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Abstract. This paper investigates the connections between three properties of a 
binary function. These properties are important in cryptography and are the Strict 
Avalanche Criterion, balance, and correlation immunity. We derive necessary and 
sufficient conditions for a function to possess various combinations of these proper- 
ties, and count the number of such functions. 
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1. Introduction 

In this paper we investigate the connections between three properties of a binary 
function: the Strict Avalanche Criterion, balance, and correlation immunity. The 
Strict Avalanche Criterion was introduced by Webster and Tavares [7] in order to 
combine the ideas of completeness and the avalanche effect. A cryptographic trans- 
formation is said to be complete if each output bit depends on each input bit, and 
it exhibits the avalanche effect if an average of one-half of the output bits change 
whenever a single input bit is changed. Forr6 [1] extended this notion by defining 
higher-order Strict Avalanche Criteria. A function is balanced if, when all input 
vectors are equally likely, then all output vectors are equally likely. This is an 
important property for many types of cryptographic functions. The idea of correla- 
tion immunity is also extremely important, especially in the field of stream ciphers, 
where combining functions which are not correlation immune are vulnerable to 
ciphertext-only attacks (see, for example, [5]). The concept of ruth-order correlation 
immunity was introduced by Siegenthaler [4] as a measure of resistance against 
such an attack. 

In a previous paper [2] we found conditions under which a function satisfying 
the highest possible order Strict Avalanche Criterion was also balanced and/or 

107 



108 s. Lloyd 

correlation immune. We found that a function cannot be balanced, correlation 
immune, and satisfy the highest-order Strict Avalanche Criterion. Since balance and 
correlation immunity are very important cryptographicaUy, we deduce that the 
highest-order Strict Avalanche Criterion is too stringent a condition. It is natural, 
therefore, to look at the next highest-order (that is order (n - 3)) Strict Avalanche 
Criterion, and see whether there are any functions satisfying this which are both 
balanced and correlation immune. We see that such functions do indeed exist, and 
we are able to formulate necessary and sufficient conditions on a function to satisfy 
these criteria simultaneously. In doing this, we use the characterization of functions 
satisfying the Strict Avalanche Criterion of order (n - 3) developed in [3]. These 
new conditions are construct ive--a function satisfying the Strict Avalanche Cri- 
terion of order (n - 3) is determined by its values at vectors of small weight, and 
we obtain conditions on these values for the function to be balanced and/or 
correlation immune. This means that constructing such a function becomes merely 
a matter of selecting a few values from which the remainder of the function may 
easily be computed. Having established that these functions exist, it is also of interest 
to determine the number of such functions since, if there were very few, it would 
not be sensible to recommend their use in cryptographic applications. We also 
consider here higher orders of correlation immunity to discover whether there is a 
limit to the amount  of correlation immunity possible in a function satisfying the 
Strict Avalanche Criterion of order (n - 3). We find that there is no limit, but 
obviously the number of functions decreases as the order of correlation immunity 
increases. We are able to derive necessary and sufficient conditions for each order 
of correlation immunity, and calculate the number of functions in each case. These 
conditions are also constructive. 

In Section 2 we establish some notation, define the properties to be examined, 
and state characterizations of functions with the various properties. Section 3 is 
devoted to some preliminary calculations which enable us to identify conditions the 
functions must satisfy. We present results on balance in Section 4, on correlation 
immunity in Section 5, and on simultaneous balance and correlation immunity in 
Section 6. In each of Sections 4 -6  we produce necessary and sufficient conditions, 
and also expressions for the number of functions satisfying those conditions. In 
Section 7 we display a table of numbers of functions, for some small values of n, 
and conclude that there is a sufficient supply of such functions for them to be useful 
for cryptographic applications. 

2. Notation and Definitions 

Although we are really dealing with functions of binary vectors of length n which 
take values in { -  I, 1}, we find it convenient to identify a binary vector with its 
support, that is the set of positions in which it has a 1. We, therefore, deal instead 
with functions from subsets of {1, 2 . . . . .  n} to { - 1 ,  1}. 

Let ~ be the set { 1, 2 . . . . .  n} and let : ~  denote the set of functions which takes 
subsets of 6: to { - 1, 1 }. We formulate all the definitions and characterizations in 
terms of such functions. 
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2.1. Balance 

This is the simplest of the three properties, and ensures that the number of l's 
produced by f is the same as the number of - l 's produced. 

Definition 2.1.1. Let f �9 :~g. Then f is balanced if and only if 

v~_~ f(V) = O. 

2.2. Correlation Immunity 

Definition 2.2.1. f �9 ~ e  is said to be first-order correlation immune if, for any 
i �9 6 p, the probability that i �9 V, given that V satisfies f(V) = 1, is equal to �89 

The definition is extended to higher orders as follows. 

Definition 2.2.2. Let m be an integer with 1 < m < n. Then f �9 ~ is said to be 
ruth-order correlation immune if, for any d ___ 6 ~ with IJI = m and any Y ~_ J, the 
probability that V n J = Y, given that f(V) = 1, is equal to 1/2 m. 

Note that, for any m with 2 < m < n, mth-order correlation immunity implies 
(m - 1)th-order correlation immunity. 

In order to characterize correlation-immune functions, we need to define the 
Hadamard-Walsh  transform. 

Definition 2.2.3. The Hadamard-Walsh  transform o f f  �9 ~g is defined by 

H(U) = ~ f(V)(--1) w~vl. 
V C_Jf 

There is a well-known formula for inverting the Hadamard-Walsh  transform, 
which we give below: 

1 f(W) = ~ u ~  H(U)(- I) IU~wl 

Xiao and Massey [6] have proved the 
correlation-immune functions in terms of the values of their Hadamard-Walsh 
transforms. 

for all W _ 6  a. 

following theorem characterizing 

Theorem 2.2.4. The function f �9 ~ is ruth-order correlation immune i f  and only if  
H(U) = O for all U ~_ ~ with 1 _< IUI < m. 

Let us define the integer-valued function X by 

X ( W ) =  ~. f(V) for W G ~ .  
w_w 

We will find it more convenient to express the characterization of correlation 
immunity in terms of the function X. In order to do so, we need the following result. 
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Lemma 2.2.5. I f  X and H are defined as above, then 

1 
X(W) - 2,_lw I t ~  ~-=" H(U) for all 

U n W = O  

W___Ae. 

Proof.  Since H is the H a d a m a r d - W a l s h  t ransform o f f ,  we know that  

1 ~ H(U)( -  1) Iv~wl for all W ___ 5 e. f (W) = ~ v _  

Substituting this into the definition of X, we obta in  

X(W) = v~w l t ~  H(U)(-1)  'vnv' 

1 
= 2 ~ v ~  H(U)v~"  ( -  l)lVnvl. 

For  any V g W, we can write V = A u B with A ___ ( W n  U) and  B c_ (W\U). So 

( -  1) Ivnvl -- E Z ( -  1) b*l" 
v~_w Bc_(W\,U) AC_(Wc~o) 

If  W n U # O ,  there are as m a n y  subsets of  odd  size as of  even size, so the sum is 
0. If W c~ U = J~, then the sum is just  2 Iwl. Hence  

1 
- ~c~ H(U) for all W _ 6 a. X(W) 2 n-lwl v_ 

U n W = O  

Note  that  X(6 e) = H ( ~ ) .  [ ]  

We now use this to produce  a formula t ion  of mth-order  correlat ion immuni ty  in 
terms of X. 

Lemma 2.2.6. I f  H and X are defined as above, then the following three conditions 
are equivalent: 

(i) f is ruth-order correlation immune. 
(ii) H(U) = O for all U ~_ SP with 1 _< IUI _< m. 

(iii) x ( w )  = 21Wl-"x(~) for all W ~_ 6e with (n - m) < I Wl < (n - 1). 

Proof.  The  equivalence of(i) and  (ii) is given by Theorem 2.2.4. We now show the 
equivalence of (ii) and (iii), using L e m m a  2.2.5. 

Suppose  that  (ii) holds. Let W ___ S~ be such that  (n - m) < I WI -< (n - 1), and let 
U ___ b~ be such that  W n  U = ~ .  Then  0 < IUI < (n - IWI) _< m, so either U = O 
or H(U) = 0. So 

1 1 
X(W) - 2,_lw I v~,,=_j H(U) - 2,_lw I H ( ~ ) .  

Uc~W=O 

N o w  X(S~) = H(O) ,  so we have (iii). 
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Now suppose that (iii) holds. We prove (ii) by induction on the size of U. Suppose 
first that IUI = 1. Let W = S/'\U. Then V n  W = O ifand only if either V = ~ or 
V = U, so 

x ( w )  = �89 + n(u)). 

Since I WI = (n - 1), we also know that X ( W )  = �89 Hence H(U) = O. 
Now suppose that 2 < [UI < m and that H(V) = 0 for all V with 1 < I VI < I UI. 

Let W = 6e\U, then Vc~ W = O i fand only if V _ U, so 

x ( w ) = ~  (N)+n(u)+ Z n(v) . 
l," c U, V #12I 

Now, for any V c  U, V ~  12I, we see that 1 - < l V l < l g l ,  so H ( V ) =  0. Since 
(n - m) < IW I < (n - 1), we also know that X(W)  = 21w1-"/-/(O ). Thus we may 
conclude that H(U) = 0 as required. []  

2.3. The Strict Avalanche Criterion 

Definition 2.3.1. Let f ~ . ~ .  Then f satisfies the Strict Avalanche Criterion (SAC) 
if and only if 

f ( V ) f ( V u { j } ) = O  fora l l j ,  1 < j < n .  
v:_(~\{j}) 

We now define the higher-order SAC. The SAC defined above is deemed to be 
the SAC of order 0, and the SAC of order m for 1 < m < n - 2 is defined as follows. 

Definition 2.3.2 [1]. A function f e :~g satisfies the SAC of order m, where 1 < 
m < (n - 2) if and only if, given any subset ~- o f ~  with I~'1 = n - m and any subset 
P of 5e\ff ,  the function g e ~sr  obtained from f by setting g(V) = f (V  w P) for each 
V _ ~ satisfies the SAC. 

Let f d e n o t e  the algebraic normal form o f f  (so f a l s o  takes subsets of A" to { - 1, 1}). 
We sometimes find it convenient to write F for the function from 6" to { 1, - 1 } such 
that F(x) = f({x}). 

In [3] we proved the following result characterizing functions satisfying the SAC 
of order (n - 3). 

Theorem 2.3.3 [31. Suppose that f e ~s~. Then f satisfies the SAC of order (n - 3) 
i f  and only i f  

f (V)  = [ 1  f (U) for all V ~_ ~9 p 
U -  ff,[-ul<3 

and, for each x ~ ~ ,  there is at most one y ~ ~ for which f ({x ,  y}) = 1. 

We were thus able to prove 

Theorem 2.3.4 [3]. The number of functions in ~ which satisfy the SAC of order 
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(n - 3) is 
n! 

2"+1 o<2"<_n~" (n - 2m)! m! 2 "  

We deduce from Theo rem 2.3.3 that  i f f  satisfies the SAC of order  (n - 3), then 
we can write any W ~ S~ as {Xx, x2 . . . . .  Xm, Yl, Y2 . . . . .  Y ' ,  X2"+1 . . . . .  XlWl} where 
f({x~, )'i}) = + 1 for all 1 < j  < m and f ({a ,  b}) = - 1 otherwise. We shall find the 
following nota t ion  useful. 

Def in i t i on  2.3.5. We write Ave(n, m) ( W  ~_ 6e, 0 < 2m < n) for the set of  functions 
f ~ ;~.~ satisfying the following conditions: f satisfies the SAC of order  (n - 3) and 
there exist x~, x2, . . . ,  x ' ,  y t, Yz, . . . ,  Y ' ,  X2m+l, "" ,  XlWl such that  

W = { X l ,  x 2 . . . . .  Xm, Y l ,  Y2 . . . . .  Ym, X 2 " + l  . . . . .  XlWl}, 

and 
f ( { x ~ , y ~} )=  +1 ,  1 <_j<_m, 

f ({a ,  b)) = - 1 otherwise. 

In what  follows we want  to distinguish the cases where there exists a pair  (x, y), 
such that  f ( { x ,  y}) = 1 and  F(x) = - F ( y ) ,  from those where no such pair  exists. In 
order  to be able to state some subsequent  results concisely in the cases where no 
such pair  exists, we introduce the following notat ion.  

Def in i t i on  2.3.6. We write Cw(n, m, r, t, q) ( W  ~ A a, 0 <_ 2m < n, 0 < r <_ m, 0 <_ 
t _< n - 2m, q = 2r + 2t + m - n) for the set of  functions f ~ ~s~ satisfying the 
following conditions: f belongs to Aw(n, m) and 

F(xj) = F(yj )  = + 1, 1 _<j _< r, 

F(xj) = F(yj)  = --1, r +  1 <_ j <_ m, 

F ( x j ) =  +1, 2 m +  l < j < _ 2 m + t ,  

F(xj) = - l, 2m + t + I <_ j < [ W[. 

For  ease of  notat ion,  we write s imply C(n, m, r, t, q) for Cy(n,  m, r, t, q). So we see 
that  i f f  ~ g#se satisfies the SAC of order  (n - 3), then either there exists a pair  (x, y), 
such that  f ( { x ,  y}) = 1, and  F(x) = - F(y), or f belongs to C(n, m, r, t, q) for some 
values of m, r, t, and q. We shall also find the following results useful. 

L e m m a  2.3.7. The number o f  functions belonging to C(n, m, r, t, q), where 0 _< 
2m_< n, 0_< r_< m, 0_< t_< n -  2m, a n d q  = 2r + 2t + m -  n, is 

(n - 2m)! m! 2 m 

Proof.  We must  first choose the m pairs (xj, Yi), not ing that  the order  within the 
pair  is unimpor tant .  This m a y  be done  in n!/(n - 2m)! m! 2"  ways. We must  now 
choose r of  the m pairs and t of  the remaining (n - 2m) elements to have F(x~) = + 1. 
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- 2m 
This may be done in ( 7 ) ( n  t ) ways. Finally, we must choose a value for f ( ~ ) ,  

which may be done in two ways. []  

Lemma 2.3,8. The number of functions f E ~ which satisfy the SAC of order 
(n - 3), and for which there exist exactly p pairs (x, y) for which f ({x ,  y}) = 1, and 
F(x) = - F(y) is 

(n 2m)! m! 2 p < 2 m < n  - -  

Proof. The number m of pairs (x, y) for which f({x, y}) = 1 must be at least p and 
at most the integer part of n/2. If we fix m, then we must first choose the m pairs 
(xj, y j), noting that the order within the pair is unimportant. This may be done in 
nt/(n - 2m)[ mt 2" ways. We must now choose p of the m pairs to have F(x) = -F(y ) ,  

and this may be done in ( 7 )  ways. We may then choose F(x) for one member of 

each of the m pairs (since then it is fixed for the other member). This may be done 
in 2" ways. We then choose F(x) for each of the remaining (n - 2m) elements, and 
finally choose f ( ~ ) .  This may be done in 2 "-2"+1 ways. Summing over m, we obtain 
the desired expression. []  

3. Preliminary Calculations 

We want to express f ( V  u {x}) in terms off(V).  We know that, given x and V, i f f  
satisfies the SAC of order (n - 3), then there is at most one z in V with f({x, z}) = 1. 
We first deal with the case where no such z exists. 

Proposition 3.1. 
further that x q~ V and that f({x, y}) = - 1 for all y ~ V. Then 

f ( V  u {x}) = (-- 1)lvlf(V)F(x). 

Proof. Since f satisfies the SAC of order (n - 3), we know that 

f (S)  = I-I f (T)  for all S ~_ 5e. 
T ~ _ S  
Irl<3 

Using this to calculate f (V w {x} ), we obtain 

f ( V w  {x}) = l-I f (T)  
T=_(vu{x}~ 

ITI<3 

= 1-[ ?(T) 1-I f ( T u { x } )  
T ~ V  T ~ _ V  
IYl<3 IY[<2 

= f (V)F(x)  I-I f ( {x ,  y}) 
y ~ V  

= f ( V ) V ( x ) ( -  1) Ivl 

--_ ( -  1)lvlf(V)F(x) 
as reauired. 

Suppose that f E ~s~ satisfies the SAC of order (n - 3). Suppose 

R 
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We turn now to the case where there is a unique element z in V with f ({x ,  z}) = 1. 

Proposition 3.2. Suppose that f ~ ~s~ satisfies the SAC of order (n - 3). Suppose 
further that x r V, and that f({x,  z}) = 1 (so f({x,  y}) = - 1 for all y ~ V, y ~ z). 
Then 

f ( V u  {x}) = (-1) lVl-af(V)F(x) .  

ProoL As in the p roof  of  Propos i t ion  3.1, we have 

f ( V u  {x}) = f(V)F(x) 1--I f({x,  y}) 
y ~ V  

= f (V)F(x) ( -  1) IVl-1 

= ( -  1)lvl-lf(V)F(x) 

as required. [ ]  

We are now able to produce  an expression for X(W) = Zw_wf (V)  in terms of 
the values of  f In order  to prove  this, we also need to produce  the corresponding 
expression for ~v=_ w ( -  l)lV~f(V) as well. 

Theorem 3.3. Suppose that W ~_ 6r and that f belongs to Aw(n, m). Let i denote the 
square root of - 1 and let 

Gw = f ( O )  f i  (1 + F(xj)F(yj) + i(F(xj) + F(yj))) ~ (1 + iF(xj)), 
j= l  j=2m+l 

then 

and 

f(V) = 9~(Gw) + ~(Gw) 
Vc_W 

( - 1 ) l v ~ f ( v )  = 9t(Gw) - 3 ( 6 w ) ,  
V c _ W  

where 9~(x) and ~(x) denote the real and imaoinary parts of x, respectively. 

Proof.  The  p roo f  is by induct ion on the size of  W. 
Firstly, we assume that  [W[ = 0, so that  W = 0 .  Then 

Gw = f (~) ,  ~ f(V) = f ( O ) ,  and ~ ( -  1)lvlf(v) = f ( j~) ,  
Vc_W Vc_W 

so we have the desired relation. 
N o w  suppose  the result true for all W with I WI < K, and  let W be such that  

I WI = K + 1. Choose  x E I4, and  let U = W\{x}. We split the p roof  into two cases. 
Either x = xj for some j with 2m + 1 < j < K + 1, or  x = xj or x = yj for some j 
w i t h l < j < m .  

Suppose  that  the first case holds. N o w  

f ( V ) =  ~] f ( V ) +  ~ f (Vu{x} ) .  
V~_W Vc_u  V~_U 
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By the inductive hypothesis, since I U I = K, we have 

f ( V )  = ~(Gv)  + 13(Gv). 
V~_U 

To calculate the second sum, note that in this case f({x,  y}) = - 1 for all y ~ U, so 
we may use Proposition 3.1 to obtain 

f ( V  u {x}) = ~ (-- 1)lvlf(V)F(x) 
Vc_U Vc_U 

= F(x) Y" 
Vc_U 

= F(x)OR(Gv) - 3(Gu)) 

So 

y, 

by the inductive hypothesis. 

f ( V )  = ~(Gu) + ~(Gv) + F(x)(ff{(Gv) - ~(Gv)) = ~(Gw) + ~(Gw), 
Vc_W 

since Gw = (1 + iF(x))G v in this case. 
We may now calculate ~ v ~  w ( -  1)lvlf(v) in the same way: 

(-1)lv~f(V) -- ~ (--1)lvlf(V) - ~ (--1)lv~f(Vw{x}) 
Vc_W Vc_U Vc_U 

and 

(-1)lvlf(V) ---- ~(Gv)  - ~(Gv). 
V_cU 

Using Proposition 3.1 again, we have 

y. ( -  ])lv~f(V u {x}) = F(x)(~(Gv) + ~(Gv)). 
V ~ U  

Hence 

(-- 1)lvlf(v) = (~(Go) - ~(Gv)) - F(x)(~(Gv) + ~(Gv)) 
Vc_W 

= ~ ( G w )  - ~ ( G w ) .  

We now turn to the case where x = xj or x = y~ for some j with 1 < j < m. 
Without loss of generality, let us assume that x = xl .  We write y for yl ,  U for 
W\{x ,  y}, Ux for U w {x} (=  W\{y}), and Uy for U u {y} (=  W\{x}). In the same 
way as before, we have 

~, f ( V ) =  ~ f t V ) +  ~, f ( V u { x } )  
Vc_W Vc--Uy V~--Uy 

and 

~_, f (V )  = ~(Gvy) + 3(Gv,)  = ~(Gv)  + ~(Gv) + F(y)(91(Gv) - 3(Gv)), 
Vc--u~ 

since Gv~ = (1 + iF(y))Gv. 
By Propositions 3.1 and 3.2, we know that 

S ( -  1)lVlf(V)F(x) if y r V, 
f ( V u  {x})= ~.(_l)lVt_,f(V)F(x ) ff y ~  V. 
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So we have 

f ( V u { x } ) =  
Vc_Uy 

( -  1)lvlf(V)F(x) + ~, ( -  1)lvl-lf(V)F(x) 

y c V  

= F(x) Z (-1)Ivy(V) + F(x) Z (-1)lvlf( VU {Y}) 
V ~ U  V ~ U  

= F(x)(~(Gv) - 3(Gu) ) + F(x) ~ ( -  1)lv/f(Vu {y}). 
V_CO 

Applying Proposition 3.1 again, since f({y,z}) = - 1 for all z e U, we have 

Z ( -  1)lv~f( v u {y}) = ~ f (V)F(y)  = F(y)(~(Gv) + ~(Gu) ). 
V~--U V~_U 

So 

Z 
Vc--Uy 

and, therefore, 

E 
V ~ W  

f ( V  w {x}) = F(x)(~(Gu) - .~(Gv)) + F(x)F(y)(9~(Gv) + -~(Gv)) 

f (V)  = ~(Gv) + 3(Gv) + (F(x) + F(y))(~(Gv) - ..~(Gv)) 

+ F(x)F(Y)(9~(Gv) + -~(Gv)) 

= 9~(Gw) + ~(Gw), 

since, in this case, Gw = (1 + F(x)F(y) + i(F(x) + F(y)))G u. 
Similarly, 

and 

( - l ) lV~(v)  = ~ (-l)lVlf(V) - ~ ( -1) lv l f (Vw{x})  
Vc--W Vc_Uy Vc_Uy 

Z 
Vc-Uy 

( -  1FY(v) = ~ (Gu)  - Z(Gu) 

= 9~(Gv) - ~ ( G v )  - F ( y ) ( ~ ( G v )  + ~ ( G v ) ) ,  

since Gu~ = (1 + iF(y))Gv). 
We also have, by Propositions 3.1 and 3.2, 

( - -1) lv l f (Vu{x})= ~ f(V)F(x)--  f (V)F(x) 
V~_Uy 
y~V 

= F(x) ~ f ( V ) -  F(x) ~. f ( V u  {y}) 
V~--U V~--U 

= F(x)OR(Gv) + 3(Gu)) - F(x) ~" f ( V u  {y}). 
Vc_U 

Applying Proposition 3.1 again, since f({y,  z}) = - 1 for all z e U, we have 

f ( V w { y } ) =  ~ (--1)lvlf(V)F(y) 
Vc--U V ~ U  

= F(y)(~(Gv) -- ~(Gv)). 
So 

. .Z. ( -  1)lvlf(V u {x}) = F(x)(~(Gv) + ..~(Gv) ) - F(x)F(y)(~(Gv) - .~(Gv) ) 
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and, therefore, 

( -  l)lV/f(V) = ~R(Gv) - ~(Gv) - (F(x) + F(y))Ot(Gv) + ~(Gv)) 
v ~ _ w  

+ F(x)F(y)(~(Gv) - ~(Gv)) 

= ~ ( G w )  - ~ ( G w ) ,  

since, in this ease, Gw = (1 + F(x)F(y) + i(F(x) + F(y)))G v. [] 

Corollary 3.4. Suppose that f belonos to Arc(n, m). Suppose further that, for some j, 
1 <_j <_ m, we have F(xj) = -F(y j ) .  Then ~,v=_wf(V) = O. 

Proof. Suppose, without loss of generality, that F(x~) = -F(yO.  Then by Theorem 
3.3, ~v=_vrf(V) = 9t(G) + 3(O), where 

IWl 
G = f ( O )  f i  (1 + F(xj)F(yj) + i(F(x~) + F(yj))) 1--I (1 + iF(xj)). 

j=l  j=2m+l 

However ,  1 + F(xt)F(y t) + i(F(xt) + F(yt ) )  = 0,since F(x~) = - F ( y t ) , s o  G = 0. 
Hence ~ v = w  f (V)  = O. [] 

Corollary 3.5. Suppose that f belongs to Cw(n, m, r, t, q). Write k for t WI; then 

I f ( ~ ) ( - -  1)~/42("+k~/2, q -= 0 (mod 4), 

/ f ( J ~ ) ( -  l)(q-t)/42("+k+x)/2' q = 1 (mod 4), 

2 f (V)  "x 

v=_vr [ f ( ~ ) ( -  1)(q-2l/a2(m+k)/2, q --= 2 (mod 4), 
/ 
~.0, q = 3 (mod 4). 

P r o o f .  

then 
~2(1 + i) if 

(1 + F(x~)F(yj) + ig(x~) + iF(yj)) = [2(1 - i) if 

and if 2m + 1 _ n, then 

J'l + i  if F(x~)= 1, 
(1 + iF(xfl) 

- - i  if F ( F j ) = - I .  
So 

Let  G be defined as above; we examine each term in turn. Now if 1 < j _ m, 

F(x~) = 1, 
F(xj) = -- 1 

G = f(g0)2"(l  + i ) '2" - ' (1  - i )"- ' (1  + i)'(1 - i) k -=" - '  

= f ( ~ ) 2 = ( 1  + i)'+'(1 _ i)k-=-,-, 

= f ( ~ ) 2 k - ' - ' ( 1  + i) 2"+z'+"-k. 

Now if 0 < b _< 3, then 

I ( - 4 )  if b = 0 ,  

9t(1 + i) '*a+b + 3(1 + i) 4a+b = "-~ 2 ( -4 )~  
if b 1, 

if b = 3 .  
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Now 2r + 2t + m -  k = q, and so 

I f (o )2k- ' - ' ( - -4 )  ~/4 if q -- 0 

J f (~ )2k - ' - t+ l ( - -4 )  tq-l~/4 if q = 1 
Z f (V)  

Vc_W [fO ( S Z j ) 2 k - r - t + l ( - 4 ) t q - 2 ) / 4 i f q - 2 i f  q = 3  

( f ( f ~ ) ( -  1)q/42tm+k)/2 if q --= 0 

f(~)(--1)(q-1)/42("+k+1)/2 if q -= 1 

f(i2~l)(-l)(q-2)/g2(m+k)/Z if q -- 2 

0 if q - - 3  

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4) 

S. Lloyd 

as required. [] 

4. Balance 

We use the results of the preceding section to obtain necessary and sufficient 
conditions for a function satisfying the SAC of order (n - 3) to be balanced. 

Theorem 4.1. Suppose that f ~ :~s~ satisfies the SAC of order (n - 3). Then f is 
balanced if and only i f  either 

(i) there exist x and y with f ({x ,  y}) = 1 and F(x) = - F ( y )  or 
(ii) f belongs to C(n, m, r, t, q) and q - 3 (rood 4). 

Proof. Since f satisfies the SAC of order (n - 3), we know that either (i) holds or 
there exist m, r, t, and q such that f belongs to C(n, m, r, t, q). We recall that f is 
balanced if and only if ~ v ~ 6~ f(V) = 0. If (i) holds, then, by Corollary 3.4, we know 
that Zv~_s~f(V) = 0. If (ii) holds, then, by Corollary 3.5, we have 

I f(~)(-1)q/42(~+~/2 if q --- 0 (mod4), 

v ~'f(V)~s~ = ~jf(i~)(-1)(q-1)/42('+-+l)/2 if q - 1 (mod4), 

- L f ( O ) ( -  1)(q-2)/a2(m+*)/2 ifif q -  2 ( m o d 4 ) , q  _= 3 (mod 4). 

So, in this case, f is balanced if and only if q -- 3 (mod 4), since f(iZi) = + l or 
- 1 .  [] 

Theorem 4.2. The number of functions f ~ ~s~ which are balanced and satisfy the 
SAC of order (n - 3) is 

n! n! 2n-2m+l(2 m -- 1) + ~ 2 n-2m. 
o<2~<~ (n -- 2m)! m! o~2m<n (n --  2m)! m! 

m-~n (rood 2) 
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P r o o L  

4.1 is 
By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem 

E E (n 2m)[ m! 2 ~ 2 p < n  2 p < _ 2 m < n  - -  

= E (n 2m)!m[ E 2 ~ 2 " < n  - -  l ~ p < m  

n! 
2 <2zL.<. (n - 2m)! m! 

n~ 

(n 2m)[ m! O < 2 m < n  - -  

2"-2"+1(2 " -  I) 

2n-2m+l(2 * -  I). 

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 4.1 is 

2n! (m)(n--t2m) 
s ~ Y" (n 2m)! m! 2* O < 2 r a ' ~ n  O < r < _ m  O ' ~ t < n - 2 m  - -  r 

q------ 3 (rood 4) 

Nowifm -= n(mod 2),then q ~ 3(mod 4), while ifm ~ n(mod 2),thenq -= 3(mod 4) 
if and only if t -= �89 - m + n - 2r) (mod 2). So the number of functions satisfying 
(ii) is 

2hi ~ _  ( 7 )  ~ (n  2 2 m )  E (n 2m)! m! 2 m o z , z m  ~ " O<2ra<_n - -  O < t < n - 2 m  
r a i n  (rood 2) t = - - ( 3 - r a + n - 2 r ) / 2  (raod 2} 

We shall need the well-known combinatorial identity 

O ~ j ~ N  O ~ j ~ N  
j " l  (rood 2) j " 0  (rood 2) 

if N > 0. Applying this to the sum over t, we see that if 2m < n, then 

t = - - ( 3 - m + n - 2 r ) / 2  (rood 2) 

In this case, therefore, we deduce that 

q " 3 (rood 4) 

If n = 2m, then t must be zero, and so q - 3 (rood 4) if and only if r - �89 + m) 
(mod 2). In this case, therefore, we have (m) 

O<_r<_m O ~ t ~ n - 2 m  
q ------ 3 (mod 4) q ~- 3 (rood 4) 

(:) 
O<:r<m 

q ~ 3 (mod 4.) 
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(m) 
O<r<m 

r=--(3+m)/2 (rood 2) 

2 m - 1 .  

However,  since n = 2m, this is the same as 2 n-m-t. Hence the sum over r and t is 
the same in both  cases. So the number  of functions satisfying (ii) is 

2n, ~ ( 7 )  ~ (n  --t 2m ) 
(n - 2m)! m! 2 m O_<r<m O_<t<n-em O<_2ra~n 

m ~ n ( m o d 2 )  \ / q=--3(mod4) 

2n! 
= O<2m<_n~ (n - 2m)! m! 2" 2"-m-1 

m ~ n (mod 2 ) 

n~ 
2 n - 2 m .  

= ~ (n 2m)! m! [ ]  O<_2m<n 
m ~ n (mod 2) 

5. Correlation Immunity  

We now obtain necessary and sufficient condit ions for a function satisfying the SAC 
of order  (n - 3) to be correlat ion immune. 

Proposit ion 5.1. Suppose f ~ ~se satisfies the SAC of order (n - 3). Suppose there 
are exactly p pairs (x i, yj) such that f({xj ,  yj}) = 1 and F(xi) = -F(y j ) .  Then f is 
exactly (p - 1)th-order correlation immune. 

Proof.  By Corol lary  3.4, X ( W ) =  0 whenever there exists j, 1 _ j  _< p, with xj, 
yj e W. Any W with I WI > n - p must contain at least one such pair, so X ( W )  = 0 
for any such W (including 6a). By Lemma 2.2.6, therefore, f is at least (p - 1)th-order 
correlat ion immune. 

Let U = 6e\{Xl, y~, Y2 . . . . .  yp}.  Then  U contains no pairs (x~, yj), and so Gu ~ O. 
Let us write x for Xl and y for Yl, and let Ux = U u {x} and Uy = U u {y}. Since 
F(x) = - F(y), we may assume without loss of generality that  F(x) = 1 and F(y) = 
- 1. Now 

SO 

Gux = (1 + iF(x))Gt~ = (1 + i)Gv, 

X(Ux) = !l~(G v) + ~(G U) + 9~(Gv) - ~(Gu) = 29~(Gv). 

On the other  hand, 

Guy = (1 + iF(y))G v = (1 - i)Gv, 

SO 

X(Uy) = ~R(Gv) + ~(Gu) - 9~(Gv) + ~(Gu) = 2~(Gv). 
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I f f  is p t h - o r d e r  co r re la t ion  immune ,  then  X(Ux) = X(Uy) = 0. This  forces Gu = 0, 

which is no t  true. Hence  f is no t  p t h - o r d e r  cor re la t ion  immune.  [ ]  

W e  now prove  some results  on  the values of  X(W).  In  the four l emmas  which 

follow, we assume tha t  f be longs  to Cwj(n, m i, r i, tj, q~) f o r j  = 1, 2 and  tha t  I Wjl = kj 
for j = 1, 2. W e  calcula te  the re la t ionsh ip  between X(W1) and  X(W2) for var ious  
values of  Wt and  W 2. The  proofs  of  these results  rely heavi ly  on  Coro l l a ry  3.5. 

L e m m a  5.2. Suppose that W 1 ~_ 6e and that x, y �9 W 1 are such that f (  {x, y}) = + 1. 

Let W 2 = Wl\{x},  then X(W2) = �89 

Proof.  Suppose  first tha t  F(x) = + 1. Then  

k 2 = k~ - 1, m 2 = m t - 1, r z = r l  - 1, t 2 = t t + 1, q2 = q ~ ,  

and  m2 + k2 --  m i  + k~ - 2, so X(W2) = �89 Suppose  now tha t  F(x) = - 1. 
Then  

k 2 = k~ - 1, m 2 = m t - 1, r2 = r l ,  t2 = t l ,  q2 = q l ,  

and  m 2 + k 2 = m I + k 1 - 2, so X(W2) = �89 [] 

L e m m a  5 . 3 .  

all y e W 1, and that F(x) = + 1. Let W 2 = Wl\{X }. Then 
Suppose that W 1 ~_ 6" and that x e W 1 is such that f ( {x ,  y}) = - 1 for 

[ ~ ,  q l -- 0 (rood 4), 

2, q l - 1  (mod4) ,  

X(W1)/X(W2) = 1, ql  = 2 (rood 4), 

0, q l - 3  (mod4) .  

Proof .  By C o r o l l a r y  3.5, 

I f0~i ) (  - 1) ~l/42('nt+kl)/2, ql  = 0 

J f ( ~ ) ( - 1 )  (q'-l)/42(ml+kl+1~/2, ql - 1 
X(W1) 

I f ( ~ ) ( - - 1 )  (ql-2)/42('n~ +kO/2, qt -- 2 

L 0, ql  -= 3 

Since F(x) = 1, we have 

k 2 -- k t - 1, m 2 = ml ,  r 2 = r l ,  t 2 = t I - 1, 

and  therefore  
I f ( O ) ( -  1) q2/42t'n2 +k2)/2, q2 - 0 

J f ( ~ ) ( - 1 )  ('~-t)/42tm~+k~+1)/2, q2 -- 1 
X(W2) / f ( ~ ) ( - - 1 )  tq2-2)/42(m2+k2)/2, q2 =- 2 

L 0, q2 - 3  

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4). 

q2 = ql  - 1, 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4), 
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Hence 

f f ( ~ ) ( _  1)(~1-1)/42~m, +k1-1)/2, q2 ~ 0 
f ( ~ ) ( _ _  1)~q, -2)/42(ml +kD/2, q2 =- 1 

f ( ~ ) ( _  1)~q,-3)/42(*1 +k,-1)/2, q2 -- 2 

O, q 2 - - 3  

t 
'O, ql = 0 

f ( j ~ ) ( _  1)tq,-1~/42t.,, +k 1-1)/2, ql - 1 

f ( ~ ) ( _  1)tq,-2)/42tm, +k,)/2, ql -- 2 

. f ( ~ ) ( - - 1 )  ~q'-a)/g2tm' +k'-l)/2, ql -- 3 

o o, qx - 0 ( m o d  4), 

2, q l -  1 (rood4),  

X ( W I ) / X ( W 2 )  = 1, ql - 2 (rood 4), 

O, q l - 3  (mod4) .  

(mod 4), 

(mod 4), 

(mod 4), 

(rood 4), 

(mod 4), 

(mod 4), 

(mod 4), 

(mod 4). 

[ ]  

Lemma 5.4. Suppose that W~ ~_ 5r and that x �9 I4/1 is such that 

all y �9 W 1, and that F(x)  = - 1. Le t  W 2 = W l \ { x  }. Then 

f 
l, ql - 0 (rood 4), 

2, q l - 1  (mod4) ,  
x ( w l ) / x ( w ~ )  = 

~ ,  q l - 2  (mod4) ,  

O, ql -= 3 (mod4) .  

y ( { x ,  y} )  = - 1 for 

Proof. This may be proved in a similar way to Lemma 5.3, using Corol lary 3.5, 
and noting that 

k 2 -- k~ - 1, m2 -- ml, r2 -- r l ,  t2 = tl ,  q2 = ql + 1. [ ]  

Corollary 5.5. Suppose that W 1 ~_ 6 e and that x �9 W 1 is such that f ({x,  y}) = - 1 
f o r  all y �9 W 1. Le t  W 2 = Wl\{X}. Then 

X ( W 2 ) = � 8 9  i f  and only i f  q~ = 1 (mod4) .  

Lemma 5.6. 

and F(x)  = F(y)  = + 1. Le t  W 2 = W l \ { x ,  y}, then 

I o o, q l = 0 (mod 4), 

22, ql = 1 (mod4) ,  

X(W1) /X (W2)  = / 2, ql = 2 (mod 4), 

[ 0, q 1 = 3  (mod4) .  

Suppose that W 1 ~_ 6 ~ and that x, y e W 1 are such that f (  {x, y}) = + 1, 
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Proof. This m a y  be proved in a similar way to L e m m a  5.3, using Corol lary  3.5, 
and not ing that  

kz = k~ - 2, m2 = mt - 1, r 2 = r x - 1, t2 = t l ,  q2 = qx - 1. [ ]  

Lemma 5.7. 
and V(x) = F(y) = - 1. Let W 2 = Wl\{x,  y}, then 

i 
2, ql = 0 (mod 4), 

22, ql = 1 (mod4) ,  
x(w,)/x(w~) = 

[ oo, q x -= 2 (rood 4), 

O, ql =- 3 (rood 4). 

Suppose that W~ ~ 5r and that x, y ~ I4"1 are such that f (  {x, y}) = + 1, 

Proof. This may  be proved in a similar way to Lemma 5.3, using Corol lary  3.5, 
and not ing that  

k 2 = k  1 - 2 ,  m 2 = m l -  1, r 2 = r t ,  t 2 = t l ,  q 2 = q x +  1. [ ]  

Corollary 5.8. Suppose that W 1 ~_ 6 a and that x, y ~ W1 are such that f ( {x ,y} )  = 
+ 1. Let W2 = Wl\{x,  y}, then 

x(w~) = ~ x(w~) i f  and only i f  ql ~ 1 (rood 4). 

Proposition 5.9. Suppose that f belongs to C(n, m, r, t, q). I f  2m < n and q ~ 1 
(rood 4), then f is not correlation immune. 

Proof. We must  find W with I WI = n - 1, and X ( W )  # �89 Let W = 3ek{x,}. 
Since 2m < n, we may  apply Corol lary  5.5, with Wt = S~. Since q ~ 1 (mod 4), we 
deduce that  X ( W )  ~ �89 So f is not  correlat ion immune. [ ]  

Proposition 5.10. Suppose that f belongs to C(2m, m, r, O, q). I f  q ~ 1 (mod 4), then 
f is exactly first-order correlation immune. 

Proof. We show first that  if l WI = n - 1, then X ( W )  = �89 Let W be such that  
I WI = n - 1. Then  either W = Aa\{xj} for some j or  W = 6e\{yj} for some j. By 
Lemma 5.2, therefore, with Wt = S~, X(W)  = �89 So we have shown that  f is 
at least first-order correlat ion immune. We now need to find W with I WI --- n - 2, 
and X(W)  # (1/22)X(60. We take W = 6e \{x l ,  Yl}. Then we may  use Corol lary  
5.8, with W1 = A a. Since q ~ 1 (mod 4), X ( W )  ~ (1/22)X(~).  So f is not  second- 
order  correlat ion immune. 

We turn now to the case where q = 1 (mod 4). 

Lemma 5.11. Suppose that f belongs to C(n, m, r, t, q) and that q - 1 (rood 4). Then 
f is first-order correlation immune. 
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Proof. We must  show that  X(W) = �89 for any W with ]WI = n - 1. Choose  
any such W. Then we have the following possibilities for W: 

W =  6~\{xj} f o r s o m e j ,  1 < j  < m, or  

W = 6:\{yj} for some j, 1 < j  < m, or  

W = 6: \{xj}  for somej ,  2 m + l < j < n .  

In either of  the first two cases, we may apply Lemma 5.2, to obtain X(W) = �89 
while in the third case we may  apply Corol lary  5.5 to obtain  X(W) = �89 Hence 
f is first-order correlat ion immune. [ ]  

[ ,emma 5.12. Suppose that f belongs to C(n, m, r, t, q) and that q - 1 (mod 4). Then 
f is second-order correlation immune if  and only if  2m > n - 1. 

Proof. We already know that  f is first-order correlat ion immune. We must  show 
that X(W) = (1/22)X(~T) for any W with I WI = n - 2. Choose  any such W. Then 
we have the following possibilities for W: 

l / l / = ~ \ { x j ,  Yk} , jv~k,  l < j , k < m ,  

W = ~ \ { x j ,  xk}, j ~ k ,  l < _ j , k < m ,  

W=~a:\{yj, yk}, jv~k,  l < j , k < m ,  

Hi = S#\{xj, yj}, 1 < j < m, 

W=6: \{Xj ,  Xk} ,  l < j < m ,  2 m + l < k < n ,  

W = 6 : \ { y j ,  Xk}, l < j < m ,  2 m + l < k < n ,  

W=6P\{Xj,  Xk},  j ~ k ,  2 m +  l < j , k < n .  

In the first case, we may  first apply Lemma 5.2 with I4:1 = 6e and W2 = 6:\{x~}, 
and then apply Lemma 5.2 again with W1 = 6:\{xj} and I4:2 = W t o  obtain X(W) = 
�89 ) = (1 /22)X(~)  as required. This may  also be done in the second and 
third cases. In  the fourth case, we may  apply Corol lary  5.8, with W~ = S#, to obtain  
X(W) = (1/22)X(6:), as required. In the fifth and sixth cases, we may  proceed in a 
similar manner  as in the first case, applying Lemma 5.2, and then Corol lary  5.5 to 
obtain the result (noting that  q is unchanged after applying Lemma 5.2). When  we 
come to the seventh case, however, we see that  if we apply Corol lary  5.5 with 
W1 = ~ and W 2 = ~\{xj} ,  we obtain X(W2) = �89 ), but  when we come to apply 
Corol lary  5.5 again with W~ = ~T\{x~} and W 2 --- W, we now have q~ = 0 (mod 4) 
or  qi = 2 (mod 4), according as j < 2m t + tl or  j > 2m t + ti ,  and so X(W) 
(1/22)X(6 ~) in this case. This case can only occur when 2m + 1 < n, so f is second- 
order  correlat ion immune if and only if 2m > n - 1. [ ]  

Lemma 5.13. Suppose that f belonos to C(n, m, r, t, q) and that q - 1 (mod 4). Then 
f is third-order correlation immune if  and only if  2m = n. 

Proof. We already know that f is second-order  correlat ion immune, since 2m > 
n - 1. We must  show that  X(W) = (1/23)X(<5 P) for any W with I WI = n - 3. Let W 
be such that I WI = n - 3. If  W = 6 : \ { x  s, xk, xl}, with j, k, and l all different, and 
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1 < j, k, l < m, then we may apply Lemma 5.2 three times to obtain the result. The 
same method will also work in the cases W = 6e\{xj, Xk, YZ}, W = 6r Yk, Y~}, 
and W = 6e\{yj, Yk, Yt}. The cases W = Y\{x~, Yi, xk} and W = 6~\{xj, yj, Yk}, 
where 1 < j, k < m, may each be dealt with using first Corollary 5.8 and then Lemma 
5.2. This means that when 2m = n, f is third-order correlation immune. 

When, however, 2m < n, we must consider the case W = 6a\{x:,  Yl, x,}. We 
apply Corollary 5.8 with W~ = 6 a and I4:2 = 6a\{xl ,  Yl }, and then apply Corollary 
5.5 with I4:1 = ~e\{x~, y~} and I4:2 = W. However, this time either q~ = 0 (mod 4) 
or q: = 2 (m0d 4) according as r > 0 or r = 0. So in this case, f is not third-order 
correlation immune. 

Lemma 5.14. Suppose that f belongs to C(n, m, r, t, q) and that q - 1 (rood 4). Then 
f is not fourth-order correlation immune. 

Proof. We shall produce W with X(W)  -~ (1/24)X(6~). We take 

W = 6e\{x:,  y~, x2, Yz}. 

Let us also denote ff'\{~x 1, y: } by U. Then, by Corollary 5.8, we see that X(U) = 
(1/22)X(6e), since qi - 1 (mod 4). We now apply Corollary 5.8 with W1 = U. This 
time, however, we have q: = 0 (mod 4) or ql = 2 (mod 4) (according as r > 1 or 
not), so X(W)  :~ (1/2z)X(U), and therefore X ( W )  ~ (1/24)X(~). Hence f is not 
fourth-order correlation immune. 

We thus have, combining the preceding four lemmas, 

Corollary 5.15. Suppose that f belongs to C(n, m, r, t, q) and that q - 1 (mod 4). 
Then 

(i) i f  2m < n - l, then f is exactly first-order correlation immune, 
(ii) i f  2m = n - 1, then f is exactly second-order correlation immune, and 

(iii) i f  2m = n, then f is exactly third-order correlation immune. 

Combining all the results of this section, we have the following theorems and 
corollaries. 

Theorem 5.16. l f  f G ~s~ satisfies the SAC of order (n - 3), then f is not correlation 
immune if  and only i f  either 

(i) there is exactly one pair (x, y) with f({x,  y}) = 1 and F(x) = - F ( y )  or 
(ii) f belongs to C(n, m, r, t, q) and 2m < n and q ~ 1 (mod 4). 

Corollary 5.17. 
are not correlation immune is 

n! 
V 2 n - 2 m + l  + 

2_<~<.  (n - 2m)! (m - 1)! 

The number of functions satisfying the SAC of order (n - 3) which 

n~ 
+ o_<2.,<.~ (n - 2m)! m! 2"-2" 

m ~ n (rood 4) 

n~ 
(n 2m)! m!2"-2=+1 

O~2m<n 
m =n (rood 4) 
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Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem 
5.16 is 

n! n! 
2 n - 2 " + l m  2 n - 2 " + 1  

2_<~_<. (n - 2m)! m! = 292"_<.~ (n - 2m)! (m - 1)! " 

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 5.16 is 

2n[ ( 7 ) ( n - - 2 m )  
Z E Z (n 2m)!m! 2" O_<2m<n O<_r<_m O < t < ~ n - 2 "  - -  t 

q ~ 1 (rood 4) 

If m - n (mod 2), then q ~ 1 (mod 4), while if m ~ n (mod 4), then q ~ 1 (rood 4) if 
and only if t - �89 - m + n - 2r) (rood 2). So the number of functions satisfying 
(ii) is 

2n[ ( m ) ( n - - t 2 m )  
Z Z E (n 2m)!m!2" O_<2m<n O < _ r < m O < _ t < n - 2 "  - -  

" ~ n (rood 4) 

2hi ( m ) ( n - - t 2 m )  
+ E Z ~ (n 2m)!m!2" r O < 2 " < n  O ' ~ r < m  O<_t<_n-2"  - -  

m ~ n (rood 4) q------ 3 (rood 4) 

2n! 2n! 
: O_<2m<nE (n - 2m)! m! 2" 2"-" + o___2"<.~ (n - 2m)! m[ 2" 2"-"-1 

m=--n (rood 4) m * n  (rood 4) 

n! n! 
V 2 n - 2 m + l  + ~ 2 n - 2 m .  [] 

(n 2m)!m! ~ (n 2m)!m! O < 2 m < n  - -  O < 2 m < n  - -  
m=--n (rood 4) m~.n (mod 4.) 

T he orem 5.18. I f  f �9 ~ satisfies the SAC of order (n - 3), then f is exactly 
first-order correlation immune if  and only if  one of the following holds: 

(i) there are exactly two pairs (x, y) with f ({x ,  y}) = 1 and F(x) = - F ( y )  or 
(ii) f belongs to C(n, m, r, t, q) and 2m = n and q ~ 1 (mod 4) or 

(iii) f belongs to C(n, m, r, t, q) and 2m < n - 1 and q - 1 (mod 4). 

Corol lary  5.19. 
are exactly first-order correlation immune is 

The number of functions satisfying the SAC of order (n - 3) which 

T(n) 

T(n) + - -  

where 

if  n ~ l  (mod2), 

2n! 
/f n = O  (rood4), 

(n/2)! 

n! 
i f  n = 2  (rood4), (n/2)~ T(n) + - -  

n! n! 
T(n) = 4<~2~. (n - 2m)! (m - 2)v 2"-2" + 0_<2m<.-1~ (n -- 2m)! m! 

m ~ n (moll 4) 

n - -  2111. 
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Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem 
5.18 is 

n, 2n_2"+ 1 ( 2 )  = ~ n, 2"-z" E 
(n 2m)!m! a ~ ' ~ . ( n  2m)!(m 2)! 

o 

4 < _ 2 " ~ n  - -  - -  - -  

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 5.18 is 

~ m! 2" " O < _ r < _ m  

q ~ 1 (rood 4) 

Now q = 2r - m, so if m = 0 (rood 2), then q ~ 1 (mod 4). If m = l (rood 4), then 
q ~ 1 (mod 4) if and only if r = �89 + m) (rood 2). So the number of functions 
satisfying (ii) is 

"2(2m)! 2" if n = 0 (rood 4), 
m! 2" 

o r  

2(2m)! , ' _1  
z if n = 2  (mod4), 

0 if n - 1  (mod2), 

2n! 
if n - 0  (mod4), 

(n/2)! 

n! 
if n - 2  (rood4), 

(n/2)~ 

0 if n - 1  (rood2). 

By Lemma 2.3.7, the number of functions satisfying condition (iii) of Theorem 5.18 
is 

2 • ~ (n 2m)!mt 2" O ~ 2 " < n - I  O ~ r ~ g m  O < _ t ~ n - 2 "  - -  

q ------ 1 (rood 4.) 

If m - n (rood 2), then q ~ 1 (mod 4), while if m ~ n (mod 4), then q - 1 (mod 4) if 
and only if t - �89 - m + n - 2r)(mod 2). So the number of functions satisfying (iii) 
is 

:~ 
E E E (n 2m)!m! 2" O < _ 2 " < n - 1 0 ~ r ~ "  O ~ t ~ n - 2 m  - -  

" ~ n (rood 4.) q ------ 1 (mod 4) 

2n! 
= ~ (n 2m)! m! 2" 2"- ' -1  

O ~ 2 m < n - 1  
" ~ n (rood 4-) 

n! 
2 n -2". 

= ~ (n 2m)t m! [] O ~ g 2 m < n - 1  
" ~ n (rood 4) 
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Theorem 5.20. I f  f ~ : ~  satisfies the SAC of order (n - 3), then f is exactly 
second-order correlation immune if  and only i f  either 

(i) there are exactly three pairs (x, y) with f ({x ,  y}) = 1 and F(x) = - F ( y )  or 
(ii) f belongs to C(n, m, r, t, q) and 2m = n - 1 and q = 1 (mod 4). 

Corollary 5.21. 
are exactly second-order correlation immune is 

2n! 
r(n) + ((n - 1)/2)! i f  n = 1 

r(n) otherwise, 

where, here, 

The number of functions satisfying the SAC of order (n - 3) which 

(mod 4), 

n~ 
T(n) = 6 < 2 m < n E  3(n - 2m)! (m - 3)! 2"-z"" 

Proof. By Lemma 2.3.8, the number  of functions satisfying condition (i) of Theorem 
5.20 is 

n, 2n_2=+1 (m") n! 2n_2,,. 
(n 2m)!m! \ ~ ]  = ~ 3(n 2m)!(m 3)! 6 < 2 m < n  - -  6 < 2 m < n  - -  - -  

By Lemma 2.3.7, if n = 2m + 1, then the number  of functions satisfying condit ion 
(ii) of Theorem 5.20 is 

2 ( 2 m +  1 ) ! ( 7 ) ( I )  
E Z m ! 2 "  " O <_r<_ra O_<t_<l 

q--= 1 (mod 4)  

In this case, q = 2r + 2t - m - l, so if m -= I (mod 2), then q ~ 1 (mod 4), while if 
m - 0 (mod 2), then q - 1 (mod 4) if and only if t =- �89 + m - 2r) (rood 2). So the 
number  of functions satisfying (ii) is 

I 
0 if m - l ( m o d 2 ) ,  

2(2m__+ 1)! if m - 0 (mod 2). [ ]  
L m! 

Theorem 5.22. I f  f ~ z ~  satisfies the SAC of order (n - 3), then f is exactly 
third-order correlation immune if  and only i f  either 

(i) there are exactly four pairs (x, y) with f ({x,  y}) = 1 and F(x) = - F ( y )  or 
(ii) f belongs to C(n, m, r, t, q) and 2m = n and q - l (mod 4). 

Corollary 5.23. The number of functions satisfying the SAC of order (n - 3) which 
are exactly third-order correlation immune is 

f (2m)! T(n) + m--~-, i f  n -  2 (rood4),  

T(n) otherwise, 
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where, here, 

n! 
2 n - 2 m - 2  

T(n) = 8~2m~n~'~ 3(n - 2m)! (m - 4)! " 

Proof.  By Lemma 2.3.8, the number  of functions satisfying condition (i) of Theorem 
5.22 is 

s < ~ ,  (n - 2m)!m! \ 4 /  = s<2m<.E 3(n - 2m)l (m - 4)! " 

By Lemma 2.3.7, if n = 2m, then the number  of functions satisfying condi t ion (ii) of 
Theorem 5.22 is 

~ m! 2 m " O_<r_<m 
q ~ 1 (rood 4.) 

In this case, q = 2r - m, so if m - 0 (mod 2), then q ~ 1 (mod 4), while if m - 1 
(mod 2), then q -= 1 (rood 4) if and only if r - �89 + m) (mod 2). So the number  of 
functions satisfying (ii) is 

I 
0 if m = 0  (mod2) ,  

(2m)! 
[ .  m! if m - 1  (mod2) .  [ ]  

Theorem 5.24. I f  f ~ ~s~ satisfies the SAC of order (n - 3), then f is pth-order 
correlation immune (p > 3) i f  and only i f  there are exactly (p + 1) pairs (x, 3,) with 
f ( {x ,  y}) = 1 and F(x) = -F(y ) .  

Corollary 5.25. The number of functions satisfying the SAC of order (n - 3) which 
are exactly pth-order correlation immune (p > 3) is 

~" (n 2m)! m! 2"-2m+1 " 2p<2m<_n -- 

Proof.  Immediate  from Lemma 2.3.8 and Theorem 5.24. [] 

6. Balance and Correlation Immunity 

Theorem 6.1. l f  f ~ ~ satisfies the SAC of order (n - 3), then f is both balanced 
and correlation immune if  and only i f  either 

(i) there exist at least two pairs (x, y) such that f (  {x, y}) = 1 and F(x) = - F(y) or 
(ii) f belongs to C(n, m, r, t, q) and n = 2m and q - 3 (mod 4). 

Theorem 6.2. The number of functions satisfyino the SAC of order (n - 3) which 



1 3 0  S. Lloyd 

are also balanced and correlation immune is 

f n! 

n! 2n-2"+1(2" -- 1 - m) + - -  
(n 2m)! m! 0 __< 2m _< n - -  (n/2)! 

n! 2"-2=+1(2" -- 1 -- m) 
(n 2m)! m! O < 2 " < n  - -  

if n - 2  (mod4), 

otherwise. 

Proof. 
6.1 is 

By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem 

4 < 2 p < _ n  2p<_2m<_n ( - -  2m)! m ]  

= Y', 2 (n 2m)!m! 4 < _ 2 m ~ n  2 ~ p < _ m  

n! 
= 4~2"_<.~ (n - 2m)! m! 2"-2m+1(2" -- I -- m) 

n! 
= O_~2m~.Z (n --  2m)! m! 2 " - 2 " §  --  1 - -  m). 

By Lemma 2.3.7, if n = 2m, then the number of functions satisfying condition (ii) of 
Theorem 6.1 is 

2(2m), (m'~ 

o~,<_,, m! 2" \rJ" 
q ------ 3 ( raod 4 )  

Since n = 2m, we have q = 2r - m, so, for q - 3 (mod 4), we must have m - 1 
(mod 2) and r - �89 + m) (mod 2). So the number of functions satisfying (ii) is 0 if 
m - 0 (rood 2) and 

2(2m)' ( 7 )  2(2m" 2"-1 (2m,, 
m!2"  ~ = m!2  = - m.t O<_r<m 

q------ 3 (rood 4 )  

if m - 1 (mod 2). []  

7. Conclus ions  

In Table 1 we present some actual values of the numbers of functions derived above. 
All numbers in the table refer to functions satisfying the SAC of order (n - 3), so, 
for example, the column labelled "Balanced" contains the numbers of functions 
which are balanced and satisfy the SAC of order (n - 3). The final column shows 
the proportion of functions satisfying the SAC of order (n - 3) which are both 
balanced and correlation immune, and we see that this proportion is increasing 
rapidly as n increases. 

From the table we see that there is indee~l a sufficient supply of suitable functions. 
We note that the proportion of functions satisfying the SAC of order (n - 3) which 
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Table 1. Numbers of functions satisfying the SAC of order (n - 3) and other criteria. 
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Correlation Balanced and 
n Total number Balanced immune correlation immune Proportion 

3 64 32 20 0 0.0000000 
4 320 216 96 24 0.0750000 
5 1,664 1,192 392 240 0.1442310 
6 9,728 7,560 3.184 2,520 0.2837170 
7 59,392 49,856 24,992 20,160 0.3394400 
8 391,168 343,392 205,184 171,360 0.4380730 
9 2,682,880 2,424,032 1,566,944 1,407,168 0.5244990 

10 1 9 , 4 4 7 , 8 0 8  1 8 , 0 6 1 , 9 2 0  12,563,584 11,803,680 0.6131610 
11 146 ,210 ,816  138,492,928 102,036,288 98,588,160 0.6742880 
12 1,148,125,184 1,101,919,104 8 6 1 , 5 7 7 , 7 2 8  843,511,680 0.7346860 

are also balanced and correlation immune appears to tend to 1 as n tends to infinity, 
although we offer no proof of this observation. We conclude that, unlike the 
highest-order SAC, this order of SAC is compatible with balance and correlation 
immunity, which makes it more desirable cryptographically. We therefore recom- 
mend the use of the SAC of order (n  - 3), rather than the highest-order SAC. 
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