Skip to main content
Log in

The connectivity of the brain: multi-level quantitative analysis

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We develop a mathematical formalism or calculating connectivity volumes generated by specific topologies with various physical packing strategies. We consider four topologies (full, random, nearest-neighbor, and modular connectivity) and three physical models: (i) interior packing, where neurons and connection fibers are intermixed, (ii) sheeted packing where neurons are located on a sheet with fibers running underneath, and (iii) exterior packing where the neurons are located at the surfaces of a cube or sphere with fibers taking up the internal volume. By extensive cross-referencing of available human neuroanatomical data we produce a consistent set of parameters for the whole brain, the cerebral cortex, and the cerebellar cortex. By comparing these inferred values with those predicted by the expressions, we draw the following general conclusions for the human brain, cortex, and cerebellum: (i) Interior packing is less efficient than exterior packing (in a sphere), (ii) Fully and randomly connected topologies are extremely inefficient. More specifically we find evidence that different topologies and physical packing strategies might be used at different scales, (iii) For the human brain at a macrostructural level, modular topologies on an exterior sphere approach the data most closely, (iv) On a mesostructural level, laminarization and columnarization are evidence of the superior efficiency of organizing the wiring as sheets, (v) Within sheets, microstructures emerge in which interior models are shown to be the most efficient. With regard to interspecies similarities and differences we conjecture (vi) that the remarkable constancy of number of neurons per underlying square millimeter of cortex may be the result of evolution minimizing interneuron distance in grey matter, and (vii) that the topologies that best fit the human brain data should not be assumed to apply to other mammals, such as the mouse for which we show that a random topology may be feasible for the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex Cambridge University Press, Cambridge

    Google Scholar 

  • Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cognitive Sci 9:147–169

    Google Scholar 

  • Agduhr E (1934) Vergleich der Neuritenanzahl in dem Wurzeln der Spinalnerven bei Kröte, Maus, Hund und Mensch. Z Anat 102:194–210

    Google Scholar 

  • Anderson JA (1972) A simple neural network generating an interactive memory. Math Biosci 14:197–220

    Google Scholar 

  • Anninos PA, Beek B, Csermely TJ, Harth EM, Pertile G (1970) Dynamics of neural structures. J Theor Biol 26:121–148

    Google Scholar 

  • Arbib MA (1972) The metaphorical brain: an introduction to cybernetics as artificial intelligence and brain theory. Wiley, New York

    Google Scholar 

  • Beaulieu C, Colonnier M (1989) J Comp Neurol 279:228–234

    Google Scholar 

  • Blinkov S, Glezer I (1968) The human brain in figures and tables: a quantitative handbook. Plenum Press, New York

    Google Scholar 

  • Bok ST (1959) Histonomy of the cerebral cortex. Amsterdam: Elsevier

    Google Scholar 

  • Braitenberg V (1977) On the texture of brains. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–33

    Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex: statistics and geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. [Principles of comparative localization in the cerebral cortex presented on the basis of cytoarchitecture. Barth, Leipzig

    Google Scholar 

  • Carpenter RHS (1984) Neurophysiology. Edward Arnold, London

    Google Scholar 

  • Carpenter M, Sutin J (1983) Human neuroanatomy, 8th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Cherniak C (1990) The bounded brain: toward quantitative neuroanatomy. J Cogn Neurosci 2:58–68

    Google Scholar 

  • Cherniak C (1994) Component placement optimization in the brain. J Neurosci 14:2418–2427

    Google Scholar 

  • Colonnier ML (1981) The electron-microscopic analysis of the neuronal organization of the cerebral cortex. In: Schmitt F, Worden F, Adelman G, Dennis S (eds) The organization of the cerebral cortex. MIT Press, Cambridge, Mass

    Google Scholar 

  • Cragg B (1967) The density of synapses and neurons in the motor and visual areas of the cerebral cortex. J Anat 101:639–654

    Google Scholar 

  • Cragg B (1975) The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain 98:81–90

    Google Scholar 

  • Crick FHC, Asanuma C (1986) Certain aspects of the anatomy and physiology of the cerebral cortex. In: McClelland JL, Rumehlhart DE (eds) Parallel distributed processing: explorations in the microstructure of cognition, vol. 2, Psychological and biological models. MIT Press, Cambridge, Mass

    Google Scholar 

  • Derrida B, Gardner E, Zippelius A (1987) An exactly solvable asymmetric neural network model. Europhys Lett 4:167–173

    Google Scholar 

  • Donaldson HH (1895) The growth of the brain. Chicago

  • Douglas RJ, Martin KAC (1991) Opening the grey box. Trends Neurosci 14:286–293

    Google Scholar 

  • Eccles JC (1977) An instruction-selection theory of learning in the cerebellar cortex. Brain Res 127:327–352

    Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as a material basis for mental events. Neuroscience 6:1839–1856

    Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Economo C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. J Springer Verlag, Vienna

    Google Scholar 

  • Felleman DJ, Essen DC Van (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47

    Google Scholar 

  • Fox CA, Barnard JW (1957) A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibers. J Anat 91:299–313

    Google Scholar 

  • Garey LJ, Powell TPS (1971) An experimental study of the termination of the larger geniculo-cortical pathway in the cat and monkey. Proc R Soc Lond B 179:41–63

    Google Scholar 

  • Gilbert CD, Wiesel TM (1981) Laminar specialization and intracortical connections in cat primary visual cortex. In: Schmitt FO et al. (eds) The organization of the cerebral cortex. MIT Press, Cambridge, Mass

    Google Scholar 

  • Glees P (1973) The neuroglial compartments at light microscopic and electron microscopic levels. In: Balazs R, Cremer JE (eds) Metabolic compartmentation in the brain. Macmillan, London

    Google Scholar 

  • Grossberg S (1976) Adaptive pattern classification and universal recording. II. Feedback, expectation, olfaction, and illusions. Biol Cybern 23:187–202

    Google Scholar 

  • Grossberg S (1982) Studies of mind and brain: neural principles of learning, perception, development, cognition, and motor control. Reidel Press, Boston, Mass

    Google Scholar 

  • Grossberg S (1987) The adaptive brain. Vol 1: Cognition, learning, reinforcement, and rhythm. Vol II: Vision, speech, language, and motor control. North-Holland, Amsterdam

    Google Scholar 

  • Harreveld A Van (1966) In: Cavaness WF Walker AE (eds) Head injury. Conference proceedings. Lippincott, Philadelphia

    Google Scholar 

  • Harth EM, Csermly TJ, Beek B, Lindsay RD (1970) Brain function and neural dynamics. J Theor Biol 26:93–120

    Google Scholar 

  • Henneberg R (1910) Messung der Oberflächenausdehnung der Grosshirnrinde. [Measurement of the surface area of the cerebral cortex]. J Psychol Neurol (Leipzig) 17:144–158

    Google Scholar 

  • Hofman MA (1985) Neuronal correlates of corticalization in mammals: a theory. J Theor Biol 112:77–95

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088–3092

    Google Scholar 

  • Hubel DH (1979) The brain. Sci Am 241:38–47

    Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibres in the Macaque monkey. J Comp Neurol 146:421–450

    Google Scholar 

  • Jaeger R (1914) Inhaltsberechnungen der Rinden und Marksubstanz des Grosshirns durch planimetrische Messungen. Arch Psychiat 54:261–272

    Google Scholar 

  • Jouandet M, Tramo M, Herron D, Hermann A, Loftus W, Bazell J, Gazzaniga M (1989) Brainprints: computer-generated two-dimensional maps of the human cerebral cortex in vivo. J Cogn Neurosci 1:88–117

    Google Scholar 

  • Kohonen T (1972) Correlation matrix memories. IEEE Trans Comp C-21:353–359

    Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

    Google Scholar 

  • Kosko B (1987) Adaptive bidirectional associative memories. Appl Optics 26:4947–4960

    Google Scholar 

  • Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern SMC-18:49–60

    Google Scholar 

  • Lashley KS (1950) In search of the engram. Soc Exp Biol Symp 4:454–480

    Google Scholar 

  • Lorente de No R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (eds) Physiology of the nervous system. Oxford University Press, New York

    Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–496

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470

    Google Scholar 

  • Maunsell JHR, Essen DC Van (1983) The connections of the middle temporal visual area (MT) and their relation to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    Google Scholar 

  • Mesulam MM, Murson EJ, Levely A, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Google Scholar 

  • Mitchell GAG, Mayor D (1983) The essentials of neuroanatomy, 4th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Mitchison GJ (1991) Neuronal branching patterns and the economy of cortical wiring. Proc R Soc Lond B 245:151–158

    Google Scholar 

  • Mitchison GJ (1992) Axonal trees and cortical architecture. Trends Neurosci 15:122–126

    Google Scholar 

  • Mitra NL (1955) A quantitative analysis of cell types in mammalian neo-cortex. J Anat 89:467–483

    Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge Mass

    Google Scholar 

  • Murre JMJ (1992) Categorization and learning in modular neural networks. Harvester Wheatsheaf/Erlbaum, Hemel Hempstead/Hillsdale, NJ

    Google Scholar 

  • Murre JMJ (1993) Transputers and neural networks: an analysis of implementation constraints and performance. IEEE Trans Neural Networks 4:284–292

    Google Scholar 

  • Murre JMJ (in press) Implicit and explicit memory in amnesia: some explanations and predictions by the Trace Link model. Memory (in press)

  • Nakano N (1972) Associatron: a model of associative memory. IEEE Trans Syst Man Cybern SMC-2:381–388

    Google Scholar 

  • Nathan PW (1987) Nervous system. In: Gregory RL (ed) The Oxford companion to the mind. Oxford University Press, Oxford

    Google Scholar 

  • Nelken I (1988) Analysis of the activity of single neurons in stochastic settings. Biol Cybern 59:201–215

    Google Scholar 

  • Nelson ME, Bower JM (1990) Brain maps and parallel computers. Trends Neurosci 13:403–408

    Google Scholar 

  • Noback CR, Demarest RJ (1975) The human nervous system, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • O'Kusky I, Colonnier M (1982) A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys. J Comp Neurol 210:278–290

    Google Scholar 

  • Palm G (1982) Neural assemblies: an alternative approach to artificial intelligence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pappius H (1982) Water spaces. In: Lajtha A (eds) Handbook of neurochemistry, vol 1, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Peters A (1987) Number of neurons and synapses in primary visual cortex. In: Jones E, Peters A (eds) Cerebral cortex, vol 6. Plenum Press, New York

    Google Scholar 

  • Pfeiffer J (1955) The human brain. Gollancz, London

    Google Scholar 

  • Pope A (1978) Neuroglia: quantitative aspects. In: Schoffeniels E, Franck G, Hertz L, Tower D (eds) Dynamic properties of glia cells. Pergamon Press, New York

    Google Scholar 

  • Powell TPS, Hendrickson AE (1981) Similarity in number of neurons through the depth of the cortex in the binocular and monocular parts of area 17 of the monkey. Brain Res 216:409–413

    Google Scholar 

  • Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Google Scholar 

  • Rolls ET (1990) Functions of neuronal networks in the hippocampus and of backprojections in the cerebral cortex in memory. In: McGaugh JL, Weinberger NM, Lynch G (eds) Brain organization and memory: cells, systems, and circuits. Oxford University Press, Oxford

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing, vol 1. MIT Press, Cambridge, Mass, pp 318–362

    Google Scholar 

  • Schüz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455

    Google Scholar 

  • Seifert W (eds) (1984) Neurobiology of the hippocampus. Academic Press, London

    Google Scholar 

  • Sejnowski TJ, Churchland PS (1992) Silicon brains. Byte 137–146

  • Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Shariff GA (1953) Cell counts in the primate cerebral cortex. J Comp Neurol 98:381–400

    Google Scholar 

  • Shepherd G (1974) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Shinomoto S (1987) A cognitive and associative memory. Biol Cyern 57:197–206

    Google Scholar 

  • Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

    Google Scholar 

  • Steinbuch K (1961) Die Lernmatrix. Kybernetik 1:36–45

    Google Scholar 

  • Stephen H, Bauchot R, Andy OJ (1970) Data on size of the brain and of various brain parts in insectivores and primates. In: Noback CR, Montagna W (eds) The primate brain. Appleton-Century-Crofts, New York, pp 289–297

    Google Scholar 

  • Stevens CF (1979) The neuron. Sci Am 241:48–59

    Google Scholar 

  • Szenthágothai J (1975) ‘The module-concept’ in cerebral cortex architecture. Brain Res 95:475–496

    Google Scholar 

  • Thompson H (1899) The total number of functional nerve cells in the cerebral cortex of man. J Comp Neurol 9:113–140

    Google Scholar 

  • Tigges M, Tigges J (1979) Types of degenerating geniculocortical axon terminals and their contribution to layer IV of area 17 in the squirrel monkey (Saimiri). Cell Tissue Res 196:471–486

    Google Scholar 

  • Tömböl T (1974) An electron microscopic study of the neurons of the visual cortex. J Neurocytol 3:525–531

    Google Scholar 

  • Tower DB (1954) Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. J Comp Neurol 101:19–52

    Google Scholar 

  • Tower DB, Elliott KAC (1952) Activity of the acetylcholine system in cerebral cortex of various unanesthetized animals. Am J Physiol 168:747–759

    Google Scholar 

  • Tramer M (1916) Über Messung und Entwicklung der Rindenoberfläche des menschlichen Grosshirns. Arb Hirnanat Inst, Zurich 10:5–57

    Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Google Scholar 

  • Vernadakis A (1986) Changes in astrocytes with aging. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 2, Biochemistry, physiology, and pharmacology. Academic Press, Orlando, Fl

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeine Ergebnisse unserer Hirnforschung. J Psychol Neurol (Leipzig) 25:277–462

    Google Scholar 

  • Weiss P (eds) (1950) Genetic neurology. University of Chicago Press, Chicago

    Google Scholar 

  • White EL (1989) Cortical circuits: synaptic organization of the cerebral cortex: structure, function, and theory. Birkhäuser, Boston, Mass

    Google Scholar 

  • Winfield DA, Gatter KL, Powell TPS (1980) An electron microscope study of types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain 103:245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murre, J.M.J., Sturdy, D.P.F. The connectivity of the brain: multi-level quantitative analysis. Biol. Cybern. 73, 529–545 (1995). https://doi.org/10.1007/BF00199545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199545

Keywords

Navigation