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Abstract. In a secret sharing scheme a dealer has a secret key. There is a finite set 
P of participants and a set F of subsets of P. A secret sharing scheme with F as the 
access structure is a method which the dealer can use to distribute shares to each 
participant so that a subset of participants can determine the key if and only if that 
subset is in F. The share of a participant is the information sent by the dealer in 
private to the participant. A secret sharing scheme is ideal if any subset of partici- 
pants who can use their shares to determine any information about the key can in 
fact actually determine the key, and if the set of possible shares is the same as the 
set of possible keys. In this paper we show a relationship between ideal secret 
sharing schemes and matroids. 
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1. Introduction 

In a secret sharing scheme a dealer has a key. There is a finite set P of participants 
and a set F of subsets of P. A secret sharing scheme with F as the access structure 
is a method which the dealer can use to distribute shares to each participant so that 
a subset of participants can determine the key if and only if that subset of is in F. 
A secret sharing scheme is said to be perfect if any subset of participants who can 
use their shares to determine any information about the key can in fact actually 
determine the key. The share of a participant is the information sent by the dealer 
in private to the participant. 

In any practical implementation of a secret sharing scheme, it is important to 
keep the size of the shares as small as possible. The reason for this is obvious. 
The most secure place for a participant to store a share is in his own memory. 
However, if his share is too large, he will be inclined to write down information 
which will help him to remember his share. This, of course, will degrade the security 
of the scheme. This paper deals with secret sharing shemes in which the shares are 
as small as possible, i.e., the shares are the same size as the keys. 

i Date received: December 8, 1989. Date revised: September 7, 1990. This work was performed at the 
Sandia National Laboratories and was supported by the U.S. Department of Energy under Contract 
No. DE-AC04-76DP00789. 
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Let ~ be the set of keys and let S be the set of shares used in a secret sharing 
scheme, i.e., the share for each participant is an s e S. The information rate for the 
secret sharing scheme is defined to be log2 I~ffl/log2 [S[. A perfect secret sharing 
scheme is said to be ideal if it has information rate 1. 

The first constructions of perfect secret sharing schemes were the threshold 
schemes of Blakley [2] and Shamir [6]. In a threshold scheme, there is a threshold 
t such that the access structure is F = {A ___ P: [AI > t}. 

A set of subsets F of a set P is said to be monotone if B e F and B ~_ C implies 
that C e F for any B, C ___ P. Ito et al. [51, and also Benaloh and Leichter [1], showed 
that, for any monotone set of subsets F of P, there exists a perfect secret sharing 
scheme with F as the access structure. However, for both the Ito et al. and the 
Benaloh and Leichter constructions, the information rate could be exponentially 
small in IPI. 

The schemes of Blakley and Shamir can be implemented so that they are ideal 
secret sharing schemes for certain values of I~1. Benaloh and Leichter [1], BrickeU 
[3], and Simmons [7] have constructed ideal secret sharing schemes for other access 
structures. 

The main contribution of the current paper is to give a description of ideal secret 
sharing schemes in terms of classical combinatorial objects by showing a direct 
relationship between ideal secret sharing schemes and matroids. 

In order to make the definitions more precise, we define a secret sharing scheme 
to be a finite matrix, M, in which no two rows are identical. We identify the columns 
of M as the set of participants, P, and use M(r, p) to denote the entry of M in row 
r and column p. We denote the first column as Po and assume that Po always receives 
the key as his share. It  is sometimes useful to think of this special participant Po as 
the dealer. For  p e P, let S(p) = {M(r, p)lr is a row in M}. That  is, S(p) is the set of 
the elements occurring in column p and S(po) = o~K. The dealer can distribute a key, 

�9 S(po), by picking a row r of the matrix in which M(r, P0) = ~ using the uniform 
distribution over all such rows, and by giving M(r, p) as the share for participant p 
for each p �9 P. We assume that the matrix is public knowledge, but that the dealer's 
choice of r is private. 

Let A ___ P. Each participant a �9 A receives a share, say ~a, from the dealer. If  the 
participants in A pool their information, they will know that the dealer picked a 
row r in which M(r, a) = ~a for each a �9 A. For  A ~_ P, let M(r, A) be the row r in 
M restricted to the columns indexed by A. It is now easy to define the access 
structure F. A subset A ___ P will be in F if and only if any two rows r and ~ such 
that M(r, A) = M(~, A) also satisfy M(r, Po) = M(~, Po)- 

Given a subset A ___ P and a participant b �9 P with b ~ A, we say that A has no 
information about  the share given to b, denoted A -p b, if for all rows r of M and 
fl �9 S(b) there is a row r' such that M(r, a) = M(r', a) for all a �9 A, and M(r', b) = ft. 
Symbolically, A -p b iff 

YrVflqr': M(r, A) = M(r', A) and M(r', b) = ft. 

Otherwise, we say that A has some information about b, and denote this by A ~ b. 
We say that A knows the share given to b, denoted by A ~ b, if all rows that are 
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identical on the par t ic ipants  in A are also identical on b. Symbolically,  A =, b iff 

Vrgr' such that  M(r, A) = M(r', A): M(r,  b) = M(r', b). 

Then  F = {A ~_ PIA =:'Po} is the collection of access sets. 
A secret sharing scheme is perfect iff, for all subsets A _ P, A ~ Po implies that  

A =~ Po. A secret sharing scheme is ideal iff it is perfect and [S(p)I = IS(po)l for all 
p e P. Thus  if a secret sharing scheme is ideal, we assume without  loss of  generali ty 
that  S(p) = S(po) for all p ~ P and we denote  S(p) as simply S. 

Let F,, denote  the set of  minimal  elements of F. If  there is a par t ic ipant  p ~ P such 
that  p is not  conta ined  in any subset in Fro, then this par t ic ipant  is not  needed since 
there is never  a case in which his share is useful in determining the key. It  is not  
interesting to study secret sharing schemes in which some part ic ipants  receive 
useless shares. Therefore,  we say that  the secret sharing scheme is connected if every 
par t ic ipant  p e P is conta ined in some subset in F,,, and, for the remainder  of  this 
paper ,  only consider connected secret sharing schemes. 

Fo r  M an ideal secret sharing scheme, let D(M) = {A _ Pl there  exists y ~ A such 
that  A\y  =, y}. Intuitively, a set of par t ic ipants  is in D(M) if there is a dependency 
a m o n g  them. 

Before we state the main  results of  this paper,  we need to introduce the definitions 
of mat ro ids  and nearfields. 

Mat ro ids  are well-studied combina tor ia l  objects (see, for example,  [11]). A 
ma t ro id  J = (V, J )  is a finite set V and a collection J of  subsets of  V such that  
(I1)-(I3) are satisfied: 

(I1) ~ J .  
(12) If  X ~ J and Y _ X, then Y ~ J .  
(13) If  X, Y are member s  of  J with ]X] = ] Y] + 1, then there exists x ~ X \  Y such 

that  Y u {x} ~ J .  

The elements of  V are called the points of the ma t ro id  and the sets J are called 
independent sets. A dependent set of a ma t ro id  is any subset of  V that  is not  
independent .  The  minimal  dependent  sets are called circuits. A mat ro id  is said to 
be connected if, for any  two elements, there is a circuit containing bo th  of them. 

A right nearfield is a set R with distinguished elements 0 and 1 and binary 
opera t ions  + and �9 such that  (R, + )  is an Abelian group,  (R\0,  .)  is a group,  and 
(R, + ,  . )  is right distr ibutive (i.e., (a + b) �9 c = a �9 c + b �9 c for all a, b, e ~ R). If  a 
right nearfield is also left distributive, then it is a field. When  R is finite its cardinali ty 
is always a power  of  a pr ime (see [10]). The nearfields we consider are finite. A right 
near  vector  space and its dot  p roduc t , . ,  are defined analogously  to a vector  space 
only defined over  a right nearfield instead of a field. A vector  v in a right near  vector  
space V is said to be dependent on a set A of vectors iff every vector  u ~ V that  
satisfies u. a = 0 for all a ~ A also satisfies u. v = 0. In the case that  the right nearfield 
is actually a field, this definition of dependence is equivalent  to stating that  a vector  
v is dependent  on a set A of vectors iff v is a linear combina t ion  of the vectors in A. 
A set A of vectors is said to be a dependent set if there exists a ~ A such that  a is 
dependent  on A\a. A mat ro id  is representable over  a right nearfield if there is a 
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dependence-preserving injection from the points of the matroid into the set of 
vectors of a right near vector space. 

In this paper we prove the following two theorems which together almost charac- 
terize ideal secret sharing schemes. 

Theorem 1. Let  M be a connected ideal secret sharing scheme. Then the sets D(M) 
are the dependent sets o f  a connected matroid. 

Theorem 2. Let  J -  = (V, J )  be a connected matroid representable over a nearfield, 
R. Let  v o ~ V. Then there exists a connected ideal secret sharing scheme M such that 
R = o,~t r, Po = Vo, P = V, and D(M) = the dependent sets o f  ~'-. 

We say that this almost characterizes ideal secret sharing schemes because there 
may be connected matroids that are not representable over any nearfield, and, for 
any such matroids, we do not know if there exist corresponding ideal secret sharing 
schemes. 

Another interesting result that can be easily proven from the methods used in 
proving Theorem 1 is the following. 

Theorem 3. Let  M be a connected ideal secret sharing scheme. Let  A ~_ P and b ~ P. 

I f  A ~ b, then A =~ b. 

This theorem shows that any participant in a connected ideal secret sharing 
scheme can be thought of as the special participant, Po. 

We also explore an alternate definition for perfect secret sharing. Let A ~ P and 
b ~ P \ A .  We say that A has no probabilistic information about  the share given to b, 
denoted A , ~  b, if, for each row r of M, there exists an integer n such that, for 
all / / e  S(b), there are exactly n distinct rows r[, . . . ,  r~ such that, for 1 < i < n, 
M(r, a) = m(r ' ,  a) for all a e A and m(r ' ,  b) = ft. Otherwise we say that A has 
probabilistic information about  the share given to b and denote this by A ,,,,, b. 

It would be reasonable to define a perfect secret sharing scheme as one in which 
A "~Po implies that A =~ Po. Theorem 9 will show that, at least for connected secret 
sharing schemes with information rate 1, this definition is equivalent to our original 
definition. 

The rest of the paper is organized as follows. In Section 2 we consider a special 
case in which we are able to establish necessary and sufficient conditions for the 
existence of an ideal secret sharing scheme. Section 3 contains the proof  of Theorems 
1 and 3, and Section 4 the proof of Theorem 2. In Section 5 we examine the 
probabilistic definition of perfect secret sharing. We finish the paper with some 
comments about  applications and some open problems in Section 6. 

2. Example: The Rank 2 Case 

In this section we prove Theorems 1 and 2 in a special case that is much easier to 
prove and more intuitive than the general case. First we need some lemmas that 
will hold for the general case as well. 
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Let M be a connected ideal secret sharing scheme. Let q = ISI. Recall that, for 
A ~_ P, M(r, A) is the row r in M restricted to the columns indexed by A. Define 
s(A) = {M(r, A): r is a row of M}. That is, s(A) is the set of distinct tuples of entries 
in M under A. Let # A  = [s(A)l. 

Lemma 1. Let A ~_ P and p E P. I f  A =~ p, then # A = # (A u p). 

Proof. Clearly, # (A u p) > # A. If # (A w p) > # A, then there exists rows r~ and 
r 2 such that M(rl, a) = M(r2, a) for all a e A and M(rl, p) ~ M(r2, p). However, this 
contradicts A ~ p. []  

In the proofs of Lemmas 2 and 3, it will be useful to recall that M is perfect and 
A 4> Po together imply that A ~ Po- 

Lemma 2. Let A ~_ P and p ~ P. Suppose A =k Po and A u p =:, Po. Then A w Po =~ P. 

Proof. Let rl be a row of M. Define a function tp from S into S by c#(fl) = ), iffthere 
exists a row r such that M(r, a)= M(rx, a) for all a ~ A, and M(r, p)= fl and 
M(r, Po) = ~. Since A u p ~ Po, this function is well defined. Since A % Po, ~0 must 
be onto and hence 1-1. [] 

For  a secret sharing scheme M, let/3 = {p e PIP ~ P0}. Let G(M) be a graph with 
vertices the participants in/3 and with p~, P2 e/3joined with an edge iff {p~, P2 } e F. 

A connected ideal secret sharing scheme, M, is said to have rank 2 iff (S1)-($3) 
are satisfied. 

(S1) There exists a set in F~ of cardinality 2. 
($2) All sets in Fm have cardinality 1 or 2. 
($3) G(M) is connected. 

We then have the following theorem. 

Theorem 4. Let M be a rank 2 connected ideal secret sharing scheme. Let G' be the 
complementary graph of G(M). Then G' is a disjoint union of cliques. 

Proof. Let {P l,  P2 } ~ Fra" If there exists 0~1, 6 2 both in S such that there is no row 
r of M with M(r, Pi) = cti for i = 1, 2, then Pl ~ P2. Hence, Pl ~ Po and thus Pl ~ Po. 
Contradiction. Thus, # {Pl, P2} = q2. 

Let A _~ P be maximal set such that # A  = q2 and {Pl, P2) -~ A. By Lemma 1, 
Po ~ A and p\/3 ___ A. Suppose P\A  ~ ~ .  Since G(M) is connected, there exists 
b ~ P \ A  and a ~ A such that {a, b} e F. By Lemma 2, {a, Po } ~ b. Since {a, Po } e A, 
# A = # (A u b). Contradiction. Thus # P = q2. 

Suppose {a, b} ~_/5 and {a, b} r F. Let r be a row of M. Then, for all fl e S, there 
exists a row rp such that M(ra, a) = M(r, a), M(ra, b) = M(r, b), and M(ro, Po) = ft. 
Thus, q #  {a, b} = # {a, b, Po} < q2. Since # a  = q, # {a, b} = q. Since # b  is also 
q, we must have a ~ b. Suppose now that {a, b, c} ~_/3 and {a, b} r F and {b, c} r F. 
Since a ~ b and b ~ c implies a =~ c, we also have {a, c} r F. Theorem 4 now 
follows. []  
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The converse to Theorem 4 is also true. 

Theorem 5. Let G' be a oraph which is a disjoint union of n cliques. Then there ex- 
ists a rank 2 connected ideal secret sharino scheme M for any ~ with I Jf~l a prime 
power > n, with P = V(G') u Po such that G(M) = complement of G'. 

Proof. Let C be the set of distinct components of G'. Let n be the number of 
components of G'. Let 12 = C w Po. Let S = (12, S, M) be an ideal 2 out ofn threshold 
scheme with ISI = q. Using the Shamir construction, such a threshold scheme exists 
for all prime power q such that q > n. Let M be a matrix with the same number of 
rows as M and with columns indexed by the vertices of G'. For a vertex v �9 G' 
contained in component  c �9 C, and r a row of M, let M(r, v)= JVl(r, c). Let 
M(r, Po) = M(r, Po) for all rows r of h4. It  is straightforward to check that M is a 
rank 2 connected ideal secret sharing scheme. [] 

These two theorems now make it easy to prove Theorems 1 and 2 for this special 
case. 

For  M a rank 2 connected ideal secret sharing scheme, let J ( M ) =  {~} va 

{PIP �9 P} u {{Pl, P2}IPl =~Po and P2:7~ Po} t) {{Pl, P2}I{Pl, P2} ~ F,,}. 
It is easy to see that J ( M )  = 2P\D(M) (where 2 p is the set of all subsets of P). 

Theorem 6. Let M be a rank 2 connected ideal secret sharing scheme. Then the sets 
D(M) are the dependent sets of a connected matroid. 

Proof. We need to show that the set J (S)  satisfies (I1) (13). Conditions (I1) and 
(I2) are trivially satisfied. The same applies to (13) if Y = ~ or Y c X. Thus assume 
that I YI = 1 and Y ~  X. Let Y --- {y} and S = {xx, x2}. Without loss of generality, 
we may assume that x 1 �9 If y � 9  then {y, Xl} ~ J(S)2 " If y diPkfi and 
x2 e p\/3, then {y, x2} �9 J(S). So we can assume that y, xz �9 P. Since (xl, xz) �9 
E(G), then, by Theorem 4, for at least one of i = 1 or 2, (y, xi) �9 E(G) and so 
{y, x,} �9 J(s). [] 

Let 3- = (V, J )  be a matroid. For  a set X _ V, the rank of X, p(X), is defined as 

p(X) = max{[Al: A ~ X, A �9 J } .  

The rank of Y is defined to be p(V). 

Theorem 7. Let ~- = (1,I, J )  be a rank 2 connected matroid. Let v o �9 V. Then there 
exists a connected ideal secret sharing scheme M such that Po = Vo, P = V, and 
D(M) = the dependent sets of ~'. 

Proof. Let I 2 = {v e Vl{v, Vo} �9 J} .  Let G be the graph on I2 such that {u, v} is an 
edge of G iff {u, v} �9 J .  From (I3),it follows that the complement of G is a disjoint 
union of cliques. For  if u, v, w �9 V, and {u, v} is an edge of G, then, since {w} �9 J ,  
either {u, w} or {v, w} must be an edge of G. By Theorem 5, there exists a rank 2 
connected ideal secret sharing scheme h4, with P = 12 u Po such that G(M) = G. Let 
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M be the matrix with columns P = / 3  u V\I? and with the same set of rows as 
such that, for all rows r of M, M(r, p) = ~l(r, p) for all p e t3 and M(r, p) = 3,1(r, Po) 
for all p e P\/3. It  is straightforward to check that M is a connected ideal secret 
sharing scheme and the sets D(M) are exactly the dependent sets of 9-'. []  

Thus in the rank 2 case, we did not need the condition used in Theorem 2 that 
the matroid was representable over a nearfield and therefore we were able to 
characterize the connected ideal secret sharing schemes completely. One possible 
reason why we were successful in this case but not in the general case is that all rank 
2 matroids are representable over fields. 

3. Connected Ideal Secret Sharing Schemes 

As in Section 2, let M be a connected ideal secret sharing scheme and let q = I SI. 
The main work involved in proving Theorems 1 and 3 is the proof  of the following 
proposition. 

Proposition 1. For every A ~ P, # A is a power of q. 

Theorem 3 follows immediately from Proposition 1. 

Proof  of Theorem 3. Suppose A ~ b. Then # (A w b) < q # A. So by Proposition 
1, # ( A w b ) =  # A a n d A = ~ b .  []  

Lemmas 3 -6  are used to prove Proposition 1, and then we finish with the Proof  
of Theorem 1. 

Lemma 3. Let A ~_ P and p ~ P. Suppose A :# Po and A w p =~ Po. Then # (A  w p) = 
q # A .  

Proof. Let r be a row of M. Since A -p Po, then, for each/3 e S, there exists a row 
r~ such that M(r, a) = M(rp, a) for each a ~ A and/3 = M(rp, Po). Since A w p =~ Po, 
if fl #-/~, then M(rp, p) ~ M(r~, p). Thus, for each 7 e S, there exists a row t~ such 
that M(r, a) = M(t~, a) for each a ~ A and 7 = M(t~, p). [] 

Lemma 4. I f  A ~ Fro, then # A = qlAI. 

Proof. Let k = IAI. Let A = { a l , . . .  , a k } .  Suppose there exists ~x . . . . .  ~k E S such 
that there is no row r with M(r, ai) = ~.  Le t j  be as large as possible such that there 
exists a row r '  with M(r' ,  at) = ~i for 1 < i < j. Since all elements of S appear  under 
a 1 in M, then j  > 1. Then {al . . . . .  aj} --> aj+ 1. Hence {al . . . . .  aj, aj+2 . . . . .  ak} --* PO, 
SO {a I . . . . .  aj, ctj+ 2 . . . .  , a k }  => Po. However, this contradicts A e I'm. []  

Lemma 5. Let A ~_ P, A ~ ~ .  I f  A ~ Po, then # A = q~ for some integer n. 
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Proof. Let A be a minimal set such that A 4, Po and # A is not a power of q. Let 
B e P \ A  such that A u B ~ Po but B 4" Po and (A w B\b)  4,  Po for all b ~ B. To see 
that such a B exists, let a e A, and let C e I'm such that a e C. (Such a C exists 
since M is connected.) Then let B ~_ C \ A  be minimal such that B u A ~ Po. If 
# (A u B )  = qlA uBI, then # A  = qlAI, so assume that #(A w B )  < qlAUnl. 

We need to show that, for all a e A, # ( A \ a )  = qlAl-1. TO show this we let n be 
an integer such that q" < # A  < q"+l. Let a ~ A. Since # ( A \ a )  is a power of q, 
# ( A \ a )  = q". Let A = {ax . . . .  , ak} such that a k = a. If n < I a l -  I, then there 
exists j, with 1 < j  < k - 2 such that # ({a l  . . . . .  aj}) = # ({a l  . . . .  , aj, aj+l}). So 
# (A\aj+~) = # A, but this contradicts the minimality of A. 

To show that, for all a e  A, # ( A u  B \ a ) = q  lAg'st-I, let B = { b a  . . . .  ,b~}. 

By Lemma 3, # ( A w B ) = q # ( A w B \ b ) ,  so for each j, with l < _ j < l ,  
# ( ( A \ a )  w {b I . . . . .  bj}) = q # ( ( A \ a )  u {bl . . . . .  bj_l} ). 

This shows that, for all a e A, A w B \ a  --, a (since #(A w B) < qlA ~BI) and hence 

A u B \ a  =~ Po. 
Next we need to show that # ( A w B ) = q  IA~BI-a. Let D e F ,  such that 

B = D _ A w B .  Let a e D n A .  D \ a ~ p o ,  but A w B \ a = ~ P o .  Let A \ D =  
{a~ . . . . .  am}. There exists j with 0 < j  < m such that ((D\a) u {a~ . . . . .  aj}) 4" Po 
but ((D\a) w {al, . . . ,  aj, aj+x }) =~ Po. Then ((D\a) w {al . . . . .  aj} w Po) ~ aj+~. So 
(A u B)\ai+ 1 ~ aj+ 1 and #(A u B) = #(A u B\ai+x) = qlA ~nl-1 

Since qlAl-~ < # A  and # ( A w B ) =  qlA~BI-a, there exis ts j  with 1 _<j_< l -  1 
such that # (A u {b~ . . . . .  bj+l }) < q # ( A  w {b~ . . . . .  bj}). So A u {b I . . . . .  b~} ~ bj+l. 
Hence A u B\b~+~ ~ Po which implies that A ~ B\b~+~ ~ Po, but this contradicts the 
minimality of B. []  

Lemma 6. Let  A ~_ P. I f  A =:. Po, then # A = qk for  some integer k. 

Proof. Let A be a minimal set such that # A is not a power of q. It follows from 
Lemma 5 that A ~ Po. 

We want to establish that there exists a e A such that A \ a  4 ,  Po. Let B _ A such 
that B e Fro. Let a e B. If A \ a  ~ Po, then there exists C c_ A \ a  with C e Fro. Since 
C ~ p o  and ( B \ a ) u p o ~ a ,  we have C u ( B \ a ) ~ a .  Thus # A  = # ( A \ a )  which 
contradicts the minimality of A. 

Now, from Lemma 3, we have # A = q # (A\a)  which implies that # A is a power 
of q. Contradiction. []  

Before we complete the proof  of Theorem l, we need to give an alternate definition 
of a matroid in terms of the rank function (for a proof, see [1 l]). 

Theorem 8. A function p on a set V is a rank function o f  a matroid iff (AI)-(A3) 
are satisfied: 

(A1) p ( ~ )  = 0. 
(A2) I f  X ~_ V and y e V, then p(X)  <_ p ( X  w y) <_ p (X)  + 1. 
(A3) I f  X ~_ V and y, z e V and p(X)  = p ( X  u y) = p ( X  u z), then p (X)  = 

p ( X  u y u z). 

The proof  of the next proposition may be found in [11]. 
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Lemma 7. L e t  5-  = (V, J )  be a matroid and let x,  y, z be distinct elements o f  V. I f  

there is a circuit  C~ containing x and y and a circuit  C2 containing y and z, then there 

exis ts  a circuit  C 3 containing x and z. 

We are now ready to complete the p roof  of  Theorem 1. 

Proof of Theorem 1. Let p ( ~ )  = 0 and p(A)  = l o g q ( # A )  for all A _ P. p satisfies 
the rank axioms of  a mat ro id  since if A _ P and p~, P2 e P such that  # (A u p~) = 
# A  for i = 1, 2, then A ~ p ~  for i = 1, 2, and hence # ( A  w {pl,  P2}) = # A .  

Let 5 be the mat ro id  on the set S with rank function p. 
A �9 D ( M )  iff there exists a ~ A such that # ( A \ a )  = # A iff A is a dependent  set 

in 5-. This shows that  D ( M )  is the set of dependent  sets of  5-. 
Finally, M is connected implies that every p ~ P \ P o  is on a circuit with P0. By 

Lemma 7, for any pair  pl ,  P2 ~ P, there is a circuit containing both  of them. Thus, 
5 is connected. [ ]  

4. Ideal Secret Sharing Schemes and Nearfields 

This section contains the p roof  of  Theorem 2. 

Lemma 8. L e t  R be a f in i t e  right nearfield. Then,  i f  ~, fl, 6 ~ R and ~ # fl, there 
exis ts  a unique x ~ R such that xct - xf l  = 3. 

Proof. Suppose x~  - xf l  = y~ - yfl. Then (x - y)~ = (x - y)fl = 7. At least one 
of ct or  fl is nonzero.  So if x r y, then ~ # 0 and thus ~ = ft. Thus, as x ranges over 
all elements of  R,  x~ -- xf l  also ranges over all elements of  R. [ ]  

Proof of Theorem 2. Let R be a nearfield such that  ~Y- is representable over R. Let 
k be the rank of  9-. Let q~: V -~ R k be a dependence-preserving injection into the 
right near vector space R k. 

We define a secret sharing scheme M in which P = V, Po = Vo, S = R, and the set 
of rows in M is R k. For  r E R k and v E V, let M(r ,  v) = r .  q~(v). 

First we show that  M is perfect. Suppose that A ___ V and A ~ Po. There exists 
r 1, r 2 ~ R k such that  rt" tp(a) = r 2 �9 ~o(a) for every a �9 A but rl" q~(Vo) ~ rE" q~(v0). Let 
r ~ R k. For  6 E R,  (r + 6rl - 6r2)" q~(a) = r.  ~o(a). Let fl �9 R. By Lemma 8, there exists 
6 such that  6r 1 �9 q~(vo) - 6r2.q~(vo) = fl - r.  ~O(Vo). Then (r + Or I - -  ~ r 2 ) '  ~O(Vo) = ft. 

Thus r' = r + 6r I - 6r 2 is a row of M such that M(r ,  A)  = M(r ' ,  A)  and M(r ' ,  Po) = 

/~. So A -/; v0. 
To show that  M is ideal, let v ~ q~(V) and let r = (v~, v2 . . . . .  VR). Since 9 -  is 

connected, {v} is an independent  set, which implies that  tp(v)4: 0. Thus, some 
component ,  vl, of r is nonzero.  Choose  ct �9 R and define r = (pa, Pz . . . . .  Pk) where 
all components  of  r are zero except p /which  is u. v/-x. Then r.  tp(v) = u and, for all 
v �9 v, IS(v)l = IRI. 

To show that  D ( M )  is the set of  dependent  sets of  5-, let A ~ P.  A �9 D ( M )  iff 
there exists b �9 A such that  all r~, r2 ~ R k with rt" r = r2" r for all a ~ A \ b ,  

also satisfy r~ �9 r = r 2 �9 r iff there exists b �9 A such that  for all rl ,  r 2 E R k with 
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(r 1 - r 2 ) .  ~o(a)= 0 for all a ~ A \b ,  also satisfy (r~ -r2)" ~o(b)= 0; iff all u �9 R k 
such that  u" (p(a) = 0 for all a e (A\b), also satisfy u" q3(b) = 0; iffA is dependent  in J-. 

The  fact that  M is connected follows directly f rom the fact that  ~-  is con- 
nected. [ ]  

5. An Alternate Definition 

In this section we explore an al ternate definition for ideal secret sharing. Fo r  the 
convienience of the reader, we review some definitions. Let A ___ P and b �9 P \ A .  We 
say that  A has no probabilistic information abou t  the share given to b, denoted A ,4+ b, 
if, for each row r of  M, there exists an integer n such that,  for all 17 e S(b), there are 
exactly n distinct rows r~ . . . . .  r~ such that,  for 1 < i < n, M(r,  a) = M(r ' ,  a) for all 
a e A and M(r[, b) = ft. Otherwise we say that  A has probabilistic information about  
the share given to b and denote  this by A , ~  b. 

It  would be reasonable  to define a perfect secret sharing scheme as one in which 
A~,~po implies that  A =~ Po. But the next theorem shows that, at  least for connected 
secret sharing schemes with informat ion rate 1, this definition would be equivalent  
to our  original definition. 

Theorem 9. Let  M be a connected ideal secret sharing scheme. Then Av.~ Po implies 
that A =~ Po. 

Proof.  As before, let q = I SI. F r o m  the p roof  of  Theo rem 1 we know that  the sets 
D(M) are the dependent  sets of a mat ro id  where the rank function is defined 
as p(A) = logq # A. Suppose A ~ p o. Let # A = qk. Then # ( A  w po ) = qk+l. Let 
# p = qk§ +,. Let a~ . . . . .  ak be a maximal  independent  set of  A. Then al . . . . .  ak, Po 
is a maximal  independent  set of A u P0. Since any independent  set can be extended 
to a maximal  independent  set (for a p roof  of this, see [11]), let a 1 . . . . .  ak, P0, bl . . . . .  
b~ be a maximal  independent  set of  P. Fo r  any row r of  M and any vector  (cq . . . . .  ~tt) 
of  elements of S, there exists a unique row r '  such that  M(r, a) = M(r ' ,  a) for all 
a ~ A, M(r,  Po) = M(r ' ,  Po) and M(r' ,  bi) = ~q for 1 ~ i _< 1. Thus,  for any row r of  
M, there exists exactly ql rows r '  such that  M(r, a) = M(r ' ,  a) for all a ~ A and 
M(r,  Po) = M(r ' ,  Po). So A "/~Po. [ ]  

6. Comments and Open Questions 

There are several p rob lems  involved in applying these results to practical  situations. 
When  using a secret sharing scheme in an application,  it seems likely that  the key 
size, I0r r I, and the access structure, F, would be given and  the designer would want  
a perfect secret sharing scheme in which the number  of  shares ISI was as small as 
possible. This is a slightly different quest ion than the one we have been addressing 
in this paper.  Suppose  for instance that  the sets D(M) were indeed the dependent  
sets o f a  ma t ro id  that  was representable over  a nearfield. Let q be as small as possible 
such that  q > I~1 and the above  ma t ro id  is representable  over  a nearfield of size 
q. It  could be the case that  there was a perfect secret sharing scheme with access 
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structure F, with keys o,~', and shares S such that 1~1 ~ I~ ' [  < ISl < q. Such a 
scheme would not be ideal, but it would be more efficient in terms of the size of the 
share space than an ideal scheme with q keys. 

The designer of an application might also wish to know whether the sets D(M) 
were the dependent sets of a matroid and, if so, whether this matroid was repre- 
sentable over a nearfield. In considering the computational complexity of these 
questions, we need a model for how independence is determined. An independence 
system is a finite set V together with a set J of subsets of V called independent sets 
such that ~ ~ J and if A _ B _ V and B e J ,  then A ~ J .  A common computa- 
tional model for an independence system is that of an independence oracle which 
can be given any set of points and will respond by telling whether that set of points 
is independent or not. Given such an independence oracle, it is easy to show that 
determining whether a given independence system is a matroid could require an 
exponential number of calls to the independence oracle. Suppose, for example, that 
in an independence system on n points, all subsets of size k - 1 were independent 
for some k, with 2 < k < n - 1. If all subsets of size k were dependent, then the 
independence system would be a matroid, but if there were one subset of size k that 
was independent and all of the other sets of size k were dependent, then it would 
not be a matroid. Thus determining whether such an independence system was a 

matroid would require at least ( ~ )  calls to the independence oracle. Truemper I-9] 

has also shown that given an independence oracle for a matroid on n points, 
determining whether the matroid is representable over a given field could require 
~(2n/2/n 1/2) calls to the independence oracle. These negative results do not imply 
that it is always infeasible to determine whether a given independence system is a 
matroid or whether a given matroid can be representable over a given field. For, in 
a practical situation, it is conceivable that there would be a simple discription of 
the independent sets from which it would be easy to determine if it was a matroid 
and if so whether the matroid was representable over a given field or nearfield. 

The constructions for ideal threshold schemes resulting from Shamir [6] and 
Blakley [2] and the constructions described in [3] for ideal secret sharing schemes 
for other access structures all require the use of finite fields and thus restrict the size 
of the key set, [ ~  [, to be a prime power. Since all finite nearfields have prime power 
orders, 1~1 will also be a prime power for any ideal secret sharing scheme con- 
structed using Theorem 2. But this restriction to [)if[ being a prime power is not 
necessary. For  example, a 2 out of n ideal threshold scheme with [~1 -- k can be 
constructed from n orthogonal latin squares of side k (see [-4] for definitions). Stinson 
and Vanstone [8] have studied some secret sharing schemes in which [~ff[ is not a 
prime power which can be constructed from combinatorial designs. 

There are several open questions that are suggested by the results presented in 
this paper. The most obvious open question is to determine if Theorem 2 is still true 
if the condition of the matroid being representable over a nearfield is removed. 

Other open questions include: 

1. Characterize the perfect secret sharing schemes that have a fixed information 
rate. 



134 E. F. Brickell and D. M. Davenport 

2. Characterize the perfect secret sharing schemes that have an information rate 
that is at least 1/(polynomial in IPI). 

3. Find a nontrivial lower bound on the information rate of all perfect secret 
sharing schemes. 

4. Find an algorithm that, given a secret sharing scheme, will determine the 
smallest information rate that could be used to implement that scheme. 

Yao [12] has made some progress on problem 2. He uses a different measure for 
the security of a secret sharing scheme. In the current paper and in the original 
papers [6], [2] on secret sharing, the definitions demanded unconditional security, 
i.e., the security did not depend on any assumptions about the computational 
difficulty of any problems or the computational resources of an attacker. Yao gives 
a construction for secret sharing schemes which are secure if trap-door functions 
exists. Using this modified notion of security, he has shown that if trap door 
functions exist, then any set F which can be recognized by a polynomial (in IP[) size 
monotone circuit can be the access structure of a secret sharing scheme in which 
the information rate is at least 1/(polynomial in I P[). His scheme should be "perfect" 
under a modified definition of perfect which fits his security definitions. 

Acknowledgments 

We would like to thank Mike Saks for useful conversations concerning this research. 
We would also like to thank Kevin McCurley and two anonymous referees for very 
helpful comments which corrected a number of errors in the paper and made the 
paper more readable. 

References 

[1] J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Advances in 
Cryptology--Crypto '88, New York, pp. 27-36, 1990. 

1-2] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the AFIPS 1979 National 
Computer Conference, vol. 48, pp. 313-317, 1979. 

1-3] E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and 
Combinatorial Computing, 6:105-113, 1989. 

1-4] M. Hall, Jr. Combinatorial Theory. Wiley, New York, 1986. 
1-5] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure. In 

Proceedings of IEEE Globecom "87, Tokyo, pp. 99-102, 1987. 
I-6] A. Shamir. How to share a secret. Communications of the A CM, 22(11):612-613, 1979. 
1-7] G. J. Simmons. Robust shared secret schemes. Conoressus Numerantium, 68:215-248, 1989. 
1-8] D. R. Stinson and S. A. Vanstone. A combinatorial approach to threshold schemes. SlAM Journal 

of Discrete Mathematics, 1(2):230-236, 1988. 
[9] K. Truemper. On the efficiency of representability tests for matroids. European Journal of 

Combinatorics, 3:275-291, 1982. 
1-10] S. Vajda. Patterns and Configurations in Finite Spaces. Hafner, New York, 1967. 
1-11] D. J. A. Welsh. Matroid Theory. Academic Press, London, 1976. 
1-12] A. Yao. Presentation at the Cryptography Conference in Oberwolfach, F.R. Germany, September, 

1989. 


