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1. Introduction

In this paper we investigate the connections between three properties of a binary
function: the Strict Avalanche Criterion, balance, and correlation immunity. The
Strict Avalanche Criterion was introduced by Webster and Tavares [7] in order to
combine the ideas of completeness and the avalanche effect. A cryptographic trans-
formation is said to be complete if each output bit depends on each input bit, and
it exhibits the avalanche effect if an average of one-half of the output bits change
whenever a single input bit is changed. Forré [1] extended this notion by defining
higher-order Strict Avalanche Criteria. A function is balanced if, when all input
vectors are equally likely, then all output vectors are equally likely. This is an
important property for many types of cryptographic functions. The idea of correla-
tion immunity is also extremely important, especially in the field of stream ciphers,
where combining functions which are not correlation immune are vulnerable to
ciphertext-only attacks (see, for example, [5]). The concept of mth-order correlation
immunity was introduced by Siegenthaler {4] as a measure of resistance against
such an attack.

In a previous paper [2] we found conditions under which a function satisfying
the highest possible order Strict Avalanche Criterion was also balanced and/or
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correlation immune. We found that a function cannot be balanced, correlation
immune, and satisfy the highest-order Strict Avalanche Criterion. Since balance and
correlation immunity are very important cryptographically, we deduce that the
highest-order Strict Avalanche Criterion is too stringent a condition. It is natural,
therefore, to look at the next highest-order (that is order (n — 3)) Strict Avalanche
Criterion, and see whether there are any functions satisfying this which are both
balanced and correlation immune. We see that such functions do indeed exist, and
we are able to formulate necessary and sufficient conditions on a function to satisfy
these criteria simultaneously. In doing this, we use the characterization of functions
satisfying the Strict Avalanche Criterion of order (n — 3) developed in [3]. These
new conditions are constructive—a function satisfying the Strict Avalanche Cri-
terion of order (n — 3) is determined by its values at vectors of small weight, and
we obtain conditions on these values for the function to be balanced and/or
correlation immune. This means that constructing such a function becomes merely
a matter of selecting a few values from which the remainder of the function may
easily be computed. Having established that these functions exist, it is also of interest
to determine the number of such functions since, if there were very few, it would
not be sensible to recommend their use in cryptographic applications. We also
consider here higher orders of correlation immunity to discover whether there is a
limit to the amount of correlation immunity possible in a function satisfying the
Strict Avalanche Criterion of order (n — 3). We find that there is no limit, but
obviously the number of functions decreases as the order of correlation immunity
increases. We are able to derive necessary and sufficient conditions for each order
of correlation immunity, and calculate the number of functions in each case. These
conditions are also constructive.

In Section 2 we establish some notation, define the properties to be examined,
and state characterizations of functions with the various properties. Section 3 is
devoted to some preliminary calculations which enable us to identify conditions the
functions must satisfy. We present results on balance in Section 4, on correlation
immunity in Section 5, and on simultaneous balance and correlation immunity in
Section 6. In each of Sections 4—6 we produce necessary and sufficient conditions,
and also expressions for the number of functions satisfying those conditions. In
Section 7 we display a table of numbers of functions, for some small values of n,
and conclude that there is a sufficient supply of such functions for them to be useful
for cryptographic applications.

2. Notation and Definitions

Although we are really dealing with functions of binary vectors of length n which
take values in {—1, 1}, we find it convenient to identify a binary vector with its
support, that is the set of positions in which it has a 1. We, therefore, deal instead
with functions from subsets of {1, 2, ..., n} to {—1, 1}.

Let & be the set {1, 2, ..., n} and let #, denote the set of functions which takes
subsets of & to {—1, 1}. We formulate all the definitions and characterizations in
terms of such functions.
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2.1. Balance
This is the simplest of the three properties, and ensures that the number of 1's
produced by f is the same as the number of —1I’s produced.

Definition 2.1.1. Let f € 4. Then f is balanced if and only if
V)y=0.
2, SW)

2.2. Correlation Immunity
Definition 2.2.1. f € %, is said to be first-order correlation immune if, for any
i € &, the probability that i € V, given that V satisfies f(V) = 1, is equal to 1.

The definition is extended to higher orders as follows.

Definition 2.2.2. Let m be an integer with 1 <m < n. Then f € # is said to be
mth-order correlation immune if, for any J € & with |J| = m and any Y < J, the
probability that ¥ nJ = Y, given that f(V) = 1, is equal to 1/2™.

Note that, for any m with 2 < m < n, mth-order correlation immunity implies
(m — 1)th-order correlation immunity.

In order to characterize correlation-immune functions, we need to define the
Hadamard—-Walsh transform.

Definition 2.2.3. The Hadamard—Walsh transform of f € # is defined by

HU) = Y f)(=1".
| £=14

There is a well-known formula for inverting the Hadamard—Walsh transform,
which we give below:

1
fwy=— % HU)(- 1)U forall Wc2%.
_ 2" yEy
Xiao and Massey [6] have proved the following theorem characterizing
correlation-immune functions in terms of the values of their Hadamard—Walsh

transforms.

Theorem 2.2.4. The function f € B is mth-order correlation immune if and only if
HU)=0forallU c ¥ withl <|U| <m.

Let us define the integer-valued function X by

Xw)y=3Y f(v) for Wec¥
VEW

We will find it more convenient to express the characterization of correlation
immunity in terms of the function X. In order to do so, we need the following result.
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Lemma 2.2.5. If X and H are defined as above, then

1
X(W) = 5=y Uzy HU) forall Wc .

[=
Unw=g

Proof. Since H is the Hadamard-Walsh transform of f, we know that
1
fWy== Y HU)(-)'""™ forall Wc.
2" vy
Substituting this into the definition of X, we obtain

1
XW)= 3 = ¥ HU)I-1""

1
=— Y H{U —pvnv,
2" U;y ( )ng( )
For any V < W, we can write ¥V = A u B with A = (W n U) and B = (W\U). So
(= S (-
Vew

BS(W\U) AS(WnNU)
If Wn U # &, there are as many subsets of odd size as of even size, so the sum is
0.If W U = {J, then the sum is just 2™, Hence
1

Unw=yg

Note that X(&) = H(Q)). ad

We now use this to produce a formulation of mth-order correlation immunity in
terms of X.

Lemma 2.2.6. If H and X are defined as above, then the following three conditions
are equivalent:

(i) f is mth-order correlation immune.
(ii) HU)=0forall U = L withl1 <|U| < m.
(iii) X(W)=2™M"X(&) foral W = & with(n —m) < |W| < (n — 1).

Proof. The equivalence of (i) and (ii) is given by Theorem 2.2.4. We now show the
equivalence of (ii) and (iii), using Lemma 2.2.5.

Suppose that (ii) holds. Let W = & be such that (n — m) < |W] < (n — 1), and let
Uc Fbesuchthat WnU = F. Then0 < |U| < (n— |W|) <m,soeither U = &
or H({U) =0.So

1 1
XW) =smm Y HU) = 5= HD).

vey
UnW=

Now X (&) = H(), so we have (iii).
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Now suppose that (iii) holds. We prove (ii) by induction on the size of U. Suppose
first that U] = 1. Let W = #\U. Then V n W = J if and only if either V = J or
V="U,so

X(W) = 3(H(Q) + H(U)).
Since | W| = (n — 1), we also know that X(W) = L H(@). Hence H(U) = 0.
Now suppose that 2 < |U| < m and that H(V) = O for all V with | < |V| < |U].
Let W=%\U,then VnW =g ifand onlyif V < U, so

VveUu Vg

X(W)=2"%r(H(Q)+H(U)+ Y H(V)).

Now, for any V< U, V # &, we see that 1 <|V| < |U|, so H(V)=0. Since
(n—m) <|W| < (n—1), we also know that X(W) = 2™I="H (). Thus we may
conclude that H(U) = 0 as required. O

2.3. The Strict Avalanche Criterion

Definition 2.3.1. Let f € 8. Then f satisfies the Strict Avalanche Criterion (SAC)
if and only if

Y ffvu{jh=0 forallj 1<j<n
V=D

We now define the higher-order SAC. The SAC defined above is deemed to be
the SAC of order 0, and the SAC of order mfor 1 < m < n — 2 is defined as follows.

Definition 2.3.2 [1]. A function f € # satisfies the SAC of order m, where 1 <
m < (n — 2)ifand only if, given any subset 7 of & with | 7| = n — mand any subset
P of #\7, the function g € 84 obtained from f by setting g(V) = f(V u P)for each
V < 7 satisfies the SAC.

Let f denote the algebraic normal form of f (so f also takes subsets of & to { — 1, 1}).
We sometimes find it convenient to write F for the function from & to {1, —1} such
that F(x) = f({x}).

In [3] we proved the following result characterizing functions satisfying the SAC
of order (n — 3).

Theorem 2.3.3 [3]. Suppose that f € #B. Then f satisfies the SAC of order (n — 3)
if and only if

fv)= flUy forall V&£
vev,[U|<3
and, for each x € &, there is at most one y € & for which f({x, y}) = 1.
We were thus able to prove

Theorem 2.3.4 [3]. The number of functions in 8, which satisfy the SAC of order
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(n—3)is
n!
2n+1 )
05;:-5" (n—2m) m! 2"

We deduce from Theorem 2.3.3 that if f satisfies the SAC of order (n — 3), then
we can write any W < & as {x1, %5, s Xy V15 Vs v Yms Xama1s - es Xw} where
f({x;, y;})= +1forall1 <j<mand f({a, b}) = —1 otherwise. We shall find the
following notation useful.

Definition 2.3.5. We write Ay (n, m) (W = &, 0 < 2m < n) for the set of functions
[ € B4 satisfying the following conditions: f satisfies the SAC of order (n — 3) and
there exist X, X5, ..., Xy Y15 Y25 -+ Yms X2m+15 - - -» Xjwy Such that

W= {xl’x2’""xmsYUyZ’""ym3x2m+1a---,xIWl},
and 3
f({xj’yj})= +1, 1<j<m,
f(a,b})= —1  otherwise.

In what follows we want to distinguish the cases where there exists a pair (x, y),
such that f({x, y}) = 1l and F(x) = — F(y), from those where no such pair exists. In
order to be able to state some subsequent results concisely in the cases where no
such pair exists, we introduce the following notation.

Definition 2.3.6. We write Cp(n,mr,t,q) WS £ 0<2m<n0<r<m0<
t<n—2m,q=2r+ 2t +m—n) for the set of functions f e B, satisfying the
following conditions: f belongs to Ay (n, m) and

F(x;) = F(y;) = +1, 1<j<r,
F(x;) = F(y;) = —1, r+1<j<m,
F(x;) = +1, 2m+1<j<2m+1,
F(x;) = —1, 2m+t+ 1 <j<|W|
For ease of notation, we write simply C(n, m, r, t, q) for C,(n, m, r, t, q). So we see
that if /' € # satisfies the SAC of order (n — 3), then either there exists a pair (x, y),

such that f({x, y}) = 1, and F(x) = — F(y), or f belongs to C(n, m, r, t, q) for some
values of m, r, t, and q. We shall also find the following results useful.

Lemma 2.3.7. The number of functions belonging to C(n,m,r,t, q), where 0 <
2m<n0<r<mO0<t<n—2mandq=2r+2t+m—n,is

2n! m\{n—2m
(n—2m)!m!2"‘<r>( t )

Proof. We must first choose the m pairs (x;, y;), noting that the order within the
pair is unimportant. This may be done in nl/{(n — 2m)! m! 2™ ways. We must now
choose r of the m pairs and ¢ of the remaining (n — 2m) elements to have F(x;) = +1.
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-2
This may be done in <r:> (" ; m) ways. Finally, we must choose a value for f(),

which may be done in two ways. O

Lemma 2.3.8. The number of functions f € By which satisfy the SAC of order
(n — 3), and for which there exist exactly p pairs (x, y) for which f({x, y}) = 1, and

F(x)= —F(y)is
n! n—2m+1 (m>
2,522:,,,5,. (n —2m)! m! 2 p/)

Proof. The number m of pairs (x, y) for which f({x, y}) = 1 must be at least p and
at most the integer part of n/2. If we fix m, then we must first choose the m pairs
(x;, y;), noting that the order within the pair is unimportant. This may be done in
n!f(n — 2m)! m! 2™ ways. We must now choose p of the m pairs to have F(x) = — F(y),

and this may be done in r:) ways. We may then choose F(x) for one member of

each of the m pairs (since then it is fixed for the other member). This may be done
in 2™ ways. We then choose F(x) for each of the remaining (n — 2m) elements, and
finally choose f(¥). This may be done in 2"~ 2™*! ways. Summing over m, we obtain
the desired expression. O

3. Preliminary Calculations

We want to express f(V U {x}) in terms of f(V). We know that, given x and V, if f
satisfies the SAC of order (n — 3), then there is at most one z in V with f({x, z}) = 1.
We first deal with the case where no such z exists.

Proposition 3.1. Suppose that f € By satisfies the SAC of order (n — 3). Suppose
further that x ¢ V and that f({x, y}) = —1 forall ye V. Then

fVu{x}) = (=W(V)F(x).
Proof. Since f satisfies the SAC of order (n — 3), we know that
&) =[] ATy forall Sc<

TSS
|T|<3

Using this to calculate f(V U {x}), we obtain

fvo{xph=_T1 AT

TR
H A1) H fTu{x})
|T|<3 |T|<2

= f(V)F(x) va({x’ )

= f(V)Fx)(— !
= (= )"A(V)F(x)

as required. m
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We turn now to the case where there is a unique element z in ¥ with f({x, z}) = 1.

Proposition 3.2. Suppose that f € B4 satisfies the SAC of order (n — 3). Suppose
Sfurther that x ¢ V, and that f({x,z}) =1 (so f({x,y}) = —1 forall yeV, y # 2).
Then

SV o {x}) = (=Y f(V)F(x).
Proof. As in the proof of Proposition 3.1, we have

fVou{x}) = fV)F(x) I—[Vf({x, )

= f(V)F(x)(— )"
= (— Y (V)F(x)

as required. O

We are now able to produce an expression for X(W) =Y, ¢y f(V) in terms of
the values of f. In order to prove this, we also need to produce the corresponding
expression for Y, c 5 (— 1)VIf(V) as well.

Theorem 3.3. Suppose that W < & and that f belongs to Aw(n, m). Let i denote the
square root of — 1 and let

m 4]
Gy = /(D) Ul (1 + F(x;)F(y;) + i(F(x;) + F(y)))) -=!_[+1 (1 +iF(xy),

then
T f(V) = R(Gw) + 3(Gw)

and
V;W (—1Vf(V) = R(Gy) — 3(Gw),

where R(x) and 3(x) denote the real and imaginary parts of x, respectively.

Proof. The proof is by induction on the size of W.
Firstly, we assume that |W| = 0, so that W = ¢&. Then

Gy =/@), % SV =/@), and ¥ (-D"fV)= /()

so we have the desired relation.

Now suppose the result true for all W with [W| < K, and let W be such that
|[W| =K + 1.Choose x € W, and let U = W\{x}. We split the proof into two cases.
Either x = x; for some j with 2m + 1 <j < K + 1, or x = x; or x = y; for some j
withl <j<m.

Suppose that the first case holds. Now

T =3 [+ T SV ix).
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By the inductive hypothesis, since |U| = K, we have
Y. f¥V) =R(Gy) + 3(Gy).

vevu

To calculate the second sum, note that in this case f({x, y}) = —1for all y e U, so
we may use Proposition 3.1 to obtain

T o= 3 (~0FE
=F® ¥ (~D")
vevu

= F(x}(R(Gy) — I(Gy)) by the inductive hypothesis.
So
Y f(V)=R(Gy) + 3(Gy) + FX)(R(Gy) — 3(Gy)) = R(Gw) + I(Gw),

vEw
since Gy = (1 + iF(x))Gy in this case.
We may now calculate zygw(— 1H¥If(V) in the same way:

Y W= ¥ (—1)'V'f(V)—V;U(—l)""f(VU{x})

vew veu

and

Y (=)Mf(V) = R(Gy) — I(Gy).

14514

Using Proposition 3.1 again, we have
Y (=M U {x}) = F(x)(R(Gy) + 3(Gu)).

vevu

Hence
VZW (= WIF(V) = (R(Gy) — 3(Gy)) — FX)(R(Gy) + I(Gy))

= R(Gw) — I(Gw).

We now turn to the case where x = x; or x = y; for some j with 1 <j<m.
Without loss of generality, let us assume that x = x,. We write y for y;, U for
WA{x, y}, U, for U L {x} (= W\{y}),and U, for U L {y} (= W\{x}). In the same
way as before, we have

Y =Y fN+ Y fvuix})
vew veu, veu,
and
VCZU f¥) = R(Gy,) + I(Gy,) = R(Gy) + I(Gy) + FYHR(Gy) — 3(Gy)),
since Gy, = (1 + iF(y)Gy-
By Propositions 3.1 and 3.2, we know that

_[—DYOF® i vV,
o ={CRhmng i e
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So we have

T Suixh =

Vecu.
er

Y, (O)MFx)+ Y (- (V)F(x)
i
F(x)

2 (—=D)Vf(V) + F(x) Z (—=DMf(v U {y})
= F(x)(R(Gy) — 3(Gy)) + F(x) V;U - W o {y}).

Applying Proposition 3.1 again, since f({y,z}) = —1for all z € U, we have

V;U (=)o iy = V;U JV)F(y) = F(y)(R(Gy) + 3(Gy)).
So

Y fVu{x})=
Vv,
and, therefore,

> fv)=
Vew

F(x)(R(Gy) — I(Gy)) + FH)F(»)(R(Gy) + I(Gy))

R(Gy) + 3(Gy) + (F(x) + F())(R(Gy) — 3
+ F(x)F(»)(R(Gy) + 3(Gy))
= R(Gw) + 3(Gw),

since, in this case, Gy = (1 + F(x)F(y) + i(F(x) + F(3)))G,.
Similarly,

Gy))

Y (=)= Y (=)~ ¥ (—Wfw o ix))
VEW veu, VEU,

and
X (DY) = R(Gy,) - 3Gy,

= R(Gy) —
since Guy = (1 + iF(y))Gy).
We also have, by Propositions 3.1 and 3.2,

Z (—I)IV'f(VU{x})—- Z JV)F(x) — VZ J(V)F(x)
y¢Vy

3(Gy) — FOO)R(Gy) + 3(Gy)),

er

=F() T S0~ F@ T SV
= FRR(Go) + 3(Gu) — F) T SV {3))

Applying Proposition 3.1 again, since f({y, z}) = — 1 for all z € U, we have
Y vou{yh =¥ (—=D)AV)F(y)
Veu Veu

= F())(R(Gy) — 3(Gy)).
So

L2, (CDVV O {x}) = F)(R(Gy) + I(Gy)) — FOF()(R(Gy) — I(Gy))



Counting Binary Functions with Certain Cryptographic Properties 117

and, therefore,
V;W (= DMf(V) = R(Gy) — I(Gy) — (F(x) + F(M)R(Gy) + 3(Gp))
+ Fx)F(»)(R(Gy) — 3(Gy))
= R(Gy) — I(Gw),
since, in this case, Gy, = (1 + F(x)F(y) + i(F(x) + F(»)))Gy. O

Corollary 3.4. Suppose that f belongs to Aw(n, m). Suppose further that, for some j,
1 <j < m,wehave F(x;) = —F(y,). Then Y ycw f(V) = 0.

Proof. Suppose, without loss of generality, that F(x,) = — F(y,). Then by Theorem
3.3, Y vew f(V) = R(G) + 3(G), where

m w|
G =f(Q) Ul (1 + Fx)F(yy) + i(F(xq;) + F(y))) _J_[H (1 +iF(x;)).

However, 1 + F(x,)F(y,) + i(F(x,) + F(y,)) = 0,since F(x,) = —F(y,),50G = 0.
Hence Y ycw f(V) = 0. O

Corollary 3.5. Suppose that f belongs to Cy(n, m,r, t, q). Write k for |W|; then

S(D)(—1ye2mbrz, g=0 (mod 4),

S fy= | TONDTIEITIE g =1 (mod
1454 - f(g)(_ 1)(4—2)/42(m+k)/2’ q= 2 (mod 4),
0, g=3 (mod4).

Proof. Let G be defined as above; we examine each term in turn, Nowif 1 <j<m,
then
. , 2(1 + 1) if F(x)=1,
1 . ; ; ) = j
(1 + F(x)F(y)) + iF(x;) + iF(y;)) {2(1 —i) i Flxy= -1
and if 2m + 1 < n, then
1+i if F(x;)=1,

(1+iF(xf))={1—i if F(F)=—1.

So »
G = S@)Z(L +iY2m~"(1 — " ~r(1 + iy (1 — if =2

= f(@)2"(1 + iy (1 — i
= f(@Y2 T+ i,
Now if 0 < b < 3, then
(—4) if
2(—4¢ if

b
b
‘R(l + i)4a+b + 3(1 + i)4a+b = ]
2(—4)7 if b=2,
b=3
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Now 2r + 2t + m — k = q, and so

[ f(2) 2~ (—4) if g=0 (mod4),
S V)= - @2 (=44 if g=1 (mod 4),
vew f(@)2k Tt (—4)a-24  if g=2 (mod 4),
0 if g=3 (mod4),
[ f(D)(—1)a/a2m+hrz if g=0 (mod4),
A (=1 Delmek+iz—jf g =1 (mod 4),
) A@)(—1)a=2mmhr if g=2 (mod4),
0 if g=3 (mod4)
as required. O
4. Balance

We use the results of the preceding section to obtain necessary and sufficient
conditions for a function satisfying the SAC of order (n — 3) to be balanced.

Theorem 4.1. Suppose that f € By satisfies the SAC of order (n — 3). Then f is
balanced if and only if either

(i) there exist x and y with f({x, y}) = 1 and F(x) = —F(y) or
(ii) f belongsto C(n,m,r,t, q) and q = 3 (mod 4).

Proof. Since f satisfies the SAC of order (n — 3), we know that either (i) holds or
there exist m, r, t, and q such that f belongs to C(n, m, r, t, g). We recall that f is
balanced if and only if ¥, c & f(V) = 0. If (i) holds, then, by Corollary 3.4, we know
that ¥, c & f(V) = 0. If (ii) holds, then, by Corollary 3.5, we have

A@)(—1yaa20m+miz if g=0 (mod4),

vy = f(@)(—1ya-viamenriz - if g=1 (mod 4),

1534 F(D)(— 1y pm+ny2 if g=2 (mod4),

0 if g=3 (mod4).
So, in this case, f is balanced if and only if g = 3 (mod 4), since f(F)= +1 or
~1. 0O

Theorem 4.2. The number of functions f € B which are balanced and satisfy the
SAC of order (n — 3)is

n! —-2m+1 n!
L m 2"! — 1
osam<n (n — 2m)! "”2 ( )+ oszzy;.sn (n - 2m)! m!
m¥n (mod 2)

n-~2m
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Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem
4.1is

Z Z n! n—2m+1 <m>
2<%p<n 2p<Tm<n (n — 2m)! m! P

— Z n! n-2m+1 (m)
25Tm<n (n — 2m)t m! 1<p<m \ D
nl

— L an-2m+l 2m —1
2<Tm<n (n — 2m)! m! 2 ( )
n! —2m+1
= e __TmALOm ).
o<l —2mpmi s 2

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 4.1 is

2n! m\/n—2m
OSZZmSn OSZSM os:sz::.—zm(n—zm)! m! 2"'(")( t )
4= 3 (mod 4)

Now if m = n(mod 2), then g # 3 (mod 4), whileif m £ n(mod 2), then g = 3 (mod 4)
if and only if t = $(3 — m + n — 2r) (mod 2). So the number of functions satisfying

(ii) is
2n! m n—2m
OSZZmS_n (n — 2m)!l m! 2™ osZs»:(l') OStSzn—Zm ( t )

mz¥n (mod 2) t=(3-m+n-2r)/2 (mod 2}

We shall need the well-known combinatorial identity

N N
b () ()
0<j<N J 0<j<N J

Jj=1 (mod 2) Jj=0(mod 2)
if N > 0. Applying this to the sum over ¢, we see that if 2m < n, then
n—2m "2
) -

0<r<n—2m 4
t=(3—m+n-2r)/2 (mod 2)

In this case, therefore, we deduce that

Z <m> Z (n il 2m) —_ 2,,._%2;;—2»1 — 2"""_1.
odrsm \"/ 0<t1<n—2m t

g=3(mod 4)

If n = 2m, then t must be zero, and so g = 3 (mod 4) if and only if r =13 + m)

(mod 2). In this case, therefore, we have
n—2m m 0
<n-2m ogr<m \ 7 =0 t
(mod 4) g=3 (mod 4)

2. ()

g=3 (mod 4)
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-z

r=(3+m)/2 (mod 2)

=2

However, since n = 2m, this is the same as 2" ™!, Hence the sum over r and t is
the same in both cases. So the number of functions satisfying (ii) is

2n! m n—2m
OSZZmSn (n_2m)!m!2m0525m(r)05tszn—2m< t )

m¥*n (mod 2) g4=3 (mod 4)
!
_ 2n! n—m—1
o<Tm<n (n—2m) m 2™
m¥n (mod 2)
!
_ Z n on—2m 0
0<2m<n (n - 2m)' m!
m#*n (mod 2)

5. Correlation Immunity

We now obtain necessary and sufficient conditions for a function satisfying the SAC
of order (n — 3) to be correlation immune.

Proposition 5.1.  Suppose f € B satisfies the SAC of order (n — 3). Suppose there
are exactly p pairs (x;, y;) such that f({x;, y;}) =1 and F(x;) = —F(y;). Then f is
exactly (p — 1)th-order correlation immune.

Proof. By Corollary 3.4, X(W) = 0 whenever there exists j, 1 <j < p, with x;,
y;j€ W. Any W with |W| > n — p must contain at least one such pair, so X(W) =0
for any such W (including &). By Lemma 2.2.6, therefore, fis at least (p — 1)th-order
correlation immune.

Let U = #\{xy, 1, Y2, ---» ¥p}- Then U contains no pairs (x;, y;), and so Gy, # 0.
Let us write x for x, and y for y;, and let U, = U U {x} and U, = U u {y}. Since
F(x) = —F(y), we may assume without loss of generality that F(x) = 1 and F(y) =
—1. Now

Gy, = (1 +iF(x))Gy = (1 + )Gy,
$0
X(Uy) = R(Gy) + 3(Gy) + R(Gy) — I(Gy) = 2R(Gy)-
On the other hand,
Gy, = (1 +iF(y)Gy = (1 — )Gy,
S0

X(U,) = R(Gy) + 3(Gy) — R(Gy) + 3(Gy) = 23(Gy).
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If f is pth-order correlation immune, then X (U,) = X(U,) = 0. This forces G, = 0,
which is not true. Hence f is not pth-order correlation immune. O

We now prove some results on the values of X(W). In the four lemmas which
follow, we assume that f belongs to CWj(n, m;, 1;, t;, ;) forj = 1,2 and that |W}| = k;
for j = 1, 2. We calculate the relationship between X(W,) and X(W,) for various
values of W, and W,. The proofs of these results rely heavily on Corollary 3.5.

Lemma 5.2. Suppose that W, € & and that x, y € W, are such that f({x, y}) = +1.
Let W, = W \{x}, then X(W,) = 1X(W,).
Proof. Suppose first that F(x) = + 1. Then

k; =k, —1, m, =m; — 1, r,=r, —1, t,=t +1, q4; =4,

and m, + k, = m; + k; — 2, so X(W,) = $X(W,). Suppose now that F(x) = —1.
Then

ky=k, —1, my=m; — 1, r,=rq, t, =t,, 4, =4,

and my + k, =my + k; — 2,50 X(W,) = 1 X (W,). O
Lemma 53. Suppose that W, < & and that x € W, is such that f({x, y}) = —1 for
all ye W,, and that F(x) = +1. Let W, = W;\{x}. Then

0, g, =0 (mod4),

2, g, =1 (mod4),

1, g4, =2 (mod 4),

0, g, =3 (mod 4).

XM/ X(W,) =

Proof. By Corollary 3.5,
S(D)(— 1) 2tmrkz, g, =0 (mod 4),
f(@)(—1fa=bim=briz g =1 (mod4),
S@) (=)= Disgmrkiz, g, =2 (mod4),
0, g; =3 (mod 4).

Since F(x) = 1, we have

ky=k —1, m; =m,, ry =Ty, =t —1, 4, =4q, — 1,

and therefore
f(g)(_ 1)42/42("!1 +k2)/2’ q, = 0 (mod 4)’

f(Q)(— 1)(-1:—1)/42("!2 +k2 +1)/2, q; = 1 (mod 4),
f(@')(_ 1)(qz —2)/4 3(m; +k2)/2, g, = (mod 4),
0, 4;=3 (mod4),

X(Wz) =
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[ f(@)N— 1@ DB2mtk =02 g, =0 (mod 4),

_ S(D)(—=1)fae=DRomrkiiz, g;=1 (mod4),
AN (—1ym=Mom+k-02 o =9 (mod 4),

© g =3 (mod4),
0, g: =0 (mod 4)
D) (— 1)(q1-1)/42(m1+k1—1)/2’ g =1 (mod 4),

) @) (= D=2tk g, =2 (mod 4),
(@) (— 1= Dm*=D2 g, =3 (mod 4).

Hence
0, g; =0 (mod4),
2, g, =1 (mod4),
X(W)/X(W,) = O
1, g, =2 (mod4),
0, g, =3 (mod4).

Lemma 5.4. Suppose that W, € & and that x € W, is such that f({x, y}) = —1 for
all ye Wy, and that F(x) = —1. Let W, = W \{x}. Then

1, g, =0 (mod4),

2, g, =1 (mod4),
XW)/X(W,) =

0, q, =2 (mod 4),

0, g, =3 (mod4).

Proof. This may be proved in a similar way to Lemma 5.3, using Corollary 3.5,
and noting that

ky =k, -1, m; =m,, ry=ry, b =1y, g4, =4; + 1. g
Corollary 5.5. Suppose that W, < & and that x € W, is such that f({x, y}) = —1
Jor ally e W,. Let W, = W)\{x}. Then

X(W,) =1Xx (W) ifandonlyif g, =1 (mod4).
Lemma 5.6. Suppose that W, < & and that x,y € W, are such that f({x, y}) = +1,
and F(x) = F(y) = +1. Let W, = W)\{x, y}, then

©, ¢,=0 (mod4),
2

WYX (W 2%, g; =1 (mod4),
W)/ X (W) = ) 4 =2 (modd)

0, g, =3 (mod4).
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Proof. This may be proved in a similar way to Lemma 5.3, using Corollary 3.5,
and noting that

ky =k, —2, m,=m; — 1, ra=r;—1, t, =1y, 4:=4q9,—1 0O

Lemma 5.7. Suppose that W, = & and that x, y € W, are such that f({x, y}) = +1,
and F(x) = F(y) = — 1. Let W, = W{\{x, y}, then

2, g, =0 (mod 4),

22, g, =1 (mod 4),
X(Wl )/X(Wz) =
0, g, =2 (mod4),

0, gq,=3 (moda4).

Proof. This may be proved in a similar way to Lemma 5.3, using Corollary 3.5,
and noting that

k2=k1_2, m2=m1—1, r2=r1, t2=t1, q2=ql+1' D

Corollary 58. Suppose that W, € & and that x, y € W, are such that f({x,y}) =
+1. Let W, = W \{x, y}, then

1
X(W,) =2—2X(Wl) ifandonlyif q, =1 (mod4).

Proposition 5.9. Suppose that f belongs to C(n,m,r,t,q). If 2m<n and q# 1
(mod 4), then f is not correlation immune.

Proof. We must find W with |W| = n — 1,and X(W) # $X(¥). Let W = #\{x,}.
Since 2m < n, we may apply Corollary 5.5, with W, = &, Since q # 1 (mod 4), we
deduce that X (W) # $X(¥). So f is not correlation immune. O

Proposition 5.10. Suppose that f belongs to C2m, m, r, 0, q). If q # 1 (mod 4), then
f is exactly first-order correlation immune.

Proof. We show first thatif |W| = n — 1, then X (W) = $X(¥). Let W be such that
|W| = n — 1. Then either W = #\{x;} for some j or W = #\{y;} for some j. By
Lemma 5.2, therefore, with W, = &, X(W) = $X (). So we have shown that f is
at least first-order correlation immune. We now need to find W with |W|=n — 2,
and X (W) # (1/2*)X(¥). We take W = £\{x,, y,}. Then we may use Corollary
5.8, with W, = &. Since g # 1 (mod 4), X (W) # (1/22)X(&). So f is not second-
order correlation immune.

We turn now to the case where g = 1 (mod 4).

Lemma 5.11.  Suppose that f belongs to C(n, m, r, t, q) and that ¢ = 1 (mod 4). Then
[ is first-order correlation immune.
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Proof. We must show that X(W) = 1 X(¥) for any W with |W| = n — 1. Choose
any such W. Then we have the following possibilities for W:

W = L\{x;} forsomej, 1<j<m, or
W =P\{y;} forsomej, 1<j<m, or
W = £\{x;} forsomej, 2m+1<j<n.
In either of the first two cases, we may apply Lemma 5.2, to obtain X (W) = $X(¥),

while in the third case we may apply Corollary 5.5 to obtain X(W) = $X(&). Hence
[ is first-order correlation immune. 1

Lemma 5.12. Suppose that f belongsto C(n, m, r, t, q) and that ¢ = 1 (mod 4). Then
[ is second-order correlation immune if and only if 2m > n — 1.

Proof. We already know that f is first-order correlation immune. We must show
that X (W) = (1/22)X(¥) for any W with |W| = n — 2. Choose any such W. Then
we have the following possibilities for W:

W = LS\{x;, »i}» j#Ek 1<j,k<m,
W=S\{xpx}, Jj#k 1<jk<m,
W=A\{ypnh J#k 1<jk<m,

W= %\{x;, y;}, 1<j<m,

W = £\{x;, %, }, I<j<m, 2m+1<k<n,
W=S\{ypx), 1<j<m 2m+1<k<n,
W = L\{x;, x;}, j#k 2m+1<jk<n

In the first case, we may first apply Lemma 5.2 with W, = & and W, = %\{x;},
and then apply Lemma 5.2 again with W, = #\{x;} and W, = W to obtain X(W) =
IX(P\{x;}) = (1/2%) X (&) as required. This may also be done in the second and
third cases. In the fourth case, we may apply Corollary 5.8, with W, = %, to obtain
X(W) = (1/2%)X (&), as required. In the fifth and sixth cases, we may proceed in a
similar manner as in the first case, applying Lemma 5.2, and then Corollary 5.5 to
obtain the result (noting that q is unchanged after applying Lemma 5.2). When we
come to the seventh case, however, we see that if we apply Corollary 5.5 with
W, = £ and W, = #\{x;}, we obtain X (W,) = 1 X (W, ), but when we come to apply
Corollary 5.5 again with W, = #\{x;} and W, = W, we now have ¢, = 0 (mod 4)
or g, =2 (mod 4), according as j < 2m, + ¢, or j>2m, +t,, and so X(W) #
(1/22) X (%) in this case. This case can only occur when 2m + 1 < n, so f is second-
order correlation immune if and only if 2m > n — 1. |

Lemma 5.13. Suppose that f belongsto C(n, m, r, t, g) and that q = 1 (mod 4). Then
[ is third-order correlation immune if and only if 2m = n.

Proof. We already know that f is second-order correlation immune, since 2m >
n — 1. We must show that X(W) = (1/2) X (%) for any W with |W| =n — 3. Let W
be such that |W|=n — 3. If W = #\{x;, x;, x;}, with j, k, and [ all different, and
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1 <j, k, I < m, then we may apply Lemma 5.2 three times to obtain the result. The
same method will also work in the cases W = #\{x;, x,, »;}, W = L\{x;, v, W1},
and W = #\{}, i 11} The cases W = S\{x;, y;, x;} and W = L\{x;, y;, yx}
where 1 < j, k < m, may each be dealt with using first Corollary 5.8 and then Lemma
5.2. This means that when 2m = n, f is third-order correlation immune.

When, however, 2m < n, we must consider the case W = ¥\{x,, y;, x,,}. We
apply Corollary 5.8 with W, = & and W, = &\{x,, y, }, and then apply Corollary
5.5 with W, = #\{x,, y,} and W, = W. However, this time either g, = 0 (mod 4)
or q; = 2 (mod 4) according as r > 0 or r = 0. So in this case, f is not third-order
correlation immune.

Lemma 5.14. Suppose that f belongsto C(n, m, r, t, q) and that ¢ = 1 (mod 4). Then
f is not fourth-order correlation immune.

Proof. We shall produce W with X (W) # (1/2*) X(¥). We take

W = y\{xl, ,YU xZ, yZ}

Let us also denote #\{x,, y,} by U. Then, by Corollary 5.8, we see that X(U) =
(1/2%)X (&), since q, = 1 (mod 4). We now apply Corollary 5.8 with W, = U. This
time, however, we have g, = 0 (mod 4) or g, = 2 (mod 4) (according as r > 1 or
not), so X (W) # (1/2%)X(U), and therefore X(W) # (1/2*)X(¥). Hence f is not
fourth-order correlation immune.

We thus have, combining the preceding four lemmas,

Corollary 5.15. Suppose that f belongs to C(n,m,r,t, q) and that q = 1 (mod 4).
Then

(i) if 2m < n — 1, then f is exactly first-order correlation immune,
(ii) if 2m = n — 1, then f is exactly second-order correlation immune, and
(iil) if 2m = n, then f is exactly third-order correlation immune.

Combining all the results of this section, we have the following theorems and
corollaries.

Theorem 5.16. If f € B satisfies the SAC of order (n — 3), then f is not correlation
immune if and only if either

(i) there is exactly one pair (x, y) with f({x, y}) = 1 and F(x) = —F(y) or
(i1} f belongsto C(n,m,r,t,q)and 2m < nand q ¥ 1 (mod 4).

Corollary 5.17. The number of functions satisfying the SAC of order (n — 3) which

2<Tm<n (n — 2m)' (m — 1)' 0<2m<n (n - ZM)' m!
m=n (mod 4)

!
+ n: n—-2m
0<Tm<n (n—2m) m!
m¥*n (mod 4)
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Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem
5.16 is .
n! n—2m+1 m= n!

e n—2m+1
2<2m<n (n—2m)‘ m! 2<2m<n (n—2m)‘ (m— 1)'2

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 5.16 is

2n! m\{n—2m
o<zz,:n<n 0<Z<m 05z<zp:| 2m (0 — 2m)t m! 2m< )( t )

q¥#1 (mod 4)

If m = n (mod 2), then g # 1 (mod 4), while if m # n (mod 4), then g # 1 (mod 4) if
and only if t =4(3 —m + n — 2r) (mod 2). So the number of functions satisfying
(ii) is

2n! m\/n—2m
os;:nq 0323»;05:52:—2»;("*2m)!m!2"<r>( t )

m=n (mod 4)

2n! m\{n—2m
" OS;n<n OSZSmOStSZn-Qm(n_2m)!m!2m<r)< t )

m¥*n (mod 4) 4=3 (mod 4)
! !
= —2n._— n—m + 2n' n—-m-—1
o<Tm<n (n—2m) m 2" 0<sm<n (n—2m)t m! 2"
m=n(mod 4) m¥*n (mod 4)
n! n!
= N n—2m+1 + N 2n—2m. E]
o<Zm<n (1 —2m)! m! o<sm<n (n— 2m)! m!
m=n(mod 4) m¥n (mod 4)

Theorem 5.18. If fe B, satisfies the SAC of order (n — 3), then f is exactly
first-order correlation immune if and only if one of the following holds:

(i) there are exactly two pairs (x, y) with f({x, y}) = | and F(x) = —F(y) or
(i) f belongsto C(n,m,r,t, q) and 2m = nand q # 1 (mod 4) or
(iii) f belongsto C(n,m,r,t,q)and 2m < n— 1 and q = 1 (mod 4).

Corollary 5.19. The number of functions satisfying the SAC of order (n — 3) which
are exactly first-order correlation immune is

[ T(n) if n=1 (mod?2),
T+ (2/2)' if n=0 (modd4),
T(n) + (njé)! if n=2 (mod4),
where
T =, % = 2m;!(m my TR Y ﬁrﬁ T

m¥n (mod 4)
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Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem
5.18is

Z n! n—2m+1 m = n! n—Zm.
a<Tm<n (n — 2m)t m! 2 a<im<n(n — 2m) (m — 2)!

By Lemma 2.3.7, the number of functions satisfying condition (ii) of Theorem 5.18 is

22m)! (m
osZs;n m! 2™ (")

g% 1 (mod 4)

Now g = 2r — m, so if m = 0 (mod 2), then g % 1 (mod 4). If m = 1 (mod 4), then
g £ 1 (mod 4) if and only if r = 3(3 + m) (mod 2). So the number of functions
satisfying (ii) is

r !
i(f';)" 2m if n=0 (mod4),
!
) ff’;l ™1 if n=2 (mod 4,
L0 if n=1 (mod2),
or
([ 2n!
WZ)T n=0 (mOd 4),
!
) ﬁ)—' if n=2 (mod4),
0 if n=1 (mod2).

5

By Lemma 2.3.7, the number of functions satisfying condition (iii) of Theorem 5.18

18
2n! m\{n—2m
052m2<n—1 osZ'Sm os:sz»:.—zm (n —2m)! m! 2"'(")( t )
qE

1 (mod 4)

If m = n (mod 2), then g # 1 (mod 4), while if m % n (mod 4), then g = 1 (mod 4) if
and onlyift = 4(1 — m + n — 2r)(mod 2). So the number of functions satisfying (iii)

is
2n! m\(n—2m
052mz<n—10$ZSm0StSzn—2m(n_2m)!m!2m<r>( t )
q4=1 (mod 4)

m¥n(mod 4)
!
- . (R —
0<2m<n-—1 (n — 2m)' m! 2™
m¥n (mod 4)
n! 2
n—2m
N S a— L) O

0<2m<n—-1 (n - 2m)' m!
m#En (mod 4)
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Theorem 5.20. If f e B, satisfies the SAC of order (n — 3), then f is exactly
second-order correlation immune if and only if either
(i) there are exactly three pairs (x, y) with f({x, y}) = 1 and F(x) = —F(y) or
(ii) f belongsto C(n,m,r,t,q)and2m =n — 1 and g = 1 (mod 4).
Corollary 5.21. The number of functions satisfying the SAC of order (n — 3) which
are exactly second-order correlation immune is

2n!
((n—1)/2)

T(n) otherwise,

T(n) + if n=1 (mod4),

where, here,
T n!
)= 65;.9 3(n — 2m)! (m — 3)!

n—2m

Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem
5.201s

Z n' n—2m+1 m — n' 2n—2m
6<Sm<a (n — 2m)! m! 3 6<Tm<n 3(n — 2m)! (m — 3)! .

By Lemma 2.3.7, if n = 2m + 1, then the number of functions satisfying condition
(ii) of Theorem 5.20 is

Z 22m+ 1) /m\ (1
o<r<m o0<r< m! 2" rj\t)’
g=1 (mo

1 (m c}4)
In this case, g = 2r + 2t — m — 1, so if m = | (mod 2), then q % 1 (mod 4), while if
m = 0 (mod 2), then ¢ = 1 (mod 4) if and only if ¢t = $(2 + m — 2r) (mod 2). So the
number of functions satisfying (ii) is

0 if m=1(mod 2),

22m + 1)t

' if m=0(mod 2). a
m!

Theorem 5.22. If fe B, satisfies the SAC of order (n — 3), then f is exactly
third-order correlation immune if and only if either

(i) there are exactly four pairs (x, y) with f({x, y}) = 1 and F(x) = —F(y) or
(ii) f belongsto C(n,m, r,t,q)and 2m = n and q = 1 (mod 4).

Corollary 5.23. The number of functions satisfying the SAC of order (n — 3) which
are exactly third-order correlation immune is

Lot

T(n) m!

if n=2 (mod4),

T(n) otherwise,
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where, here,

n!

DIy ey

T(m) =

Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem

522is
n! on=2m+1 (m) = 3 n! on-2m=2

g<Sm<n(n — 2m)l m! 4 s<5m<n 3(n — 2m)! (m — 4)!

By Lemma 2.3.7, if n = 2m, then the number of functions satisfying condition (ii) of

Theorem 5.22 is
2(2m)! (m
OSEr:Sm m! 2™ (")

q=1 (mod 4)

In this case, g = 2r — m, so if m = 0 (mod 2), then ¢ # 1 (mod 4), while if m =1
(mod 2), then ¢ = 1 (mod 4) if and only if r = (1 + m) (mod 2). So the number of
functions satisfying (i) is

0 if m=0 (mod?2),

2m)!
m

if m=1 (mod2). O

Theorem 5.24. If f e B satisfies the SAC of order (n — 3), then f is pth-order
correlation immune (p > 3) if and only if there are exactly (p + 1) pairs (x, y) with

S({x, y}) = L and F(x) = —F(y).

Corollary 5.25. The number of functions satisfying the SAC of order (n — 3) which
are exactly pth-order correlation immune (p > 3) is

n! m
_—_2n—2m+1 .
2p5§m$n (n - ZM)' m! (p)

Proof. Immediate from Lemma 2.3.8 and Theorem 5.24. O

6. Balance and Correlation Immunity

Theorem 6.1. If f € B satisfies the SAC of order (n — 3), then f is both balanced
and correlation immune if and only if either

(i) there exist at least two pairs (x, y) such that f({x, y})=1land F(x)= —F(y)or
(ii) f belongsto C(n,m,r,t, q) and n = 2m and q = 3 (mod 4).

Theorem 6.2. The number of functions satisfying the SAC of order (n — 3) which
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are also balanced and correlation immune is

n! n—2m+ m
M e A G +( /2).

n!

if n=2 (mod4),

2 2 @ == m) otherwise.

Proof. By Lemma 2.3.8, the number of functions satisfying condition (i) of Theorem
6.1is

y ) n! n 2m+1(m>
4<2p<n2p<2m<n (n — 2m)' m! 4

= n! n—2m+1 (m>
4522’”3" 25§$m (n "2m)! m! p
n'
= T on=2m¥lgm (| _
a<Tm<n(n — 2m)! m! ( m)
n!
= — ' onmm¥ipm | _ oy
o<Im<n(n — 2m)! m! ( m)

By Lemma 2.3.7, if n = 2m, then the number of functions satisfying condition (ii) of

Theorem 6.1 is
22m) (m
osZs». m! 2™ (")

g=3 (mod 4)

Since n = 2m, we have g = 2r — m, so, for g = 3 (mod 4), we must have m=1
(mod 2) and r = 4(3 + m) (mod 2). So the number of functions satisfying (ii) is 0 if
m = 0 (mod 2) and

2(2m)! m\ _2@m),, , _ @m)!
m! 2" 0<r<m r m! 2™ m!
4=3 (mod 4)

if m =1 (mod 2). O

7. Conclusions

In Table 1 we present some actual values of the numbers of functions derived above.
All numbers in the table refer to functions satisfying the SAC of order (n — 3), so,
for example, the column labelled “Balanced” contains the numbers of functions
which are balanced and satisfy the SAC of order (n — 3). The final column shows
the proportion of functions satisfying the SAC of order (n — 3) which are both
balanced and correlation immune, and we see that this proportion is increasing
rapidly as n increases.

From the table we see that there is indeed a sufficient supply of suitable functions.
We note that the proportion of functions satisfying the SAC of order (n — 3) which



Counting Binary Functions with Certain Cryptographic Properties 131

Table 1. Numbers of functions satisfying the SAC of order (n — 3) and other criteria.

Correlation Balanced and
n Total number Balanced immune correlation immune Proportion
3 64 32 20 0 0.0000000
4 320 216 96 24 0.0750000
5 1,664 1,192 392 240 0.1442310
6 9,728 7,560 3.184 2,520 0.2837170
7 59,392 49,856 24,992 20,160 0.3394400
8 391,168 343,392 205,184 171,360 0.4380730
9 2,682,880 2,424,032 1,566,944 1,407,168 0.52449%90
10 19,447,808 18,061,920 12,563,584 11,803,680 0.6131610
11 146,210,816 138,492,928 102,036,288 98,588,160 0.6742880
12 1,148,125,184 1,101,919,104 861,577,728 843,511,680 0.7346860

are also balanced and correlation immune appears to tend to 1 as n tends to infinity,
although we offer no proof of this observation. We conclude that, unlike the
highest-order SAC, this order of SAC is compatible with balance and correlation
immunity, which makes it more desirable cryptographically. We therefore recom-
mend the use of the SAC of order (n — 3), rather than the highest-order SAC.
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