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Abstract. The concept of provable cryptographic security for pseudorandom 
number generators that was introduced by Schnorr is investigated and extended. 
The cryptanalyst is assumed to have infinite computational resources and hence 
the security of the generators does not rely on any unproved hypothesis about the 
difficulty of solving a certain problem, but rather relies on the assumption that the 
number of bits of the generated sequence the enemy can access is limited. The 
concept of perfect local randomness of a sequence generator is introduced and 
investigated using some results from coding theory. The theoretical and practical 
cryptographic implications of this concept are discussed. Possible extensions of the 
concept of local randomness as well as some applications are proposed. 
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1. Introduction 

It is well known that beyond its unicity distance every cipher can in principle be 
broken, e.g., by an exhaustive key search, which is infeasible except for very simple 
ciphers. The aim of the designer of a cryptosystem is to make it secure against every 
attack that is practically feasible. Usually feasibility is specified by computation 
time, but it is conceivable that an attacker is limited by other restrictions, for 
instance, by his available storage capacity, by the number of ciphertext bits that he 
can obtain in a ciphertext-only attack (which is exactly the restriction considered 
by Ozarow and Wyner [15] in their recent treatment of the wire-tap channel), or 
by the number of bits of plaintext that he can obtain for a known-plaintext attack. 
Our results in Section 2 can be interpreted as showing that provably secure (against 
a ciphertext-only attack) ciphers can be constructed under the restriction that the 
number of ciphertext bits obtainable by the enemy is smaller than the length of the 
key, divided by the logarithm of the ciphertext length, even when the enemy has 
complete freedom to choose the locations within the ciphertext of the bits to which 
he has access. (To arrive at this interpretation, the output sequence of the pseudo- 
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random number generator of Section 2 is taken as the running key in an additive 
stream cipher whose secret key is the "random seed" of the generator. The running 
key is added bit-by-bit modulo-2 to the plaintext to produce the ciphertext.) This 
"limited-ciphertext restriction," to whose formulation we were led by the work of 
Schnorr [19], is inappropriate for most practical applications and is much stronger 
than a suitable restriction on computation time. However, inasmuch as no provably 
secure practical cipher has yet been devised for a computation-time restriction, 
the construction of provably secure stream ciphers even for the strong limited- 
ciphertext restriction appears to be of interest. 

Schnorr [19] presented a pseudorandom number generator whose security does 
not rest on any unproven (albeit plausible) assumptions, in contrast to most other 
proposed pseudorandom number generators [2], [3], [14]. Schnorr's generator 
stretches a random seed of length k = m2" to a pseudorandom sequence of length 
n = 2m22m, which cannot be distinguished from a random sequence by any statis- 
tical test that examines at most e = 2 m/3-(l~ m)2 bits, even using infinite computa- 
tional resources. (By a "random binary sequence" of length k we always mean a 
sequence of k binary random variables that takes on all 2 k possible values, each with 
probability 2-k.) The length of the seed is roughly squared in this expansion, i.e., 
n ~ k 2, and the number e + 1 of bits that must be examined by a distinguishing 
statistical test is roughly the third root of the seed length, i.e., e ~ ,~/k, which is very 
small from a cryptanalytic point of view. The generators constructed in this paper 
are superior to Schnorr's in two respects: the parameter e is on the order of k/log 2 n 
rather than only ,~//k and the generated sequences are truly locally random rather 
than only (according to Schnorr's definition) locally indistinguishable from a ran- 
dom sequence. Rueppel [18] has pointed out the weakness of Schnorr's generator 
when the enemy is allowed to access k bits rather than e bits, but our interest is not 
in the practical security of Schnorr's generators. Rather, our interest is in exploring 
the theoretical questions raised in [19] from a somewhat different viewpoint. 

In Section 2 we introduce the concept of a perfect local randomizer, i.e., of a 
sequence generator that stretches a (binary) random sequence of length k to a 
pseudo random sequence of length n such that every subset of e or less bits of the gene- 
rated sequence is a set of independent random bits. The concept of a perfect local 
randomizer corresponds to what is known in combinatorics as an orthogonal array. 
We use many results from coding theory to obtain explicit constructions of perfect 
local randomizers and to prove bounds on the achievable degree of perfect local 
randomization. We show that, for any choice of k, n, and e satisfying e < k/log 2 n, 
there exist perfect local randomizers. A topic closely related to perfect local random- 
ization is the generation of so-called k-wise independent random variables, which 
was originally introduced in [8] and later also treated in [1] and [11]. The special 
case of pairwise independence is treated in [4], [7], and [10]. Recent theoretical 
interest in these schemes was motivated by their application in the construction 
of deterministic polynomial-time algorithms from probabilistic ones for certain 
problems. 

In the complexity-theoretic approach to pseudorandom number generation [3], 
[9], a pseudorandom number generator is defined to be a family of sequence 
generators indexed by the security parameter k (k = 1, 2 . . . .  ) that stretch a sequence 
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of k random input bits into a pseudorandom sequence of length n(k) where n(k) is a 
polynomial in k. In Section 3 we show that, for every integer t, every function n(k) 
with n(k) < k t for all but finitely many k, and every e > 0, there exist pseudorandom 
number generators that stretch k-bit seeds into n(k)-bit sequences with the property 
that no statistical test (regardless of its computation time) examining not more than 
e(k) = I_(1 - e)k] bits can distinguish them from random sequences. We also show 
that e(k) > k is not achievable, thereby giving tight lower and upper bounds on the 
achievable e(k). However, we are unable to show that the stretching function of any 
of these generators is computable in time polynomial in k. Our argument is a 
"random-coding" argument similar to that used by Shannon [20] to prove the 
existence of error-correcting codes with rate arbitrarily close to channel capacity 
that achieve an arbitrarily small block error probability, without demonstrating 
specific such codes. In other words, we prove the existence of pseudorandom 
number generators that achieve the maximum possible local randomization without 
presenting efficiently computable examples. However, the linear sequence genera- 
tors considered in Section 2 are easily extended to polynomial-time-computable 
pseudorandom number generators that achieve a local randomization of e(k) = 
[k/log 2 n(k)J bits rather than e(k) = [(1 - e)kJ bits. 

The restriction that Schnorr [19] puts on statistical tests, namely, that they can 
operate on at most a certain number of bits of the generated sequence, appears to 
be more information-theoretic than complexity-theoretic. This fact suggests gene- 
ralizing the restriction in the following way: assume the enemy is allowed to obtain 
e arbitrary bits of information about the generated sequence, i.e., he is not restricted 
to acquiring information by examining binary digits but can, for example, obtain 
the value of an arbitrary random variable that does not give more than e bits of 
information about the sequence. Somewhat surprisingly, it turns out that under this 
looser restriction on the enemy's obtainable information, even for arbitrarily small 
e, "local" randomization cannot be achieved, as is shown in Section 4. The quotation 
marks here emphasize the fact that the accessed information may in this model very 
well be global, but its amount is limited. Similarly, if the enemy is able to obtain 
e arbitrary parity checks (modulo-2 sums) on the sequence bits, perfect "local" 
randomization is shown to be impossible. Thus the results of this paper (as well as 
Schnorr's result) strongly rely on the assumption that the enemy's information 
about the sequence consists of knowing some subset of the digits in the sequence. 

In Section 5 we suggest two possible applications of the proposed sequence 
generators. They might be excellent building blocks within practical ciphers for 
spreading local (pseudo-) randomness when used together with compressing trans- 
formations that guarantee confusion, and they are certainly of use wherever a secret 
key must be expanded (for example, in key scheduling within block ciphers). 

2. Sequence Generators Achieving Prefect Local Randomness 

Unlike in the literature based on, or motivated by, complexity theory, including 
[19], we consider in this section individual sequence generators of specific size, 
rather than infinite families of generators. The asymptotic case is treated in Section 
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3. Let I n denote the set of binary sequences of length n, i.e., I n = {0, 1}n. A random 
variable which takes on two values, both with probability 1/2, is called a coin-tossing 
random variable, abbreviated CTRV. Throughout  the whole paper, In x and log x 
denote the natural logarithm and the logarithm to base 2 of x, respectively. 

Definition 1. A (k, n) sequence generator G is a function G: I k ---.r In: z k ~-~ s9 = G(z_k).  

Note that a (k, n) sequence generator can be interpreted as the encoder of a binary 
block code with 2 k codewords of length n, where we think of the randomly selected 
key bits as forming the k information bits. 

Definition 2. A (k, n) sequence generator G is a (k, n, e) perfect local randomizer 
(PLR) if, when the input is a sequence of k independent CTRVs, then every subset 
of e of the n binary output random variables is a set of e independent CTRVs. 
The degree of perfect local randomness of a (k, n) sequence generator G is 
max{e: G is a (k, n, e) PLR}. 

It is obvious that there exists no (k, n, e) PLR for e > k. For e = k and n > k, 
PLRs exist in only two trivial cases: k = 1 (example: repeat the input bit n times) 
and k = n - 1 (example: the first n - 1 bits are the input bits and the last bit is their 
modulo-2 sum). 

Definition 3. A (k, n) sequence generator is linear if and only if, for all z1 ,k 7. 2k ~. I k  ' 

G(z k ~ z_ k) = G(z_ k) ~ G(_zk), where @ denotes bitwise addition modulo 2. 

A linear (k, n) sequence generator can be interpreted as an encoder for a linear 
binary code and can be specified by the binary k x n matrix c~ such that 

S n = z k ~ .  

The matrix fr is usually called the generator matrix in coding theory. The following 
lemma restates a well-known result in coding theory in terms of PLRs. 

Lemma.  A linear (k, n) sequence generator G is a (k, n, e) PLR if and only if every 
subset of e columns of f~ are linearly independent. 

Proof. If there exists a set of e columns of cg that are linearly dependent, then the 
corresponding e bits of_s" satisfy a linear equation and are therefore not independent. 
Conversely, consider the submatrix formed by any set of e linearly independent 
columns. We can extend this k • e submatrix to a nonsingular binary k • k matrix 
A by appending k - e appropriate columns. If _z k is a sequence of independent 
CTRVs, then so also is zkA and hence, trivially, the first e components of_zkA are 
independent CTRVs. [] 
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Theorem 1. There exist linear (k, n, e) P L R s  i f  

k 
e ~ - -  

log n '  

or if  h[(e - 1)/(n - 1)] < k/(n - 1) and e < (n + 1)/2. There exists no (k, n, e) linear 
or nonlinear P L R  i f  h[(e - 1)/2n] > (k + �89 log n + �89 which is satisfied when 

k + log n + 1 
e > 2 log n - log(k/2)'  

where h(x) = - x  log x - (1 - x) log(1 - x) is the binary entropy function. 

Proof.  Consider  a binary k x (n - 1) matr ix f~' such that  every subset of e - 1 
columns of f#' is a set of linearly independent  columns. The number  of k-vectors 
that  are a linear combinat ion  of at most  e - 1 columns of f#' is upper  bounded  by 
e - l ( n - ~ )  
y. . If this set of linear combinat ions  does not  exhaust  the set of 2 k 
i=o i 
k-vectors, we can find a nonzero  column that can be adjoined to f~' to obtain a 
k x n matr ix f~ for which every subset of e columns is linearly independent.  Hence, 
according to the above lemma, a linear (k, n, e) PL R surely exists if 

e - l (  n - 1  ) i = o  ~ i < 2k" 

The existence of (k, n, e) PLRs  for e < k/log n now follows immediately from the 
fact that  

e - l ( n - l )  n e 1). 
y '  < (for n > 
i=0 i 

In the following we make use of the inequalities (see inequalities A.24 and A.30 of 
[223) 

N / ~  -- i=O 

where the last inequality holds for t <_ n/2. Letting t = e - 1 and replacing n by 
n - 1 in the last inequality proves the existence of linear (k, n, e) PLRs  when 
(n - 1)h[(e - 1)/(n - 1)] < k and (e - 1)/(n - 1) _< �89 which completes the p roof  of 
the first par t  of Theorem 1. 

In order  to prove the nonexistence claim of Theorem 1 for linear (k, n, e) PLRs,  
we consider the number  Q of all linear combinat ions  of Le/2J or fewer columns of ~. 
If 

O = i=1 \ i / > -  2k' (2) 

then either there exists a linear combinat ion  of [e/2J or fewer columns that  equals 
the all-zero column or there exist at least two different linear combinat ions  of [e/2J 
or  fewer columns that  are equal, and hence there exists a linear combinat ion  of e 
or fewer columns that  equals the all-zero column. Thus, satisfaction of inequality 
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(2) implies that there exists no linear (k, n, e) PLR. That (2) also implies the non- 
existence of nonlinear (k, n, e) PLRs is equivalent to a result proved in [5] and called 
the uniform projection lemma. From (1), it follows that inequality (2) is satisfied if 

and thus also if 

1 x / ~  2 nh(te/2j/') > 2 k 

h(e-l) k + � 8 9 1 8 9  
\ ~ - n / >  n ' (3) 

as can easily be verified. To complete the proof of Theorem 1, we note for 0 < x < 1 
that h(x) > - x  log x. Since - l o g [ ( e  - 1)/2n] > - log (k /2n )  = log n - log(k/2), in- 
equality (3) is satisfied if(e - 1)(log n - log(k/2)) > 2k + log n + 1 and thus also if 
e(log n - log(k/2)) > 2k + 2 log n + 1 - log(k/2). Because k > 1 and thus log(k/2) 
> - 1, the nonexistence of (k, n, e) PLRs is established when the last inequality of 
Theorem 1 is satisfied. []  

Remarks. A well-known fact about linear codes (see Chapter 1, Theorem 10 of [12]) 
is that, given any parity-check matrix for the code, the minimum distance equals 
the minimum positive integer d such that there exists a set of d columns in the 
parity-check matrix of the code that are linearly dependent or, equivalently, the 
maximum d such that every subset of d - 1 columns are linearly independent. By 
definition, a parity-check matrix for a linear code is the encoding matrix of the dual 
code. From the above lemma, we conclude that the degree e of perfect local 
randomness of a linear (k, n) sequence generator is one less than the minimum 
distance d of the dual code to the code encoded by this generator. This dual code 
is a linear code with dimension n - k, i.e., an [n, n - k, d] linear code with 2 "-k 
codewords (see p. 9 of [12]). In other words, every linear (k, n, e) PLR is an encoder 
of the dual of a linear In, n - k, e + 1] code and, conversely, every encoder of the 
dual of a linear In, n - k, d] code is a (k, n, d - 1) PLR. Note that the existence 
proof given here for linear (k, n, e) PLRs amounts to a proof of the well-known 
Gilbert-Varshamov existence bound for linear codes (see Chapter 1, Theorem 12, 
of [12]), which states that given n and k there exists a binary linear In, k, d] code if 

More generally, every bound on the minimum distance of linear [n, n - k, d] codes 
can be directly transformed into a bound on the degree of perfect local randomness 
of linear (k, n) sequence generators. The best table known to the authors of minimum 
distances achievable with linear codes is that of [21]. 

Although the problem of determining the maximal achievable degree of perfect 
local randomness of any linear (k, n) sequence generator is equivalent to the problem 
of determining the maximal achievable minimum distance d of a linear binary 
In, n - k, d] code, the corresponding two problems for nonlinear PLRs and codes 
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are not equivalent and much less is known about the first of them. It is therefore 
somewhat surprising that the Hamming bound, a well-known upper bound on the 
achievable minimum distance of a code.(linear or nonlinear) with n - k information 
bits and codeword length n, is correspondingly valid for the maximal degree e of 
perfect local randomness of any (k, n, e) PLR. The Hamming (or sphere packing) 
bound (see Chapter 1, Theorem 6, of [12]), which follows from the fact that all 
spheres of radius (d - 1)/2 (the number of errors guaranteed to be correctable by 
the code) must be disjoint, states that there exists no binary code with 2 n-k code- 
words of length n and minimum distance d if 

Because e = d - 1, this bound is equivalent to the bound (2) on the maximal degree 
of perfect local randomness of a (k, n, e) PLR, although the latter was obtained in 
a different way that applies only for linear PLRs. It is an open problem to find a 
stronger upper bound on the achievable degree of perfect local randomness, for 
instance, one equivalent in strength to the upper bound of McEliece et al. [13] on 
the achievable minimum distance of a code, which is significantly better than the 
Hamming bound. Clearly, any upper bound on the minimum distance d gives an 
upper bound on the degree of perfect local randomness e that can be achieved by 
linear PLRs, the interesting question is whether the same bound applies to nonlinear 
PLRs as well. 

Note that the lower and upper bounds on the achievable degree e of perfect local 
randomness given in Theorem 1 differ by a factor of approximately 2 when 
log k << log n << k, which is the situation of greatest interest. 

Theorem 1 gives an existence bound for good linear PLRs. Although the proof 
of the Gilbert-Varshamov bound is in principle constructive, its application for 
finding good PLRs for general k and n requires computation time exponential in k 
and n. The following theorem exhibits an infinite polynomial-time constructable 
class of linear (k, n, e) PLRs for which e > k/log n, i.e., whose degree of perfect 
local randomness is approximately equal to the value guaranteed by the Gilbert- 
Varshamov lower bound. 

Theorem 2. The encoder o f  an extended Reed-Solomon code over GF(2 m) with e 
information symbols, codeword length 2 m and design distance 2 ~ - e + 1 is a linear 
(me, m2 m, e) perfect local randomizer when the symbols are appropriately represented 
by m binary digits. 

Proof. Extended Reed-Solomon codes over GF(2 m) (see [12]) are maximum dis- 
tance separable, i.e., every subset of e codeword digits may be chosen as the e 
information digits. By appropriately representing every digit of GF(2 m) as a binary 
m-tuple, the Reed-Solomon code becomes a binary linear code with k = me infor- 
mation bits and codeword length n = m2 m such that, for random information bits, 
every subset of e m-bit blocks of the codeword is random. Thus certainly every 
subset of e bits is random. [] 
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Remark. The maximum-distance-separable property of Reed-Solomon codes 
derives from the fact that any k x n generator matrix f# is such that every k columns 
of fr form a Vandermonde matrix. Other authors have noted the usefulness of the 
properties of Vandermonde matrices [4], [8] or of BCH codes [1] in connection 
with k-wise independence of random variables. 

The PLRs of Theorem 2 can be compared fairly with the pseudorandom number 
generator suggested by Schnorr [19] since the parameters k and n can be chosen 
to coincide. Schnorr's generator is a family of (m2", 2m22") sequence generators (m 
is the security parameter) such that no test examining at most 2 m/3-~176 bits can 
distinguish the output sequence from a random sequence. An extended Reed-  
Solomon code over GF(22m) with 2 m-1 information symbols corresponds to an 
(m2", 2m22", 2 "-1) PLR that not only achieves true local randomness instead of 
only indistinguishability from randomness but also gives a degree of perfect local 
randomness greater than the third power of that guaranteed by Schnorr. The 
smallest value of m for which Schnorr's lower bound is notrivial is m = 162 where 
the number of bits that must be examined by a distinguishing statistical test is e = 2 
(out of approximately 101~176 bits), compared with e = 2161 for the Reed-Solomon 
code. (This example illustrates that the practical significance of asymptotic results 
in cryptology must always be carefully evaluated.) 

In the following we discuss nonlinear perfect local randomizers. A (k, n, e) PLR 
(linear or not) is the encoder of a binary block code with 2 k codewords such that 
for every subset of e positions, every e-bit pattern occurs exactly 2 "-e times. Such a 
configuration is also known as an orthogonal array [17] of size 2 k, n constraints, 2 
levels, strength e, and index 2 "-e. As in the earlier treatment of linear PLRs, some 
results from coding theory can be applied in the nonlinear case. MacWilliams [12, 
Chapter 51 introduced a transform for the distance distribution of a code that yields, 
for linear codes, the distance (or, equivalently, the weight) distribution of the dual 
code. The significance of the transform of the distance distribution of a nonlinear 
code is not obvious since there exists no dual code for a nonlinear code. However, 
surprisingly enough, if we define the dual distance d' of a code as the minimum 
distance value for which the transformed distance distribution is not zero, then we 
obtain precisely what we are looking for: the degree of perfect local randomness of 
an encoder for the code considered as a sequence generator is e = d' - 1. This 
remarkable result is due to Delsarte [6]. 

The question whether for large k and n there exist nonlinear (k, n) sequence 
generators whose degree of perfect local randomness is greater than that of every 
linear (k, n) sequence generator is open. However, there do exist some nonlinear 
PLRs superior to the best linear PLRs. The so-called Kerdock codes X'(m) are 
(2"1, 2 2m, 2 m-1 --  2 {m-1)/2) nonlinear codes for all even m >_ 4 that yield (2m, 2 m, 5) 
nonlinear PLRs as shown by determining the dual distance d' of these nonlinear 
codes (see Chapter 15, Theorem 24 and Corollary 29, of [12]). The so-called 
punctured Preparata codes ~(m)* similarly yield (2 m - 2m, 2" - 1, 2 m-I - 2 m/2-1) 
nonlinear PLRs for all even m > 4 (see Chapter 15, Theorem 32, of [12]). The 
Delsarte-Goethals codes ~f~(m, d) with d = (m - 2)/2 yield (3m - 1, 2", 7) non- 
linear PLRs for all even m _> 4 (see pp. 476-477 of [12]). Thus, ~(4) ,  J~f'(6), .)if(8), 
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~'(6)*, ~(8)*, ~f#(4, 1), ~(q(6, 2), and ~(#(8, 3) are (8, 16, 5), (12, 64, 5), (16, 256, 5), 
(52, 63, 27), (240, 255, 119), (11, 16, 7), (17, 64, 7), and (23, 256, 7) nonlinear PLRs, 
respectively. From the table in [21], we conclude that the best linear (8, 16, e), 
(12, 64, e), (52, 63, e), (11, 16, e), and (17, 64, e) PLRs satisfy e = 4, 4 < e < 5, 25 < 
e < 26, e = 7, and 5 < e < 7, respectively. The (8, 16, 5) PLR (also known as the 
Nordstr6m-Robinson code) and the (52, 63, 27) PLR thus beat the best linear PLRs 
with the same k and n. It is unknown to the authors whether o~ff(m), ~'(m)*, and 
~fq(m, (m - 2)/2) are superior to the best linear PLRs for infinitely many m, or for 
all m > 4, m > 6, and m > 6, respectively. 

3. Locally Randomized Pseudorandom Number Generators 

Section 2 was devoted to sequence generators that stretch, for fixed k and n, a k-bit 
secret random key to an n-bit sequence. Since the framework of complexity theory 
is based on the analysis of asymptotic behavior, a pseudorandom number generator 
G is often defined [3], [19] as an infinite class G = {Gk: k >>_ 1} of(k, n(k)) sequence 
generators Gk, where n is a polynomial function of the index k and where the 
computation time of each sequence generator is upper bounded by a polynomial 
function of k. Similarly, a statistical test S G = {SkG: k > 1} for the pseudorandom 
number generator G [24] is an infinite class of probabilistic algorithms Sk ~ which 
take as input a binary sequence of length n(k) and emit a binary output. G is said 
to pass the statistical test S a if and only if, for all polynomials P and for all but a 
finite number of integers k, 

1 
IPkS~ ~ _ pS".a I < - -  

P(k)' 

where pSO, G denotes the probability that Sk G emits a 1 if the input is the sequence 
generated by G k for a random k-bit input, and where pk s~ denotes the probability 
that Sk ~ emits a 1 if the input is a random sequence of length n(k). 

Definition 4. Let e(k) be any positive integer-valued function. We call a pseudo- 
random number generator G degree e(k) locally randomized if G passes every (not 
necessarily time-bounded) statistical test that examines not more than e(k) of the 
n(k) bits. 

Corollary to Theorem 1. Let t be any positive integer. For any function n(k) 
satisfying n(k) <_ k t for all but finitely many k, there exist degree e(k) = [k/(t log k)J 
locally randomized pseudorandom number generators. 

Proof, The corollary is an immediate consequence of Theorem 1 and the fact that 
a k-bit row vector can be multiplied by a binary k x n(k) matrix in time polynomial 
in k. [] 

Theorem 3. There exist no degree e(k) locally randomized pseudorandom number 
generators having e(k) > k for infinitely many k. 
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Proof. Since the statistical test need not be time-bounded, it can compute any 
function Ir ~ {0, 1}. Let the test's output be 1 if and only if the first e(k) bits agree 
with the corresponding bits of one of the at most 2 k sequences that can be generated 
by the pseudorandom number generator. Then pSi, G = 1. But all 2 ~tk) possible values 
of the first e(k) bits are equally likely when s "~k) is a random sequence so that 
pSO, R < 2k-~k), since Sff outputs 1 for at most 2 k input values. For e(k) > k, pS~.R < 
0.5 and thus [pS,,G _ pSG, R[ > 0.5. [] 

The following theorem shows that the degree of perfect local randomness can be 
arbitrarily close to the upper bound k. However, the existence proof is nonconstruc- 
tive since it is based on a random coding argument, and therefore the polynomial- 
time computability of the generator cannot be guaranteed. 

Theorem 4. Let t be any positive integer. For every e > 0 and for any function n(k) 
satisfing n(k) < k' for all but finitely many k, there exist degree e(k) = L(1 - e)kJ 
locally randomized, not necessarily polynomial-time computable, pseudorandom number 
generators. 

Proof. A (k, n(k)) sequence generator can be considered to be an ordered list of 2 k 
binary sequences of length n(k). We show that if n(k) is upper bounded by a 
polynomial in k and if P(k) is any polynomial in k, then, for sufficiently large k and 
for virtually all of the 22k"tk) (k, n(k)) sequence generators, the best (not time- 
bounded) statistical test not examining more than e(k) = I_(1 - e)kJ bits achieves a 
distinguishing probability [p s~'G - pS"'RI smaller than liP(k). Hence, there exists a 
degree [(1 - e)kJ locally randomized pseudorandom number generator if poly- 
nomial-timecomputability is not required. 

The statistical test S~ consists of a possibly probabilistic and adaptive strategy 
for determining a set of e(k) observed bit positions and of a possibly probabilistic 
function f~k: Ie(k) ~ { 0 ,  1} that assigns to every bit pattern u ~ Ie(k) the value 1 with 
probability p~ and the value 0 with probability 1 - p~. Hence, 

[PS~'G -- pSG'RI = u e~le(k) mu2-kp~ -- ~ ~ ~,-(k) 2-e(k)P~ = 2 - k  u e2Ie(k) (mu -- 2k-e(k))P~ ' 

where m. is the number of sequences of Gk having the pattern u in the e(k) positions 
selected by Sk ~. Obviously ~.~le(k)m. = 2 k. The term [p s~ _ pS~,R[i s maximized 
by choosing p~ = 1 for those u where m. - 2 k-~(k) > 0 and by choosing p~ = 0 for 
all remaining u. (Note that this choice corresponds to a deterministic function f ~ . )  
Therefore, for every function fG~: I~(k) --" {0, 1}, 

ipS,,a _ pS~,,[ < 2-k ~ (m. - 2k-~k)). 
u ~ le(k): ra u > 2 k-etk) 

Consider now the random experiment of randomly selecting a (k, n(k)) sequence 
generator Gk, i.e., of randomly selecting 2 k binary sequences of length n(k). In the 
following we upper bound the probability that the selected generator GR contains 
a set of e(k) positions such that there exists a function f ~  operating on these e(k) 
positions whose distinguishing probability Ip y%c~ - pY%al is greater than 2 -~k for 
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a given 6 > 0. This event  is the union over  all ( n ( k ) ~  \ e ( k ) J  possibilities of selecting e(k) 

posit ions of  the events that  such a function exists for a part icular  set of  e(k) positions, 
e.g., the first e(k) bits. Thus,  the union bound  yields 

p[IpY~ _ py~ I > 2 -ak] < \ e ( k ) ]  P 2-k  ~ (mu - 2k-ak)) > 2 -6k 
u e l e(k): rau > 2 k eOr 

(n(k) '~ 2k_elk) ~ f~  s ~  le(k, 
< \ e ( k )  l P m , -  _ 

( n ( k ) ~  2,(k)p[m ~ > 2k_e(k)(1 + 2_~k)] ' (4) 
< \ e ( k )  l - - 

where m, is the number  of  sequences having the pat tern  u in the first e(k) posit ions 
and where 0 denotes  the all-zero pattern.  The  second inequali ty follows f rom the 
fact that  if the sum of  2 ak) positive numbers  is greater  or equal to S, then at least 
one of them has to be greater  or  equal  to S/2~(k); and the third inequali ty results 
f rom ano ther  appl icat ion of the union bound:  the events m,  >_ 2k-e(k)(1 -t- 2 -'~k) 
are equiprobable  for all 2 e(k) values of  u and thus the probabi l i ty  that  at least 
one of these events occurs is upper  bounded  by 2 e(k) t imes the probabi l i ty  that  
any par t icular  one of these events occurs, for example,  the probabi l i ty  that  
m o > 2k-e(k)(1 + 2-ak). Since the events that  the first e(k) bits of  the ith sequence 
of G k are all zero are independent  and equiprobable  for 1 _< i _< 2 k, we can apply  
the Chernoff  bound.  F r o m  inequali ty A.19 of [22] we obtain  

P [ m o  >_ 2k-e(k)(1 d- 2-'~k)] _< e -2kx, where X = p In Pqo _ In q o (5) 
Poq q 

and where Po = 2-erR), P = (1 + 2-~k)po, qo = 1 -- PO, and q = 1 - p. Rewrit ing X 
a n d u s i n g l n ( 1  + y) > y -  2y2 f o r y  > 0,1n(1 - y) < - y f o r y  < 1 andln(1  - y) > 
_ y  _ y2 for y < 0.5, we find for 2-e(k)(1 + 2 -nk) < 0.5 that  

X = p ln(p/po)  + (1 - p)[ln(1 - p) - In(1 -- Po)] 

= 2-ak)(1 + 2 -ok) In(1 + 2 -ak) 

+ [1 - 2 -e tk ) (1  + 2 - '~k) ]  [ln(1 - -  2-e(k) (1  + 2 -Ok))  - -  ln(1 - -  2 - e ( k ) ) ]  

> 2-e(k)( 1 + 2-~k)( 2-~k -- 32" 2-2~k) 

+ [1 -- 2 -etk) -- 2 -etk)-~k] [--2-~tk)(1 + 2 -~k) -- 2-2~Ck)(1 + 2-~k) 2 + 2 -e~k)] 

>-- �89 2 -~tk)-2~k -- 2" 2 -ak~-36k -- 2-2e(k)(1 + 2-~k) 2. (6) 

Combin ing  inequalities (4), (5), and (6) and using 

( n(k)~ < n(k) k 
e (k ) ]  - 

yields 

p[ lpS%Gk  -- p f % R  I ~ 2 -~k] < n(k)k2e(k)e- 2kX = e - 2 k X  +e(k)  l n 2 + k l n n ( k ) .  (7) 
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Let e > 0, e(k) = [_(1 - e)kJ, and 0 < 6 < e/2 and let 7 = e - 26 > 0. Then 

2kx >_ ~. 2t~-2,~)k _ 2.2t~-3,~)k+l __ 2-2ttl-E)k+1}(1 + 2-~k)2 

and thus 2kx  > a2 ~k for every a < �89 and sufficiently large k. If n(k) is upper bounded 
by a polynomial in k, the exponent - 2kx + e(k) In 2 + k In n(k) on the right-hand 
side of (7) is negative for sufficiently large k. Therefore, there must exist a pseudo- 
random number generator such that, for sufficiently large k, 

IpS~,G _ pS~,R I < 2 -~k 

for all statistical tests S ~ that examine at most e(k) = L(1 - e)k] bits of the generated 
sequence with no constraints on the location of these examined bits. Note that the 
distinguishing probability decreases exponentially with k. []  

Remark. Theorem 4 can also be proved if the specification e(k) = [(1 - e)kJ is 
replaced by the specification e(k) = Lk - c(log k)'J for some �9 > 1; we need only 
replace 2 - ~  in the proof by 2 r176176 for c' < c/2. 

It is an open problem whether polynomial-time-computable degree e(k) locally 
randomized pseudorandom number generators exist for which 

lim e(k) log k/k > O, 
k ~ o o  

for instance, with l imk~ e(k)/k > C for some constant C with 0 < C _< 1. We conjec- 
ture that the answer is yes. Piveteau [161 has recently considered locally randomized 
pseudorandom number generators in a setting where all computations are poly- 
nomially bounded and proved that there exist locally randomized pseudorandom 
number generators if and only if there exist pseudorandom number generators. 

4. Extensions of the Concept of Local Randomization 

So far we have considered statistical tests that are limited in the total number of 
bits of the pseudorandom sequence that are examined during the execution. This 
corresponds to a known-plaintext attack with a limited amount of plaintext data 
available when the pseudorandom sequence is the "running key" in an additive 
stream cipher. In general, however, the nature of the enemy's a priori and/or 
obtainable information about the plaintext is global rather than structured in binary 
digits. For  example, he might know that the plaintext satisfies certain parity checks 
(e.g., reduced ASCII code). It would therefore be desirable to extend the results of 
Sections 2 and 3 to purely information-theoretic results by allowing the statistical 
test to obtain the value of any random variable not giving more than e bits of 
information about the pseudorandom sequence (or, equivalently, about the plain- 
text sequence in the additive stream cipher described above). The following theorem 
shows that unfortunately such an extension is not possible. 

Theorem 5. For every (k, n) sequence generator G, there exists a function f a  using 
one bit of information about the generated sequence, whose distinguishing probability 
[pf"'a - pfG'R[ is lower bounded by 1 - 2 k-n. 
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Proof. Assume f ~  can only obtain the output of the binary-valued function 
In ~ {0, 1} that assigns to every _s n ~ In the value 1 if and only if_s n is a sequence that 
can be generated by G. Certainly the result of a binary-valued function can at most 
give one bit of information. By simply feeding this input bit through to the output 
without processing, fG achieves p IG'o = 1 and py%a < 2k-n since the cardinality of 
the set of all sequences that can be generated by G is upper bounded by 2 k. [] 

Theorem 5 shows not only that the amount of information that the enemy is 
allowed to obtain about the generated sequence but also the way in which the enemy 
can access information must be restricted appropriately if statements similar to 
theorems 1 and 4 are to be proved. A possible relaxation of the restriction that the 
enemy obtains information about the pseudorandom sequence by observing only 
bits could, for example, be that he is allowed to obtain at most e parity checks, i.e., 
linear combinations, on the sequence bits. But even for this model, perfect "local" 
randomness cannot be achieved because n binary CTRVs are jointly independent 
if and only if every nontrivial linear combination of these CTRVs is a CTRV (see 
[23], or the XOR-Lemma in [5]). On the other hand, if the enemy is not allowed 
to obtain arbitrary bits of the sequence but only subblocks of a certain length, i.e., 
if the basic alphabet is the set of binary m-tuples rather than the binary alphabet, 
then (k, n) sequence generators achieving the information-theoretically maximal 
degree of perfect local randomness k can sometimes be achieved. In coding theory, 
schemes having this property (e.g., Reed-Solomon codes) are called maximum 
distance separable, see [12]. The problem of determinging the minimal alphabet 
size such that there exists a (k, n, k) PLR for given k and n is open. 

Two other ways of generalizing the concept of a (k, n, e) perfect local randomizer 
would be either to drop perfectness, i.e., to allow slight deviations from the uniform 
distribution, or to require perfect local randomness only "almost everywhere," i.e., 
only for all but a small fraction of the subsets of e bits. A suitable definition for the 
first generalization is given in the following: 

Definition 5. A (k, n) sequence generator is a (k, n, e, 6) local randomizer if, when 
the input is a sequence of k independent CTRVs, for every subset S of e of the n 
output random variables, H(S) > e - 6, where H(S) is Shannon's entropy [20] of 
the set S of random variables. 

5. Applications and Conclusions 

We are by no means suggesting that the sequence generators presented in Section 
2 be used as practical pseudorandom sequence generators. The two main reasons 
for this reticence are first that we cannot often validly assume that an enemy is 
restricted to obtaining only a few bits of the sequence and second that most of our 
proposed schemes are linear and therefore easily unmasked by a simple appropriate 
parity check involving e + 1 bits. The latter weakness could be obviated by applica- 
tion of an invertible nonlinear transformation on the sequence space, but the first 
problem is intrinsic. Nevertheless, there are two potential practical cryptographic 
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applicat ions of the proposed perfect local randomizers.  We first note that they are 
expanding t ransformat ions  providing,  in a certain sense, ideal "diffusion." If com- 

bined with appropr ia te  compressing t ransformat ions  providing "confusion," they 
might be excellent bui lding blocks for practical ciphers. The second possible applica- 

t ion is their use in key scheduling schemes (e.g., within block ciphers) where a small 
secret key must  be stretched to a long key. 

In  this paper we have explored the concept of local r andomiza t ion  which leads 

to provable security, but  only for a weak no t ion  of security. We note also that, once 
more in cryptologic research, results borrowed from the theory of error-correcting 

codes have turned out to be useful. 
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