Skip to main content
Log in

Local lateral inhibition: a key to spike synchronization?

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Starting from the idea that neural group activity as such is unlikely to be immediately relevant for neural synchronization, we investigate mechanisms that act at the level of individual nerve impulses (spikes). Hence, we consider populations of formal spike-emitting ‘leaky integrate and fire’ neurons instead of networks built from non-spiking oscillators. After outlining the principle of synchronization for basic forms of recurrent impulse coupling by using a pair of simplified formal neurons, we show that local lateral inhibition results in robust impulse synchronization in networks with nonvanishing transmission delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian ED (1935) The electrical activity of the cortex. Proc R Soc Med 29:197–200

    Google Scholar 

  • Atiya A, Baldi P (1989) Oscillations and synchronizations in neural networks: an exploration of the labeling hypothesis. Int J Neural Syst 1:103–124

    Article  Google Scholar 

  • Braitenberg V, Schüz A (1991) Anatomy of the cortex: statistics and geometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Buck J (1988) Synchronous rhythmic flashing of fireflies. II. Q Rev Biol 63:265–289

    Article  PubMed  Google Scholar 

  • Bush PC, Douglas RJ (1991) Synchronization of bursting action potenial discharge in a model network of neocortical neurons. Neural Comput 3:19–30

    Google Scholar 

  • Cairns DE, Baddeley RJ, Smith LS (1993) Constraints on synchronizing oscillator networks. Neural Comput 5:260–266

    Google Scholar 

  • Coultrip R, Granger R, Lynch G (1992) A cortical model of winnertake-all competition via lateral inhibition. Neural Networks 5:47–54

    Article  Google Scholar 

  • Deppisch J, Bauer H-U, Schillen T, König P, Pawelzik K, Geisel T (1992) Stochastic and oscillatory burst activities in a model of spiking neurons. In: Aleksander I, Taylor J (eds) Artificial neural networks 2. Elsevier, Amsterdam, pp 921–924

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130

    Article  PubMed  Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2:293–307

    Google Scholar 

  • Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4:243–246

    PubMed  Google Scholar 

  • Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606

    PubMed  Google Scholar 

  • Engel AK, König P, Singer W (1991) Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88:9136–9140

    PubMed  Google Scholar 

  • Engel AK, König P, Singer W (1993) Bildung repräsentationaler Zustände im Gehirn. Spektrum Wiss, no 9:42–47

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • French AS, Stein RB (1970) A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng 17:248–253

    PubMed  Google Scholar 

  • Gerstner W, Hemmen JL van (1992) Associative memory in a network of ‘spiking’ neurons. Network 3:139–164

    Google Scholar 

  • Gerstner W, Ritz R, Hemmen JL van (1993a) A biologically motivated and analytically soluble model of collective oscillations in the cortex. I. Theory of weak locking. Biol Cybern 68:363–374

    Article  PubMed  Google Scholar 

  • Gerstner W, Ritz R, Hemmen JL van (1993b) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503–515

    Article  PubMed  Google Scholar 

  • Glünder H, Antesberger M (1995) Same network — different formal neurons. Two network implementations for competitive motion analysis. In: Elsner N, Menzel R (eds) Learning and memory. Göttingen Neurobiology Report 1995. Thieme, Stuttgart, p 895

    Google Scholar 

  • Glünder H, Nischwitz A (1993) On spike synchronization. In: Aertsen A (eds) Brain theory. Spatio-temporal aspects of brain function. Elsevier, Amsterdam, pp 251–258

    Google Scholar 

  • Glünder H, Nischwitz A (1994) Single unit (SUA) and group activity (MUA) in simulated populations of impulse coupled neurons with lateral inhibition. In: Elsner N, Breer H (eds) Sensory transduction. Göttingen Neurobiology Report 1994. Thieme, Stuttgart, p 864

    Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  Google Scholar 

  • Hartmann G, Drüe S (1990) Self organization of a network linking features by synchronization. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers. Elsevier, Amsterdam, pp 361–364

    Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Hemmen JL van, Gerstner W, Ritz R (1992) A ‘microscopic’ model of collective oscillations in the cortex. In:Taylor JG, Caianiello EK, Cotterill RNJ, Clark JW (eds) Neural network dynamics. Springer, Berlin Heidelberg New York, pp 139–164

    Google Scholar 

  • Kirillov AB, Woodward DJ (1993) Synchronization of spiking neurons: transmission delays, noise and NMDA receptors. In: Proceedings of the World Congress on Neural Networks, Portland, Ore, pp 594–597

  • König P, Schulen TB (1991) Stimulus-dependent assembly formation of oscillatory responses. I. Synchronization. Neural Comput 3:155–166

    Google Scholar 

  • Kraut U, Nischwitz A, Waschulzik T (1993) Temporal resolution: a critical parameter in simulations of pulse-coupled neural networks. In: Okabe Y (eds) Proceedings of the International Joint Conference on Neural Networks '93. Nagoya, Japan, pp 1116–1119

  • Kuramoto Y (1991) Collective synchronization of pulse-coupled oscillators and excitable units. Physica D 50:15–30

    Article  Google Scholar 

  • Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059–1079

    PubMed  Google Scholar 

  • MacGregor RJ, Palasek RL (1974) Computer simulation of rhythmic oscillations in neuron pools. Kybernetik 16:79–86

    Article  PubMed  Google Scholar 

  • Milner PM (1974) A model for visual shape recognition. Psychol Rev 81:521–535

    PubMed  Google Scholar 

  • Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50:1645–1662

    Article  Google Scholar 

  • Niebur E, Schuster HG, Kammen DM (1991) Collective frequencies and metastability in networks of limit-cycle oscillators with time elay. Phys Rev Lett 67:2753–2756

    Article  PubMed  Google Scholar 

  • Nischwitz A (1994) Impuls-Synchronisation in neuronalen Netzwerken. Harri Deutsch, Thun

    Google Scholar 

  • Nischwitz A, Glünder H (1992) Gibt es ein zur starken Wechselwirkung analoges Prinzip bei der neuronalen Informationsverarbeitung? In: Krönig D, Lang M (eds) Physik und Informatik Informatik und Physik. Springer, Berlin Heidelberg New York, pp 143–144

    Google Scholar 

  • Nischwitz A, Glünder H (1993) Letter to the editor. Spektrum Wiss, no 1:8

  • Nischwitz A, Glünder H, Klausner P (1991) Synchronization of spikes in populations of laterally coupled model neurons. In: Kohonen T, Mäkisara K, Simula O, Kangas J (eds) Artificial neural networks. Elsevier, Amsterdam, pp 1771–1774

    Google Scholar 

  • Nischwitz A, Glünder H, Oertzen A von, Klausner P (1992) Synchronization and label-switching in networks of laterally coupled model neurons. In: Aleksander I, Taylor J (eds) Artificial neural networks 2. Elsevier, Amsterdam, pp 851–854

    Google Scholar 

  • Peskin CS (1975) Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences, New York University, New York

    Google Scholar 

  • Pittendrigh CS, Bruce VG (1957) An oscillator model for biological clocks. In: Rudnick D (ed) Rhythmic and synthetic processes in growth. Princeton University Press, Princeton, NJ, pp 75–109

    Google Scholar 

  • Pöppel E (1971) Oscillations as possible basis for time perception. Stud Gen 24:85–107

    Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (eds) Neural theory and modelling. Stanford University Press, Stanford, Calif, pp 73–97

    Google Scholar 

  • Sayer RJ, Friedlander MJ, Redman SJ (1990) The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J Neurosci 10:826–836

    PubMed  Google Scholar 

  • Schuster HG, Wagner P (1989) Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog Theor Phys 81:939–945

    Google Scholar 

  • Sejnowski TJ, Lytton WW (1992) Inhibitory interneurons can synchronize cortical pyramidal neurons. In: Elsner N, Richter DW (eds) Rhythmogenesis in neurons and networks. Thieme, Stuttgart, pp 173–185

    Google Scholar 

  • Smith LS, Cairns DE, Nischwitz A (1994) Synchronization of integrateand-fire neurons with delayed inhibitory lateral connections. In: Marinaro M, Morasso PG (eds) Proceedings of the International Conference on Artificial Neural Networks '94. Springer, Berlin Heidelberg New York, pp 142–145

    Google Scholar 

  • Traub RD, Miles R, Wong RKS, Schulman LS, Schneiderman JH (1987) Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol 58:752–764

    PubMed  Google Scholar 

  • Vreeswijk C van, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J Comput Neurosci 1:313–321

    Article  PubMed  Google Scholar 

  • Wang X, Blum EK (1992) Discrete-time versus continuous-time models of neural networks. J Comput Syst Sci 45:1–19

    Article  Google Scholar 

  • Wiener N (1961) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge, Mass

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nischwitz, A., Glünder, H. Local lateral inhibition: a key to spike synchronization?. Biol. Cybern. 73, 389–400 (1995). https://doi.org/10.1007/BF00201473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201473

Keywords

Navigation