
J. Cryptology (1991) 3:157-172
Journal of Cryptology
�9 1991 International Association for
Cryptologic Research

Efficient, Perfect Polynomial Random
Number Generators I

S. Micali
Laboratory for Computer Science, Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139, U.S.A.

C. P. Schnorr
Fachbereich Mathematik/Informatik, Universit~it Frankfurt,

Robert-Mayer-Strasse 6-10, D-6000 Frankfurt a.M., Germany

Abstract. Let N be a positive integer and let P E ZI-x] be a polynomial that is
nonlinear on the set ZN of integers modulo N. If, by choosing x at random in an
initial segment of Zs, P(x) (mod N) appears to be uniformly distributed in Zt;
to any polynomial-time observer, then it is possible to construct very efficient
pseudorandom number generators that pass any polynomial-time statistical test.
We analyse this generator from two points of view. A complexity theoretic analysis
relates the perfectness of the generator to the security of the RSA-scheme. A
statistical analysis proves that the least-significant bits of P(x) (rood N) are
statistically random.

Key words. Random number generator, Perfect generator, Polynomial generator,
RSA-scheme.

1. Introduction

The concept of a perfect random number generator (RNG) was introduced by Blum
and Micali (1982) and Yao (1982). An RNG is perfect if it passes all polynomial-time
statistical tests, i.e., the distribution of output sequences cannot be distinguished by
a polynomial-time observer from the uniform distribution of sequences of the same
length. So far the proofs of perfectness are all based on unproven complexity
assumptions. This is because we cannot prove superpolynomial complexity lower
bounds.

Perfect RNGs have been established, for example, based on the discrete logarithm
by Blum and Micali (1982, 1984), based on quadratic residuosity by Blum et al.
(1986), based on one-way functions by Yao (1982), and based on RSA-encryption
and factoring by Alexi et aL (1984, 1988). This last generator is the most efficient of
these generators. It successively generates log n pseudorandom bits by one modular
multiplication with a modulus N that is n bit long.

i Date received: August 8, 1988. Date revised: October 26, 1990. This research was performed while
C. P. Schnorr was visiting the Department of Computer Science of the University of Chicago, who also
supported his research. A U.S. patent, based on this work, has been granted.

157

158 s. Micali and C. P. Schnorr

In this paper we introduce two polynomial RNGs. The first of these generators
uses a random RSA-modulus and the second uses an arbitrary prime modulus N.
These generators are perfect if the answer to the following question Q is "yes" in
the corresponding case (of random RSA-moduli (resp. arbitrary prime moduli)).

Q. Let N be an odd positive integer, let P ~ 2V[x] be a polynomial that is nonlinear
on 7/N, and let x be chosen at random in an initial segment of Y-N. Does P(x) (rood N)
(or a major part thereof) appear to be uniformly distributed to any polynomial-time
observer?

We show that weak variants of this question have a positive answer. We analyse
the question from the complexity-theoretic and the statistical point of view. Our
complexity-theoretic analysis applies to random RSA-moduli N and to RSA-
functions P(x)= x e. It relies on the assumption that the RSA-cryptosystem is
secure. We make new use of the analysis of RSA-functions by Alexi et al. (1984,
1988). Our statistical analysis applies to arbitrary prime moduli N and arbitrary
polynomials P that are nonlinear on Z N. We prove that the least-significant bits of
P(x) (mod N) are statistically random. This follows from an analysis by Niederreiter
(1988) of the serial test applied to nonlinear congruential generators.

We believe that our question is important in its own right. As a further incentive
to settle it we show that answering it in the affirmative yields perfect and efficient
pseudorandom number generators. We hope that this paper encourages research
in this question.

This paper is organized as follows. In Section 2 we recall the fundamental concept
of a perfect RNG, we formulate RSA-security and describe previous RNGs that are
based on the assumption of RSA-security. In Section 3 we introduce our new
sequential polynomial generator with random RSA-moduli. Its security is related
to question Q1, the variant of question Q refering to random RSA-moduli. We
show that a weak variant of Q1 can be answered in the affirmative if the RSA-
cryptosystem is secure. Assuming that Q1 has a positive answer, is actually
equivalent to assuming that RSA-encryption is secure in a strong sense. In Section
4 we introduce a sequential polynomial generator with prime moduli. Its security
is related to question Q2, a variant of question Q adapted to prime moduli. Our
statistical analysis shows that a weak variant of Q2 can actually be answered in the
affirmative. In Section 5 we show that if Q1 has a positive answer, then the sequential
polynomial generator is perfect. This generator is more efficient than previous ones
based on the assumption that the RSA-scheme is secure, even in a strong sense. We
show how to parallelize arbitrary perfect RNGs and how to retrieve substrings of
the output efficiently.

2. Perfect RNGs and the RSA-Scheme

We recall the concept of perfect RNG that was introduced by Blum and Micali
(1982, 1984) and Yao (1982). We define RSA-security and describe the RNG of Alexi
et al. (1988) that is perfect if RSA is secure.

Efficient, Perfect Polynomial Random Number Generators 159

An ensemble X = (X~),~ ~ is a sequence of random variables such that, for some
function h: [~ ~ I~, X n ranges over {0, 1} ht*~. We call h the type of the ensemble and
we require that h is polynomially bounded, i.e., h(n) = O(n') for some t > 0. A
poly-size circuit family C = (C~),~ N is a sequence of boolean circuits C~ such that
the number of gates in Cn is at most O(n') for some t > 0. For a random variable
X~ ranging over input values for CA we let C,(X,) denote the induced random
variable of output values.

Definition. Two ensembles (X~)~ ~ and (Y~)~ ~ are polynomially indistinguishable
if, for every poly-size circuit family (C~)~ N and for all t > 0,

Iprob(C~(X~) = 1) - prob(C~(Y~) = 1)1 = O(n-').

This definition seems to cover all efficient ways to tell two ensembles apart. No
additional power can be gained by circuits with many output gates and by circuits
that have additional input gates for internal coin flips. The circuit family (C,)~ N is
called a statistical test.

Let U~ denote the random variable that ranges uniformly on {0, 1 }~. An ensemble
(Xn)~ ~ N of type h is called pseudorandom if it is polynomially indistinguishable from
the ensemble (Uht,~)~ ~ N" More generally we call an ensemble (X~) n ~ N pseudorandom
in the sequence of finite sets (S~)n~ ~ if it is polynomially indistinguishable from the
sequence of uniform distributions on (S~)n~ s. This assumes a natural encoding of
the elements in S, as bit strings of some length h(n).

An RNG is a polynomial-time algorithm G: {0, 1}*--.{0, 1}* such that
G({0, 1} n) c {0, 1} htn~ for some function h with h(n) > n. With an RNG we associate
the random variable G(U~) defined by

prob[G(U~) = y] = I{x E {0, 1}~ : G(x) = y}12 -n.

Definition. An RNG G is called perfect if the ensemble (G(U,))~ N is pseudo-
random.

An ensemble (Xn),, N is called unpredictable (to the right) if, for every poly-size
circuit family C and for all t > 0,

max Iprob[C~,i(xl ... xl) = xi+l] - �89 = O(n-'),
i = 0 h (n) - I

where x 1 .--xht~j ~x, {0, 1} ht~), i.e., the random variable x I "--xht,~ has the same
distribution as X~.

Theorem 2.1 (Yao, 1982). An ensemble is pseudorandom iff it is unpredictable.

Alexi et al. have shown that unpredictable RNGs can be derived from the
RSA-algorithm provided that the RSA-scheme is secure. We describe this RNG.
The RSA-scheme of Rivest et al. is based on the subgroup Z* of invertible elements
in ZN = Z / N Z where N is a product of two large random primes p and q. We identify
ZN with the integer interval [1, N]. For z ~ 7/ let [z]N ~ [1, N] denote the least

160 S. Micali and C. P. Schnorr

positive residue of z modulo N; we have I-z]N = z (mod N). The order of the group
7/* is go(N) = (p - 1)(q - 1). I fe is an integer, e > 1, and gcd(e, go(N)) = 1, then the
transformation

[1, N] ~ x~-}[x']N E [1, N] (1)

is a permutation on [1, N] and is called an RSA-cipher. The inverse permutation
to (1) is given by X~-~[Xa]N where d = e -1 (mod go(N)).

The security of the RSA-scheme relies on the assumption that the RSA-cipher is
difficult to invert when e, N are given but go(N) and d = e -1 (mod go(N)) are
unknown. All known methods for inverting the RSA-cipher require the factorization
of N. We formulate RSA-security with respect to uniform random moduli N from
the set

{ N = p . q , gcd(e, go(N))=l}
S n , e - ~ N ~ ~ 2n/2_ 1 < P, q < 2n/2 .

The set Sn,~ is sufficiently large. It follows from the prime number theorem and from
Dirichlet's theorem on the distributions of primes in arithmetic progressions that

lim IS~.~121n 2
n

is a positive constant.
We call the RSA-scheme secure if, for every poly-size circuit family C and all t > 0,

prob(Cn([xe]N, N) = x) = O(n-').

The probability space is the set of all pairs (x, N) with N e S,., and x e [1, N] with
uniform probability.

Notation. For x, k ~ t~ we let x [k denote the bit string consisting of the k least-
significant bits ofx. We let y eX S denote a random variable y that ranges uniformly
on the set S. We let log n denote the nature logarithm of n.

Theorem 2.2 (Alexi et al., 1984, 1988). I f the RSA-scheme is secure and k(n) =
O(log n), then the following ensembles are polynomially indistinguishable:

�9 (N, [xe]N, x[k(n))for N ~x Sn, e, x ex [1, N].
�9 (N, y, z) for N ex Sn.~, y ex [1, N], z ~x {0, 1} kt~).

The "Incestuous" Generator. Theorem 2.2 yields a perfect RNG under the assump-
tion that the RSA-scheme is secure. This generator consists of two phases. In the
first phase, a pseudorandom RSA-modulus N and a random x in [1, N] are
constructed from a truly random seed 09. In the second phase the pseudorandom
bit string is generated by computing the sequence f(x), f (f (x)) (where f (x) =
[Xe]N) and outputing at each step the k(n) least-significant bits of the current value.
Thus, at each step, the function f is evaluated on a value comprising the previous
output bits, in a somewhat "incestuous" manner.

Phase 1. Given a random bit string oJ eR {0, 1} ~3 generate, from co by a deterministic
polynomial-time algorithm H, a pair (x, N) = H(~o) consisting of two n bit numbers

Efficient, Perfect Polynomial Random Number Generators 161

x, N such that the following ensembles are polynomially indistinguishable:

�9 (H(V3)),~ N,

�9 (y, N) with N eR S~.e, y eR I'1, N].

Phase 2. x I := x, for i = 1 , h(n) do

Xi+l := [xr]N, output Out(xi) := xiEk(n)).

Sketch o f the Function H. We can generate, from co random numbers, Pl

pn2 in the interval [2 "/2-~, 2 ~/2] such that with overwhelming probability there are at
least two primes p~, Pi satisfying gcd((p~ - 1)(pj - 1), e) = 1. We can also generate
from co the random bits for a probabilistic primality proof for p~ and pj and a
probabilistic proof showing that probo,[N e S~.e] > 1 - 2 -~ holds for N = p~pj. For
this we can use the probabilistic primality test of Solovay and Strassen (1977, 1978).
In case there are no such primes p~, p~ we define H(co) arbitrarily. The random
number x e [1, N] can be generated from unused bits of co.

Corollary 2.3 (Alexi et al., 1984, 1988). I f the RSA-scheme is secure, k(n) = O(log n)
and h(n) is polynomial with h(n) > n 3, then the following ACGS-generator is a perfect
R N G :

G(o)) := x 1 [k(n)) , xh{n~[k(n)) for co e {0, 1} n3,

where (x, N) = n(co) is as above and Xo = x, xi+l = [x~]~r

The above generator raises a natural question:

How many bits can we safely output at each iteration o f the above generator?

Assuming that n/2 bits can be output and the generator is perfect, to have an
expansion factor of 2 (i.e., to output as many pseudorandom bits as in x and to
obtain a new seed x~) the RSA-function needs to be iterated at least twice.

By contrast, in the next section we show a simple, different strategy that obtains
an expansion factor 2 with a single function evaluation using half-size input
numbers. This generator is of the weaning type. Once a string of bits is output it is
left alone, that is, the function is never evaluated on the output bits.

3. The Sequential Polynomial Generator of the Weaning Type

The sequential polynomial generator (SPG) consists of two phases similar to the
phases of the "incestuous" generator. The first phase generates a pseudorandom
RSA-modulus N and a random x e [1, N2 -k] from a truly random seed co. The
second phase computes a sequence of numbers x = x l , x2 xi in I-1, N 2 -k]
and outputs from xi the bit string Out(x~) E {0, 1} kt") consisting of the k(n) least-
significant bits ofz~ := [x~]N. The successor xi+ 1 o f x i is formed from a separate part
of z~, the remaining n - k(n) most-significant bits of zv

162 S. Micali and C. P. Schnorr

= xl ~ Out(x1)

/X2 "~"-.~ Out(x2)

/ x,..........~ Out(x,)

X,+l

/ " ~ Out(x,+l)
Fig. 1. The sequential polynomial generator (SPG).

Phase 2. x l := x, for i = 1 , h(n) do

zi := [x~]N, x~+l := [Zi/2k~n)J + 1 Output Out(xi) := zi[k(n)).

The SPG can be illustrated by the infinite tree shown in Fig. 1.
Let SPGh, e(X, N) = I-I~l Out(x/) (where I-I denotes concatenation) be the output

of the first h steps. If k(n) = n/2, then a single iteration of this generator yields an
expansion factor 2, i.e., the output string Out(x1) has as many bits as are in x.
Assuming that the SPG is perfect with k(n) is comparable to the assumption that
the "incestuous" generator is perfect with k(n). In particular we show, in Corollary
5�9 that the SPG is perfect with k(n) = O(log n) if the RSA-scheme is secure.

We study the perfectness of the SPG in view of the following complexity question
Q1, the variant of question Q adapted to RSA-moduli. We prove in Section 5 that
if Q: has a positive answer for k(n), then the above generator is perfect.

Ql. Let k: • ~ N be a function where k = ke can depend on e. Is it true that the
following ensembles are polynomially indistinguishable?

�9 (N, [X~]N) for N ~R Sn,e and x ~R I-1, N2-kt")].
�9 (N, y) for N ~R Sn.e and yeS [1, N].

The question may be interesting in its own right, since it addresses a number
theoretic problem that reaches far beyond RSA-ciphers. In the next section we
study a corresponding question for prime moduli N and for arbitrary nonlinear
polynomials. In this section we study Q1 from the point of view of RSA-security.

If the answer to Q1 is no for k(n), then given e and N we can distinguish between
RSA-ciphertexts [Xe]N of random messages x ~R [1, N] and RSA-ciphertexts of
messages x Ca [1, N2-k~"~]. Then RSA-ciphertexts leak partial information. This
does not necessarily jeopardize the RSA-scheme since short messages x e [1, N2 -k]
can be avoided�9

The following theorem relates Q and Q1 more closely to RSA-security. We say
that a probabilistic algorithm A eN-rejects the distribution D on [1, N] if

IPA -- ~AI > ~N,

Efficient, Perfect Polynomial Random Number Generators 163

where Pa (resp. Pa) is the probability that A on input y ~ [1, N] outputs 1. The
probability space is the set of all y E I1, N], distributed according to D (resp. with
uniform distribution) and of all 0-1 sequences of internal coin tosses of algorithm A.

Theorem 3.1. Let N ~ Sn, e. Every probabilistic algorithm A that eN-rejects RSA-
ciphertexts [x~]N of random messages x ~ [1, N2-k], can be transformed (uniformly
in N) into a probabilistic algorithm for decodin9 arbitrary RSA-ciphertexts. This
deciphering algorithm terminates after at most (2keTvln) ~ elementary steps and
succeeds with probability at least 1/2.

For elementary steps we count 7/N-operations (addition, multiplication, division),
RSA-encryptions, and calls to the algorithm A at unit costs.

Proof. For odd N and all x E [1, N] we have

xeE1 , N2 -k] ~ [2kx]N=0 (rood2 k)

(i.e., x E [1, N2 -~] iff the representative of2kx (mod N) in [1, N-I is a multiple of 2k).
Therefore the following two distributions are identical for odd N, put y = [2kX]N:

�9 [xe]N for random x e I-1, N2-k],
�9 [2-keye] N for random y ~ [1, N] satisfying y = 0 (mod 2k).

Moreover we can transform in polynomial time ye (mod N) into 2-key ~ (mod N).
Thus an eN-rejection of RSA-ciphertexts [xe]N of random messages x ~ [1, N2 -k]
can be transformed (uniformly in N) into an eN-rejection of RSA-ciphertexts [Y~]N
of random messages y satisfying y = 0 (mod 2k).

For random y r [1, N-I the event y = 0 (mod 2 k) has probability at least 2 -k - 1/N.
Therefore an aN-rejection of RSA-ciphertexts [Y~]N of random messages y satisfying
y = 0 (mod 2 k) translates into an eN2-k-rejection of pairs ([ye]N, y (mod 2k)) of
random messages y % I-1, N]. By Theorem 2.2 y (mod 2 k) is pseudorandom when
given lye']N, or else RSA is insecure. Following the proof(in Alexi et al., 1984, 1988)
of Theorem 2.2 we can transform an eN2-k-rejection of the pairs ([ye]N, y (mod 2k))
into a probabilistic algorithm for inverting RSA which terminates after at most
(2ke~ 1 n) ~ elementary steps and succeeds with probability at least 1/2. []

We state consequences of Theorem 3.1 to the question Q1 for various functions
k(n).

The Case k(n) = O(log n). If k(n) = O(log n), then the time bound (2keTvln) ~ of
the RSA-deciphering algorithm in Theorem 3.1 is polynomial in the time bound of
algorithm A. Therefore if the answer to QI is no for k(n) = O(log n), then RSA-
ciphertexts can be deciphered in probabilistic polynomial time.

The Case k(n) = 0(nl/3). If Q1 is answered in the negative for k(n) = 0(nl/3), then
RSA-ciphertexts can be deciphered with probability at least 1/2 in time e ~ This
is faster than the fastest known algorithm for RSA-deciphering via factoring. (So
far the fastest algorithm for factoring RSA-moduli requires e ~176 steps. The
recently invented number field sieve algorithm by Lenstra et al. (1990) takes

164 S. Micali and C. P. Sehnorr

e ~176 steps to factor numbers of the form r ~ + s, where s is a small integer.)
Thus if Ql is answered in the negative for k(n) = O(nlC3), then we can speed up the
presently known attacks to the RSA-scheme.

The Case k(n) = n(1 - l/e) and k(n) = n(1 - 2/e). The answer to Qz for k(n) ffi
n(1 - I/e) and N2 -kc~) = N 1/~ is "no" since we have x" < N for all x �9 [I, N v~] and
thus RSA-ciphertexts x e (mod N) can be easily deciphered. On the other hand, the
question QI remains open for k(n) = n(1 - 2/e), N2 -k(n) = N 2/~. The numbers x e
are of order N 2 for almost all x �9 [1, N2/e]. This may be sufficient to make the task
of deciphering x e (mod N) hard. At least it is known that inverting the squaring
x ~ x 2 (mod N) is as hard as factoring N, and the squares x 2 are of order N z, too.
If the answer to Q1 is yes for k(n) = n(1 - 2/e), then this yields a particular efficient
perfect RNG, see Section 5.

Choosing the Modulus Size. In order that the two distributions in question Q1 are
infeasible to distinguish, N must be difficult to factor and N 2 -k must be large enough
so that it is infeasible to enumerate the interval [1, N2-~]. We must also take into
account the following method by Pollard (1988) to recover x �9 [1, N2 -k] from
x e (mod N). Let N 2 -k = N 2~. I fx is a product x = uv of two numbers, u, v �9 [1, N~],
then we can find u, v as follows:

1. Generate the set $1 = {u e (mod N)lu �9 [1, N~]} and sort this set.
2. Generate the set Sz = { x ' v - " (mod N)lv �9 [1, N ']} and sort this set.
3. Test whether $1 and S z have a common element. If u e = x ' v -~ (mod N) �9

St c~ Sz, then we have found x = uv.

Pollard's attack performs O(N ~) arithmetical steps modulo N and stores N" residues
modulo N. If we choose n, k such that n - k(n) > 128, then Pollard's attack takes
about 264 steps which seems to be infeasible for present computers.

4. Statistical Analysis of Generators Using a Prime Modulus

In Theorem 4.1 we analyse a variant of question Q1 that relates to an arbitrary
prime modulus N from the statistical point of view. (This analysis can be extended
from prime moduli N to RSA-moduli N, see the remark after the proof of Theorem
4.1.) We also introduce an RNG using an arbitrary prime modulus N. Let N be an
arbitrary odd prime. Let P �9 7/[x] be an arbitrary polynomial that is nonlinear
when considered modulo N.

Niederreiter (1988) has proved an upper bound (see Lcmma 4.2 below) on the
discrepancy of tbe distribution of P(x) (mod N) for random x �9 [1, M] and M < N.
We conclude from his result that, for all primes N and for x ~ [1, N2-k], the
(n/2 - k - (log n) 2) least-significant bits of P(x) (mod N) are statistically random in
the sense of Santa and Vazirani (1984). This may be seen as evidence that the
RSA-gcnerator is perfect and that our question Q is sound.

The random variables Y, Z are called statistically indistinguishable within 8 if
~ Iprob[Y = ~] - p rob [Z = 0c][< e. In this case and if Y ranges uniformly over
some finite set S, then Z is called statistically random within ~ in S. An ensemble

Efficient, Perfect Polynomial Random Number Generators 165

(X.).. N is called statistically random in the sequence (S.).~ ~ of sets S. if X. is
statistically random within e(n) in S. where e(n) has the property that e(n) = O(n-')
for all t > 0. It can be easily seen that if the ensemble (X.). ~ ~ is statistically random
in (S.).. N it is also pseudorandom in (S.).~ ~ but the converse does not hold in
general. For this we note that if the random variables Y and Z are statistically
indistinguishable within e, then for any function f the random variables f (Y) , f (Z)
too are statistically indistinguishable within e. To prove the claim we apply this
observation to Y = X. to the random variable Z that ranges uniformly on S., and
to the function f = C. where (C.).~ N is any poly-size circuit family.

For a polynomial P ~ Z[_x] we let degN(P), the degree of P on 7/N, be the minimal
degree of any polynomial P ~ Z Ix] with the property that P(x) =/5(x) mod N for
all x ~ 7/.

Theorem 4.1. Let N be any prime that is n bits long and let P c Z [x] be
any polynomial with degN(P) >_ 2. Then for all k, m > 0 and x e R [1, N 2 -k]
we have that [P(x)]N mod 2 m is statistically random within e in [1, 2 m] where

= O(degr~(p)n22-"/2+k+m).

In particular it follows with m = (n/2 - k - (log n) 2) that if e > 3, N is a prime
with e ~ 0 (mod N - 1), then the (n/2 - k - (log n) 2) least-significant bits of x e
(mod N) are statistically random within ~ for e = O(degN(P)n2n-J~ Note that
such 8 is for all t > 0 smaller than n -t for all sufficiently large n.

We now state Niederreiter's result. Theorem 2 in Niederreiter (1988) asserts that
Lemma 4.2 below holds for all polynomials P e 7/l-x] that act as permutations on
ZN. The proof given by Niederreiter proves Lemma 4.2 even for all polynomials
P e Z[x] that are nonlinear on 7/N since Niederreiter's proof does not use the
permutation property. Let CH~ denote the characteristic function of the interval
I ~ [1, N].

Lemma 4.2 (Niederreiter, 1988, Theorem 2). There exists an absolute constant
c > 0 such that, for all primes N, all P ~ Z [x] that are nonlinear on Z N, all
0 < M < N, and all intervals I ~ [1, N],

I f M > N1/22~176 then the expression in Lemma 4.2 is less than n -t for all t > 0
and all sufficiently large n. From this we can show that the (n/2 - k - (log n) 2)
least-significant bits of P(x) (mod N) are statistically random for x ~R l-1, N2-k'l.
Note that the assertion of Lemma 4.2 does not hold for linear polynomials P. We
are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. For simplicity we write iz] for [z]N. Given that N is
odd any integer b (rood 2 m) can be uniquely written b = - i N (rood 2") with
i e [0, 2 m - 1] and we have the following equivalence for y e [1, N]:

y ~ [i N 2 - m , (i + l) N 2 -m] ~ [2 m y] = - - i N (mod2m).

166 S. Micali and C. P. Schnorr

The implication from the left to the right is obvious. It also proves the inverse
implication.

We apply Lemma 4.2 with M = N2 -k, I = [iN2- ' , (i + 1)N2 -m] and with
the polynomial 2-raP (mod N). Then the above equivalence shows that, for all
i c [0,2 m - 1],

[lm C'degs(P)N1/22 # { x c [l ' N 2 - k] l [P (x)] = - i N k _< ~ n .

By summing up over all i we obtain the upper bound c degN(p)n22 -n/2+k+ra. []

Composite Moduli N. Recently, Niederreiter has extended Lemma 4.2 from prime
moduli N to composite moduli N = ql q2 that are products of two distinct primes
ql, q2. In the extended Lemma 4.2 the degree degN P is replaced by the product
degql P.deg~eP. With this substitution, Theorem 4.1 also extends to RSA-
moduli.

We next extend Theorem 4.1 from the least-significant bits of [P(x)]N to the
leading bits. Since the leading bits of [P(x)]N are biased according to the leading
bits of N we consider the distribution of L[P(x)]N2m/NJ instead.

Theorem 4.3. Let P, N, n, k, m be as in Theorem 4.1. Then the following distributions
are statistically indistinguishable within e where e = O degN(P) n2 2-n/2+k+m):

* L[P(X)]N2m/NJ for x Ca [1, N2-k].
, x CR [0, 2 m - 1].

Proof. It follows from Theorem 4.1 that, for x Ca [1, N2-k], the m least-significant
bits of [2"P(X)]N are statistically random within e where e = O(degN(p)n22-~/2+k+m).
This follows by applying Theorem 4.1 to the polynomial 2raP (mod N). From the
proof of Theorem 4.1 we have the following equivalence for i c [0, 2 m - 1]:

[2mP(X)qN = -- iN (mod 2 m) r [P(X)]N C [iN2 -m, (i + 1)N2 -m]

L [P (x)] N 2 m / N j = i.

The claim follows from this equivalence and since the m least-significant bits of
[2~P(x)]N are statistically random within e. []

Remark. From the proof of Theorem 4.3 we have the following equivalence which
holds for all e > 0, all k, m c t~, all nonlinear P c Z[x], and for x c R [1, N2-k]:

[l'2mP(x)]~]2 m is statistically random within e in [1, 2 m]

r L[P(X)]N2m/NJ is statistically random within e in [0, 2" - 1].

Theorems 4.1 and 4.3 show that the distribution of [P(x)-IN for x CR [1, N2 -k]
approaches, in a weak sense, the uniform distribution on [1, N]. This shows that
our question Q is sound from the statistical point of view. We now pose question
Q2 which adapts question Q to prime moduli N. We let N, denote a prime that is
n bits long, 2 "-1 < N, < 2 n.

Efficient, Perfect Polynomial Random Number Generators 167

Q2. Let d > 2 be an integer and let ka: N ~ ~ be a function dependin# on d.
Is it true that for all sequences (N,).~ ~ of n bit primes and (P.).~ ~ of polynomials
with degN.(P.)= d the number [[Pn(x)]1%]2~,., is pseudorandom in [1, 2 k't"J] for
x eR [1, N.2-k"~"J]?

We see from Theorem 4.1 that Q2 holds with kd(n) = In(�88 -- 6)] for any fixed
d > 2 and ~ > 0. For such function kd and x ER [1, N.2 -k't")] the ensemble [P.(x)]s.
mod 2 k~t") is even statistically random in [1, 2k"t")]. If Q2 holds with kd(n) > n/2 this
yields a perfect RNG. If Q2 holds for the function k d we must have kd(n) < n(l -- I/d);
this is because kd(n) > n(1 -- I/d) implies x a < N~ for all x e [1, N,2-k~t")]. It is open
whether Q2 holds for kd(n) = In(1 -- 2/d)]; this would yield a very efficient RNG.
We next give an equivalent formulation for Q2 in which the interval [1, N.2 -k`t"~] is
replaced by an arbitrary pattern for the kd(n) least-significant bits of x.

Theorem 4.4. Q2 holds for kd: N -* N iff, for all sequences (N.).~ N of primes
and (Pn).~ N of polynomials with degs.(P.) = d and for all sequences (y.).e ~ with
Yn e [1, 2kdt"J], we have that [[P.(x)]s.-]2~.~ is pseudorandom in [1, 2 k~tn)] for
x eR [1, N.] n (y, + 2k"t")Z).

Proof. We abbreviate kd(n) by k. We know from the proof of Theorem 4.1 that the
linear transformation X~-*2kx (mod N.) yields a bijection between the integer
interval I t := [iN.2 -k, (i + 1)N.2 -k] and the set At := [1, N.] n (- iN. + 2kZ). Let z t
denote the minimal integer in It. Then the linear transformation x ~ 2k(X + Zt -- 1)
(mod N.) maps the interval [1, N.2 -k] into the set A~. The image of [1, N.2 -k] covers
the set A~ except possibly the maximal element of At. The exception occurs if
[1, N.2 -k] has fewer elements than It. Note that the interval [1, N.2 -k] has [N.2-kJ
elements and I t may have either l_N.2-kJ or I_N.2-k] + 1 elements.

In order to prove the theorem we set i := y. and we note that every poly-
nomial P. e Z[x] corresponds to some polynomial /5 e Z[x] such that P.(x)=
/5,(2k(x + Zt -- 1)) (mod Am). Conversely there exists for every/5, a corresponding P.
and these polynomials have the same degree when considered modulo Am. Now if
Q2 holds for P., then the second statement of Theorem 4.4 holds for /5. and
conversely. []

Corollary 4.5. I f Q2 holds for the function kd: N --* N, then for all sequences
(N.).~ N of primes and (Pn).~ N of polynomials with degN.(Pn)= d we have that
([x]2~.~, [[P.(x)]N,]2~.~) is pseudorandom in 1"1, 2kat"~] 2 for x er~ [1, N.].

Proof. Suppose that Q2 holds for the function ka. Then [[P.(x)]N.]2~., is pseudo-
random in [l, 2 k"t")] for x eR [1, N.]. Moreover [x]2~,., is obviously pseudorandom
in [1, 2 k"t"J] for x ~R [1, N.]. Now the claim follows from Theorem 2.1 (Yao, 1982)
provided that [x]2~,., is unpredictable when given [[P,(x)]s.]2~,.,. In order to
prove this unpredictability we consider any two distinct sequences of integers
(y.).~ ~. By Theorem 4.4 the corresponding ensembles

[[P.(x)]N,']2~,., for x ~R l-l, N.] n (y. + 2k~t")Z)

are polynomially indistinguishable. This shows that the bits of x for which the two

168 S. Micali and C. P. Schnorr

integers y, differ, cannot be predicted when given [[P~(x)]N.]2~,.~. Since this holds
for any two sequences (yn),, ~ it follows that [x]2~,, is unpredictable when given
[[Pn(x)']N.]2kn,.~. This proves the claim as shown above. []

Example of a Perfect RNG. Let n = 0 (mod 4), let d = 8, let P(x) = x s, and let
h(n) be polynomial.

input xl eR [1, N~2-3~/4], Nn an n bit prime.
for i = 1 , h(n) do
2 i := [x8]N,, xi+ 1 := [.[2i]23,/,2-n/2J + 1

output Out(xi) := zi[n/2, the n/2 least-significant bits of z i, for i = 1 , . . . , h(n).

Corollary 4.6. If Q2 holds with kd(n) = Ln(1 - 2/d)J, then the above RNG is perfect.

The proof of perfectness for this generator follows the proof of Theorem 5.1 and
is given subsequent to this proof.

This generator outputs n/2 bits per iteration at a cost of about 1.25 modular
multiplications. In each iteration we compute x 2, x~, and x a (rood N~). Since x~ < N,
only the computation of x~ 8 (mod N~) requires a full modular multiplication. The
other multiplications are with small numbers. The security of this generator does
not rely on the assumption that the modulus N, is difficult to factor. Generators
with prime moduli are particularly suited for some applications. Everybody can use
this generator with the same modulus N and no trusted authority is required for
generating N.

It is open whether the SPG of Section 3 is perfect for arbitrary prime moduli N
that are n bits long and for some function ke(n) with 1 < k~(n) < n(1 - 2/e). This
generator may be perfect even though Q1 does not hold for prime moduli. Since
the perfectness of this generator does not follow from Q2 it requires a more general
hypothesis. This generator, if perfect, could be practical for smaller moduli N. For
a 256-bit modulus N, e = 4, and k = n/2 we could generate 128 pseudorandom bits
at the cost of about 1.25 modular multiplications.

5. Perfectness of Sequential and Parallel Generators

Theorem 5.1. Suppose that Q1 holds for k(n). Then for random N ER S~.e,
x c a [1, N2-kt~], and polynomial h = h(n) the output SPGh, e(x, N) of the sequential
generator is pseudorandom.

Proof. We abbreviate h = h(n), k = k(n). We transform any statistical test C that
en-rejects (N, SPGh, e(X , N)) into a test Ci that eJh-rejects (N, [Xe]N). Let C be a
statistical test that takes inputs of the form

N y l . . . y h E S~,e • {0, 1} kh.

We consider the "hybrid" random variables Xi, i = 0 , h, ranging over such
inputs:

Xi = Nrl ... r i Out(xi+l) ... Out(xh),

Efficient, Perfect Polynomial Random Number Generators 169

where N ~.R Sn, e, r 1 . . .tiER{0 , 1} ki and Out(xi+l)'"Out(xh) is produced by
picking a random z ~R [1, N-I and by applying the SPG with input N and Xi+l :=
Lz2-kj + I.

Let p~ be the probability that C outputs 1 with input Xv If C e.-rejects
(N, SPGh, e(X, N)) for N eR S.,e, x ~R [1, N2-k], then we have IPo - Phi -> e.. There-
fore it is sufficient to derive from C a probabilistic test C~ that [p~_a - pil-rejects
(N, [xe]s) for random N eR S.,e, and x ca [1, N2-k]. The claim follows since
we have IPi-~ - P~I > e./h for some i < h. We let C~ take inputs of the form
(N, z) e S.,e x [1, N]. C~ partitions z into z[k and xi+l := [z2-kJ + 1, generates
random rl r~_~ by internal coin tosses, and applies C with input Nrl...r~_ ~
z[k Out(xi+0 "- Out(xh). With random input N eR S.,~, z ER [1, N], z[k is a random
number that is independent of x~+~, and thus C~ outputs 1 with probability Pv
(Here we neglect a negligible dependence between z[k and x~+~ that arises from
the case where [.z2-kJ =]N2-kJ and which is due to the condition that z < N.
This dependence is negligible since this case has probability < 2k/N.) With input
N eR S.,~, z := [xe]N for N ~R S.,e, x eR [1, N2 -k] the distribution of (z[k, x~+~) is
the same as the distribution of (Out(x~), xi+l) within X~_~, and thus C~ outputs 1
with probability Pi-~. []

Proof of Corollary 4.6. This proof follows the proof of Theorem 5.1 with
the following changes. Now we have k = k(n)= n/2 and the modulus N, is
constant whereas N eR S,.e is random in Theorem 5.1. Now we compute x~+l :=
L[z]23,/42-"/2J + 1 whereas we have xi+l := I_z2-k_l + 1 in the proof of Theorem 5.1.
With these changes define the random variables X~ = N,r~ ... ri Out(Xi+x)... Out(xk)
as in the proof of Theorem 5.1 but generate Out(xi+0.. . Out(xk) from x~+~ by
applying the generator of Corollary 4.6. We can transform any statistical test C that
e,-rejects X o into a test Ci that e,/n-rejects [[xS]N,]23,,, for x ~R [1, Nn2-3n/a'], a
contradiction to Q2. On input z ~ [1, N] the test C~ applies C to the random variable

Nnrl ... ri_ 1 z[k Out(xi+l).--Out(xh).

In order to simulate C with input X~ (resp. X~-I) apply the test Ci with z ~R [1, N~]
(resp. with z = [xS]N, for x ~R [1, Nn2-3n/4]). []

From Theorems 3.1 and 5.1 we have the following corollary.

Corollary 5.2. I f the RSA-scheme is secure, k(n) = O(log n), and h(n) is polynomial,
then the sequential polynomial generator is perfect.

Remark. It is tempting to generate pseudorandom bits according to the recursion
xi+l := xf (mod N), i = 1, 2 and to output the k(n) least-significant bits of xv
This "incestuous" generator is more difficult to justfy by a theorem similar to
Theorem 4.1. The period of the sequence x~, i = 1, 2 raises further doubts
concerning this generator. The period is the order of e in Z*~m. In general it will be
a large factor of q~tp(N) and will be much larger than x / ~ which is the average period
of a random recursion in Z N. It is conceivable that the number tp~0(N) somewhat
affects the output distribution of the generator and not only its period.

170 S. Micali and C. P. Schnorr

The "incestuous" generator is less efficient than our generator in case that k(n) is
sufficiently large. It requires more iterations than the SPG to obtain the same
expansion factor. In addition computing x~ (mod N) for a full size x~ and e > 3
requires at least two modular multiplications whereas an iteration for our generator
only costs about one modular multiplication for large enough k(n). For example,
we consider the case e = 7, k(n) = n~.

Example. Suppose that the answer to Q1 is "yes" for e -- 7 and k(n) = n~. Let
N e S,.7 with n = 512. Then for the above RNG Out(xi) consists of the 365 least-
significant bits of x 7 (mod N) and xi+l is the number corresponding to the 146
most-significant bits of x7 (mod N). For x i e [1, 2146] we compute x 7 (rood N) by
computing xi2, xi4., x~ = x i �9 x~. x~. Since x 3 _< 2512.6/7 the cost of the multiplication
x 3" x~ is about 6 times the cost of one full modular multiplication. The cost per
iteration corresponds to one full modular multiplication.

Efficient Public K e y Encoding and Decoding. We can use the above RNGs to
generate a one-time-pad for message encoding. When given the seed xl of the one-
time-pad, encoding and decoding can be done at a speed of about k(n) bits per
multiplication modulo N. A public key coding scheme as, e.g., RSA can be used to
encode and to decode the seed x~.

The Parallel Polynomial Generator. The parallel polynomial generator (PPG)
generates from random seed x ~ [1, N 2 -ktn)] a tree with root x and outdegree s with
s = [n/(n - k(n))J. The nodes of this i teration tree are pseudorandom numbers in
[1, N 2 -ktn)] that are represented by bit strings of length l = n - k(n). We consider
the case that k(n) > n/2 and s >_ 2.

The successors y(1) y(s) of a node y and the output string Out(y) of node y
are defined as follows. Let bl b, be the bits of the binary representation of
ye mod N, with bl being the most-significant bit, i.e.,

~" b~2 "-i = ye rood N.
i=1

We partition the sl most-significant bits into s blocks with 1 bits in each block. The
corresponding numbers

l

y (j) := 1 + y ' bo_l)~+i2 l-i for j = 1 s
i=1

are the successors of node y in the iteration tree. The output Out(y) at node y consists
of the remaining low-order bits of y~ mod N,

Out(y) = bsl+l "'" b,.

For convenience we denote the nodes on level h of the iteration tree as x (j l , . . . , Jh);
x (j l Jh-1) is the direct predecessor of x (j l Jh) andjh ranges from 1 to sh-1.

The parallel polynomial generator can be illustrated by the infinite tree shown in
Fig. 2.

Efficient, Perfect Polynomial Random Number Generators 171

x=x(^)

/
x(1)

(
l \

x(2) -" X(So)

L
X(1,J2 Jh-l)

/ \
x(l , j2 Jh-l, 1) x(1,j2 Jh-l, s~-i)

Fig. 2. The parallel polynomial generator (PPG).

We define the output PPGh, e(x, N) of the PPG with seed x as the concatenation
of all bit strings Out(x(j l Ji)) on levels i with 0 < i < h, with respect to any
efficient enumeration order, as, e.g., preorder traversal, postorder traversal, inorder
traversal, or enumeration by levels.

The argument of Goldreich et al. (1986) extends Theorem 5.1 to the parallel
generator provided that we process at most polynomially many nodes in the
iteration tree. This yields the following corollary.

Corollary 5.3. Suppose the answer to Q1 is yes for k(n) > n/2. Then for random
N ~R S~,e, X eR [1, N2 -ktn~] the output PPGh, e(X, N) of the parallel generator is
pseudorandom provided that the output has polynomial length.

Parallel Mode for Arbitrary Perfect RNGs. The method of parallelization applies
to every perfect RNG. The parallel variant of the generator associates an iteration
tree to a random seed. For example, suppose the sequential generator G~: {0, 1} ~
{0, 1} 3n stretches random bit strings of length n into pseudorandom bit strings of
length 3n. We construct from random seed w eR {0, 1} ~ a binary iteration tree with
nodes in {0, 1} ~ and with root ~o. Construct the two successors y(1), y(2) and
the output Out(y) of node y by partitioning G~(y) ~ {0, 1} 3n into three substrings
of length n, G,(y) = y(1)y(2) Out(y). The output of the parallel generator is the
concatenation of Out(y) for all nodes of depth < h. This output is pseudorandom
provided that its length is polynomial and that (Gn)~ N is perfect.

Fast Retrieval for the Parallel Generator. There is an efficient straightforward way
to retrieve substrings of the output of the parallel generator. Consider, for example,
the case of a complete iteration tree of outdegree 2. Level h of the tree has 2 h nodes.
Suppose that the nodes of the tree are enumerated in preorder traversal. To retrieve
node y we follow the path from the root to y. This requires processing and storage
of at most h nodes and can be done at the costs of about h evaluations of Gn.

172 S. Micali and C. P. Schnorr

Acknowledgment

The authors wish to thank A. K. Lenstra and A. Shamir for discussions during this
work. H. Niederreiter brought Lemma 4.2 to our attention.

References

Alexi, W., Chor, B., Goldreich, O., and Schnorr, C. P.: RSA and Rabin functions: certain parts are as
hard as the whole. Proceeding of the 25th Symposium on Foundations of Computer Science (1984),
pp. 449-457; also: SlAM J. Comput., 17 (1988), 194-208.

Bium, M., and Micali, S.: How to generate cryptographieaUy strong sequences of pseudo-random bits.
Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, New York (1982);
also SIAM J. Comput., 13 (1984), 850-864.

Blum, L., Blum, M., and Shub, M.: A simple unpredictable pseudo-random number generator. SlAM
J. Comput., 15 (1986), 364-383.

Goldreich, O., Goldwasser, S., and Micali, S.: How to construct random functions. Proceedings of the
25th I EEE Symposium on Foundations of Computer Science, New York (1984); also d. Assoc. Comput.
Mach., 33 (1986), 792-807.

Knuth, D. E.: The Art of Computer Programming, Vol. 2, 2nd edn. Addison-Wesley, Reading, MA (1981).
Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., and Pollard, J. M.: The number field sieve. Proceedings

of the 22nd ACM Symposium on Theory of Computing, Baltimore (1990).
Micali, S., and Schnorr, C. P.: Super-efficient perfect random number generators. Proceedings Crypto

'88. Lecture Notes in Computer Science, Vol. 403. Springer-Verlag, Berlin (1988).
Niederreiter, H.: Statistical independence of nonlinear congruential pseudorandom numbers. Mh. Math.,

106 (1988), 149-159.
Niederreiter, H.: Private communication (1990).
Pollard, J.: Private communication (1988).
Santa, M., and Vazirani, U. V.: Generating quasi-random sequences from slightly random sources.

Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, Singer Island
(1984), 434-440.

Solovay, R., and Strassen, V.: A fast Monte Carlo test for primality. SIAM J. Comput., 6 (1977), 84-85,
erratum 7 (1978), 118.

Yao, A. C.: Theory and applications of trapdoor functions. Proceedings of the 25th IEEE Symposium on
Foundations of Computer Science, New York (1982), 80-91.

