*) k and issues 
the signatures x ~, . . . . .  x "~ to the individual ~r ~r wants to compute x b. Is he able 
to do this? Of  course, we assume that for ~r it is infeasible to compute RSA-roots 
modulo N, since otherwise he could forge all signatures. Theorem 1 implies the 
following. 

Corollary. Assume there is an integer d with (d, tp(N)) = 1 and db e Z{al . . . . .  as}. 
Then it is feasible for d to compute x ~ from {N, a 1 . . . . .  a s, b, x" ,  . . . .  x " }  for 
uniformly chosen x ~ (Z~) k if  and only if b e 7/{al . . . . .  a~}. 

(We do not want to make precise the notion of "computat ional  infeasibility.") If 
b ~ Z{al . . . . .  as}, then x b can be computed from x " ,  . . . ,  x "" simply by multiplying 
and dividing (mod N): if ~1 . . . . .  ~s e 7 /are  such that b = ~la~ + "'" + Csas, then 
x b - I - I ~ = l  (x") r (mod N). Hence the corollary means that ~r cannot compute 
RSA-signatures from other ones, unless he is able to do this using only the obvious 
operations on RSA-signatures: multiplying and dividing (mod N). This corollary 
can also be used in situations where Lr issues also x or in which d receives signatures 
Xl . . . . ,  . . . ,  xs on distinct vectors xx . . . . .  xs (see Remark 2 of Section 2). 

We now give two examples related to coin systems to illustrate the corollary. 

Example 1. In [2], a user-anonymous off-line check system is introduced. Here 
we discuss a special attack by the user on this system. We consider only a simplified 
version of the check system (not providing user anonymity) which, however, makes 
no difference for the attack we discuss�9 

The bank chooses a composite modulus N and two one-way functions f ,  g and 
makes N , f ,  g public. Assume the user wants a check of $1023 = $(20 + 21 + ... + 29) 
from the bank. To this end, he chooses numbers bi, ri, si and computes M~ = 
f(g(bi, ri)), m i - f ( g ( b l ,  sl) ), c t i -Ma '~  7 ( i = 0  . . . . .  9) (all congruences are 
rood N), and sends ct I . . . . .  ~1o to the bank. (In the original user-anonymous 
protocol, the user includes so-called blinding factors in the cq's to hide the M[s and 
mi's from the bank (see also [3]) and uses a cut-and-choose protocol to convince 
the bank that he formed the ~t[s as described in the protocol). The bank withdraws 
$1023 from the user's account and sends back the signature D = I-I9=o 0~ 1/(17"31~ 
Then the user can compute (note that 6947 �9 17-2- 31~ = 1) 

(~i ) ~i~=O ) z 9 2 C D -2"31~ M 3' \6947 m 3' 
-=  " " -= l - I  M ,  

i=0 i=0 

C ' ~ - D  69473~~ ( f i  M? i ) -6947  (i~=om?i)-2 9 �9 " ~ H 3 i- 10 m i 
i=0 i=0 

$ 9 Assume that the user wants to pay $a = (~i=o ai 2~~ at the shop with this check, 
where a i e {0, 1 } for i = 0 . . . . .  9. To this end, the user gives the number  C to the 
shop, as well as the numbers u i := g(bi, rl) for those i with a i = 0, and b~, r i for those 
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i with ai = 1. The shop checks that C is correct, i.e., C = I-L,=o u3'/17 l-L,=1 g(bi, ri) 3'/~ 7. 
After some time, the shop sends C and the revealed u~, b~, r~ to the bank (since the 
system is off-line, the shop does not send the numbers he received from a user at 
once, but first collects the numbers from several users). The bank checks that C is 
correct and that he did not receive the bi's before, and stores the b~'s. 

The user gets back from the bank the amount from this check which he did not 
spend (i.e., $(~9= o (1 - aii21~ as follows: he gives C' to the bank together with 
the numbers g(b~, r~) for those i with a~ = 1, and b~, r i for those i with a~ = 0. The 
bank checks that C' is correct, checks that he did not receive the revealed bi's before 
and if so, refunds the user the money. 

Assume that the user tries to cheat, i.e., tries to spend $a at the shop and to get 
back from the bank $b, where a + b > 1023. Note that the user cannot show the 
same bi to both the shop (when buying) and the bank (when asking for refund), 
otherwise he is caught cheating. The user could try to make a new signature 

, ]--[9 " 17'3~(i)-1~ " h - - -  C a ---- 1"-[9=0 M 3"~ o r  C a ~ 1 1i=0 m i  , w c ~  a is  a n o n i d e n t i c a l  permutation 
of (0 . . . . .  9). Then the user could cheat as follows: he looks for i I such that 
a(il) = i2 > il; he spends $(~i~i, 2/) at the shop by using C (as explained above); 
and when asking for refund, he shows C', and hi1, rh to the bank, in order to get 
$(2 ~2) as refund in stead of $(2i'). The user could cheat with signature C, as follows: 
he looks for Jl such that ~(Jl) = J2 < J~; he shows C, to the shop and spends 
$ ( ~  ~j2 2 i) using only $(~i ~j, 2~) from his check; and gets back from the bank $(2 ~' ) 
by showing it C'. 

Note that in order to compute C, or C~,, the user may use Mo . . . . .  M 9  

m o . . . . .  m 9, D. Put  el = (1, 0 . . . .  ,0), . . . ,  e2o = (0 . . . . .  O, 1), e~ = ~ ~  1 (3~(i-1)/17)el, 
Ca' = /_.,i=1~"~10 ..,'~a(i)-10'a~,.i+lO, d = )-'~~ 1 (17" 311-i)-1(31~ + 17ei+1o), m = (Mo, �9 �9 �9 M 9 ,  

m 0 . . . . .  m9). Thus, Mi = m r247 (i = 0 , . . . ,  9), mi = m "+'1 (i = 0 . . . . .  9), D = m d, 
C, = me-, C" = m ~;. Assume that the user cannot compute RSA-roots (mod N) of 
random numbers, and that f,  # are good pseudo-random functions, so that we may 
consider m as a randomly chosen vector. Then the corollary implies that the user can 
compute Co or C" from Mo . . . . .  M 9 ,  too, ... , m9, D if and only if e, or e', belongs to 
A = 7/{e~, . . . ,  e2o, d}. But it is easy to show, using that 3 is a primitive root 
(mod 17), that none of the vectors co, e" belongs to A unless tr is the identity. Hence 
the kind of attack described above fails at this check-system. 

Example 2. Consider the user-anonymous off-line coin system of i-8]. In this 
system, the bank uses a signature scheme which we do not specify here. The user 
makes RSA-signatures using his own modulus N whose factorization he keeps 
secret; so here the user plays the role of a signature authority. Let L be a fixed 
integer, and define I - (IDuserllR) L mod N, where R is a number chosen at random 
by the user. In Fig. 2 the basic idea of the withdrawal (in which the user is able 
to blind and the bank to sign messages, see [8]) and spending protocol of a coin is 
given. Later on, the shop sends the numbers that it received to the bank and the 
bank verifies that these numbers have not been used before. 
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Withdrawal of a coin Spending of a coin 

User Bank User Shop 
X: random blinded(N,I,X) N,I,X, sign(N,I,X) 

sign( blind ed(N, I ,  X)) E: random, (E, L) = 1 

C --- (X' 1 ~) 1/t (mod N) 
) 

Fig. 2. The (simplified) off-line coin system of [8]. 

From the corollary it follows that it is not feasible for the shop/bank to compute 
the identity of the user (i.e., 11/L mod N) from N, I, X, E, L and C = X IlL" I ElL. But 
if the user spends the same coin at two shops, then the bank receives N, I, X, L, 
sign(N, I, X), two integers El, E2 that are coprime with L, and the signatures 
(X" 1~1) 1/~ (mod N) and (X. IE2) ~/~ (mod N). From the corollary it follows that the 
bank can compute I IlL mod N from this (and hence the user's identity) if and only 
if gcd(E1 - E2, L) = 1. Hence the probability that a double spender is caught by 
the bank is approximately q~(L)/L (because EI, E 2 are randomly chosen). This 
probability is close to 1 if L is a large prime, and close to 0 if L is the product of 
many small primes. Therefore, it is not wise to let the user choose L freely himself 
(which was the original suggestion), but better to fix L as a large prime. 
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